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Abstract: By realizing the advantages of using a tri-axial ellipsoidal nano-antenna (NA) surrounded
by a solute for enhancing light emission of near-by dye molecules, we analyze the possibility of
controlling and manipulating the location of quantum dots (similar to optical tweezers) placed near
NA stagnation points, by means of prevalent AC electric forcing techniques. First, we consider the
nonlinear electrokinetic problem of a freely suspended, uncharged, polarized ellipsoidal nanoparticle
immersed in a symmetric unbounded electrolyte which is subjected to a uniform AC ambient electric
field. Under the assumption of small Peclet and Reynolds numbers, thin Debye layer and ‘weak-field’,
we solve the corresponding electrostatic and hydrodynamic problems. Explicit expressions for the
induced velocity, pressure, and vorticity fields in the solute are then found in terms of the Lamé
functions by solving the non-homogeneous Stokes equation forced by the Coulombic density term.
The particular axisymmetric quadrupole-type flow for a conducting sphere is also found as a limiting
case. It is finally demonstrated that stable or equilibrium (saddle-like) positions of a single molecule
can indeed be achieved near stagnation points, depending on the directions of the electric forcing
and the induced hydrodynamic (electroosmotic) and dielectrophoretic dynamical effects. The precise
position of a fluorophore next to an ellipsoidal NA, can thus be simply controlled by adjusting the
frequency of the ambient AC electric field.

Keywords: AC electrokinetics; induced-charge electroosmosis; dielectrophoresis; ellipsoidal
nano-antennas; fluorescence enhancement; quantum dot trapping

1. Introduction

The subject of plasmonic luminescence enhancement and quenching of dye molecules or quantum
dots (QD) placed near metallic nanoparticles (NP) or nano-antennas (NA), has recently attracted
much interest because of its immense potential applications in the field of nano-photonics and
nano-plasmonics (for example [1–10]). Light emitters in general are single atoms, organic or dye
molecules as well as artificial molecules such as semiconductors, fluorophores, and quantum dots of a
typical size of 10 nm or less, which is generally small compared to the characteristic length scale of
the nearby polarizable NP (usually on the order of 100 nm). At these scales, it is prevalent to apply
the electric or magnetic dipole (quasi-static) Rayleigh’s approximation to adequately describe the
light-emission process of QD emitters placed next to a metallic nanostructure. While in this work,
we will use the Rayleigh approximation, it should be stated that for a relatively large QD size, one needs
to go beyond the common dipole approximation and consider for example higher-order multipole
transitions [11] or a more intricate approach [12] such as Mie’s formulation [13].

The fluorescence rate (including enhancement and quenching) of a single-molecule lying next
to an irradiated nano-antenna, depends on the morphology and plasmonic properties of the NP,
the dielectric properties of the ambient electrolyte as well as on the size and photonic properties of
the fluorophore (i.e., its absorption and emission bands) and mostly on the precise distance (position)
of the QD near the NP [14–19]. The optimal QD/NP spacing for maximum fluorescence emission
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enhancement (Figure 1) is usually quite small (of the order of few nm) and exhibits a sharp maximum
(peak) depending on geometry and dielectric parameters of both QD and NP. For example [14,15],
for typical fluorophores or QDs located next to gold (Au) nano-spheres of diameters ranging from
20–100 nm that are illuminated at laser wave-length excitation of 400–650 nm (i.e., covering the blue,
green, and red optical spectrum), the optimal QD/NP spacing is rather small and typically lies in
the range of 8–15 nm. Maximum photonic enhancement at these optimal distances can be about five
times larger compared to the ‘remote’ case. For larger spacing, the Gaussian fluorescence enhancement
decays to unity, however if the distance between the QD and NA is relatively small (several nm), there
is a strong quenching effect which implies that the non-radiative decay rate dominates the radiative
part [1,3,5].

Among the major difficulties that one encounters when trying to implement such photoluminescence
enhancement techniques is the ability to control and manipulate the precise location of a QD next
to a plasmonic NP. One of the main contributions of the present work is a practical suggestion of
using a simple electrokinetic-based method which combines common dielectrophoresis (DEP) and
AC electroosmotic (ACEO) techniques [20–24] for the optimal positioning of free fluorophores next to
NAs. The idea of actively controlling and manipulating the location of a single QD by optical means
was probably first conceived by Ashkin’s [25] using the method of ‘optical tweezers’ and was later
extended for the purpose of molecule and nanostructure trapping (see reviews by [26,27]). A similar
procedure can be also employed for trapping QDs which are placed near planar electrodes by using
DEP and ACEO effects, as demonstrated for example in [28–30] for the positioning of bio-functionalized
semiconductor QDs (diameter less than 10 nm) on the center of the electrode or at the tip of aligned Au
nanowires using AC electric fields with frequencies in the kHz range. Stable trapping was obtained
when DEP and ACEO effects acting on a free QD are equal in magnitude and act in opposite directions.
The optical-based approach works well for trapping micro-sized objects but possess some difficulties
when trying to manipulate nanometric (atomic-sized) particles, because the amount of force exerted
by light on such objects is rather small [29]. For this reason, electrokinetic-based methods using for
example ambient AC electric fields seem to be more promising for QD positioning and trapping. Here,
it is proposed to modify the same physical concept and implement it for the case of a single free QD
placed near a polarizable (metallic) NP by applying a low-voltage uniform AC electric field. The size
of the NP (or NA) is assumed to be large compared to that of the fluorophore (Figure 1) and the
non-uniform electric field (unaffected by the presence of the QD) is induced around the NP due to
its polarizability.

We employ the quasi-static (Rayleigh’s) approximation and represent the contribution of the
free QD by a point dipole acting in the direction of the applied electric field. As a result of the field
non-uniformity, the QD will experience a short-range DEP force which depends on the QD radius, its
Clausius Mossotti (CM) coefficient, the forcing frequency of the imposed electric field and the local
electric field gradient around the QD. In addition, the polarizability of the NP generates a tangential
component of the electric field along the surface of the particle, which under the assumption of a
thin Debye or electric double layer (EDL) results in a surface-slip velocity according to the Helmholtz
Smoluchowski (HS) model [23] which drives a quadrupole-type ACEO motion in the solute (Figure 1).
Since for typical micro-fluid applications, inertia effects can be neglected with respect to viscous ones,
the long-range ACEO [24] or opto- [31,32] induced flow fields (forced by HS slippage), can be modeled
by the Stokes momentum equation. Finally, treating the small-size QDs as free tracers, it is assumed
that they are simply carried by the induced ACEO fluid motion (typical velocities of the order of
few µm/s). The resulting ACEO force acting on the QD, is then determined by the fluid velocity
(magnitude and direction) induced at the location of the QD and the resulting Stokes drag experienced
by the QD.

It has been demonstrated that, in order to achieve simultaneous maximum enhancement and
quenching emission rates, using tri-axial ellipsoidal NP shapes is superior to using common spherical
morphologies, especially for practical photo-luminescence applications of fluorophores [5], since
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general orthotropic NAs have more than one resonance frequency and for this reason can in principle
lead to a simultaneous photonic enhancement (or quenching) of both emission and absorption rates.
This is in direct contrast to the more often studied case of metallic (conducting) nano-spheres, which
have only a single plasmonic frequency determined by the corresponding Frohlich resonance condition
(depending on its material) regardless of its size. In this context, most fluorophores are characterized
by two distinct emission and absorption frequency bands which are separated by the Stokes drift [33]
(e.g., typical wave lengths of 346 nm and 445 nm for Alexa 532-type fluorophore) and for this reason
ellipsoidal NAs possessing at least two resonant frequencies, are considered more effective NAs
compared to the commonly used spherical NAs. It is also worth mentioning that non-spherical
laser-heated conducting nanoparticles immersed in electrolyte (unlike spherical NPs), are generally
subjected to a non-vanishing self-induced thermoosmotic (quadrupole-type) flow driven by the Seebeck
effect [32]. Thus, it is easier to manipulate and control optical-induced thermoosmotic flow fields
about orthotropic (ellipsoidal) NPs compared to say around a perfectly symmetric spherical particle.
Yet another practical reason for favoring ellipsoidal shapes is because they can generate stronger DEP
gradients at relatively lower electric fields in comparison to spherical NPs (of same volume). Needless
to say, that a spherical geometry can be considered as a special limiting case of the generalized tri-axial
ellipsoid morphology that will be studied herein (as well as needles, disks, and nanowires).

It is apparent that determining the non-linear polarization induced flow field about a non-spherical
polarizable NP, is definitely not a trivial task. Previously, an explicit solution has been presented
only for a perfectly symmetric sphere by [34,35] in the case of a thin EDL and by [36] for finite
EDL. This fact has inspired and motivated us to analyze the induced non-linear ACEO fluid motion
problem around a general polarized ellipsoidal NP (under the common Rayleigh’s, ‘weak-field’, and
thin EDL assumptions) and obtain an explicit new solution for the ACEO induced fluid velocity,
pressure, and vorticity fields in the unbounded electrolyte surrounding a tri-axial ellipsoidal NP. The
known quadrupole-type ACEO velocity field [34–36] for a perfectly symmetric spherical NP, is then
obtained under a proper limit. It is also worth mentioning that the new (nonlinear) AC solution thus
obtained for polarizable ellipsoidal morphologies screened by an EDL, is essentially different from the
corresponding well-known linear electrostatic solution for a dielectric ellipsoid [37] (see also [21,38])
expressed in terms of the CM coefficients involving some elliptic integrals, obtained by ignoring
electric double-layer screening effects (and thus no allowance for electroosmotic flow).

The structure of the paper contains therefore two parts: In Section 2, we present the theoretical
background of the physical model, which includes the governing equations and boundary conditions.
In Section 3 we analytically solve the electrostatic polarization problem of a general ellipsoidal NP
under the common Poisson–Nernst–Planck (PNP) and ‘weak-field’ assumptions [23,34,36]. Then
we provide, in Section 4, an explicit solution for the corresponding ACEO hydrodynamic problem,
including a verification of the new tangled expressions for perfectly symmetric spherical and spheroidal
morphologies (Section 5). In the second part of this paper (Section 6), we analyze the intrinsic problem
of controlling and manipulating the location of a single free fluorophore (QD) placed next to a NA
stagnation point, by employing the classical Rayleigh’s dipole approach. It is demonstrated that,
depending on the direction of the applied AC electric field, the precise position of a free QD placed
next to a NA, can be controlled and set at a certain stable or saddle-like trapping point in the solute,
when the competing dynamical effects of DEP and ACEO act in different directions, or alternatively
the QD may be trapped near one of the stagnation (stable) points of the NA when the above two effects
augment each other. Towards this goal, we explicitly determine the DEP force exerted on a free QD
in terms of the sign of its CM coefficient and forcing electric frequency, which serves as the single
control parameter of the current fluorescence problem. It is finally demonstrated that, regardless of
the sign of the CM coefficient, there exists a single frequency (generally below the Maxwell–Wagner
frequency limit) that controls the precise spacing between the QD and the NA. Thus, the position
(spacing) of a single free QD from any ellipsoidal NP, can be effectively controlled and manipulated by
simply adjusting the frequency of the ambient electric field. This scenario is explicitly demonstrated
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for the case of a free biological/synthetic QD located near the forward stagnation point along the
major axis of a tri-axial ellipsoid, where the ambient field is aligned in the same direction. Similar
(simple) explicit expressions for such trapping points, can be also obtained for spherical and spheroidal
morphologies. We conclude in Section 7 with a short summary and discussion of the analytic results
and proposed methodology.

2. Theoretical Background

We consider a perfectly conducting (ideally polarized) metallic uncharged micro/nano tri-axial
ellipsoid immersed in an unbounded symmetric binary electrolyte solution which is exposed to a
uniform AC electric field acting in the direction of one of the ellipsoid three principal axes. Using a
Cartesian coordinate system (x1,x2,x3) coinciding with the ellipsoid geometric centroid, its surface S can

be simply expressed as
3
∑

j=1

(
xj/aj

)2
= 1, where a1 ≥ a2 ≥ a3 denote the corresponding three semi-axes

of the ellipsoid. The dimensionless amplitude (constant) of the ambient electric field (normalized
with respect to the thermal scale given by the product of the Boltzmann constant kB and absolute
temperature T) applied, say along the xj(j = 1, 2, 3) direction, is E0 and the forcing frequency is
denoted by ω. The initially uncharged polarizable particle induces a spatial distribution of electric
charges in the solute by virtue of the Poisson relation which depends on the amplitude of the AC
ambient electric field and oscillates with time with the same frequency. Due to particle polarizability,
the induced electric field in the electrolyte is essentially non-uniform and satisfies the equipotential
boundary condition on S (assuming a perfectly conducting particle). The electric field engendered
around the particle is proportional to the applied field and the resulting Coulombic force density
induced in the solute is thus quadratic in E0. The non-linear electric force density drives an ACEO
(induced-charge electroosmotic) creeping flow around the particle [2,3] with velocity and pressure
fields of a dispersive nature (i.e., depending on ω) which vary spatially like |E0|2 and decay to zero
away from the NP. By assuming an incompressible Newtonian fluid and ignoring inertia with respect
to viscous effects, one can solve the homogeneous Stokes equation and analytically determine the
non-linear induced ACEO flow about a conducting tri-axial ellipsoid.

For the present non-dimensional analysis, it was found useful to follow the general formulation
and scaling of parameters used for example in [39]. Thus, we consider a symmetric binary electrolyte
and employ the so-called ‘standard model’ based on the linearized PNP equations for a ‘weak’
(compared to the thermal scale) ambient electric field. Consequently, we ignore effects associated with
concentration polarization and surface conductance (i.e., assuming small Dukhin number) as well as
neglecting ion convection (small Peclet number) with respect to electric migration and diffusion, which
renders complete decoupling between the electrostatic and the hydrodynamic problems. Furthermore,
for low forcing frequencies below the Maxwell–Wagner frequency limit [39], it is possible to express the

dimensionless electric field as
→
E = −∇φ̃, where φ̃(x1, x2, x3; t) = Re

{
φ(x1, x2, x3)eiωt} is the electric

potential, t denotes time and Re represents the real part. In a similar manner, we express the volumetric
induced charge density as Q̃(x1, x2, x3; t) = Re

{
Q(x1, x2, x3)eiωt}, where both φ (normalized by

ϕT = kBT) and Q (normalized with respect to εϕT/a2
1 where ε denotes the solvent permittivity and a1

is the reference length), are considered as dimensionless complex-value stationary functions.
Under these assumptions, the relations between the electric potential φ and induced-charge Q

can be expressed [39] in terms of the dimensionless Debye scale λ0 (normalized with respect to the
major axis a1) and ion diffusivity D (symmetric binary electrolyte) as

2φ = −
(

λ
λ0

)2
Q + χ; (

λ0
λ )

2
= 1 + iΩ; Ω =

ω(a1λ0)
2

D (1)

where χ represents the harmonic contribution
(
∇2χ = 0

)
to the electric potential φ in Equation (1) and

Ω denotes the Maxwell–Wagner polarization dimensionless frequency. The operator ∇ in the sequel is
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made non-dimensional with reference to a1. Equation (1) follows directly from the linearized versions
of the PNP equations that can be casted into

λ2∇2Q = Q = −2λ2
0∇2φ (2)

which implies that the charge density Q is governed by the Helmholtz equation. Supplementing
Equation (2) we have two boundary conditions stating that the particle surface S is both equipotential
(perfect conductor) and ion-impenetrable (zero ionic flux), i.e.,

φ = const; 2 ∂φ
∂n + ∂Q

∂n = 0 On S (3)

where ∂
∂n denotes the normal derivative on S. Without loss of generality, one can choose the constant

in Equation (3) to be zero and by virtue of, Equation (1) get

φ = 0; ∂χ
∂n = −iΩ( λ

λ0
)

2 ∂Q
∂n . (4)

Closure of the electrostatic problem is finally obtained by assuming that far from the particle
χ→ −2E0(xn/a1) , where the non-dimensional ambient uniform electric field is taken to be parallel to
the xn(n = 1, 2, 3) direction.

Having obtained the solution for the electrostatic problem (i.e., φ, Q and χ), these parameters
can then be used as the forcing (Coulombic) terms in the following non-homogeneous dimensionless
Stokes equation [39]

∇2→u = ∇P + Q
2λ2

0
∇φ; ∇ ·→u = 0 (5)

The dimensionless solenoidal velocity field
→
u (u1, u2, u3) (normalized here with respect to εϕ2

T/ηa1

where η is the solvent dynamic viscosity), denotes the polarization-induced velocity in the solute and
P (normalized by εϕ2

T/a1
2), is the corresponding hydrodynamic pressure. Finally, by substituting

Equations (1) and (2) in Equation (5), the latter can be expressed in terms of an effective pressure term
P∗(defined below) as

∇2→u = ∇P∗ + 1
4 (

λ
λ0
)

2∇2Q · ∇χ; P∗ = P− 1
8 (

λ
λ2

0
)

2
Q2 . (6)

For general orthotropic shapes that possess three mutual planes of symmetry, the induced electric
and electro-osmotic flow fields around a perfectly conducting particle are fore and aft symmetric
and thus an initially uncharged particle remains stationary (no phoretic motion). Furthermore, by
considering the salient EDL (electric double layer) screening effect, which is usually of the order of few
tenths of a nanometer, to be small compared to the characteristic length scale a1 of the particle (‘thin’
EDL assumption), the tangential induced electroosmotic velocity on the particle surface, in accordance
with the classical HS slip formula and Murtsovkin’s [34] modification, can be readily obtained from
Equation (6) by double integration as

→
ut ∼ (λ/2λ0)

2Q∇t(χ). Moreover, since the surface S is assumed
to be equipotential Equations (1) and (4) finally renders

→
ut ∼=

1
8
∇t

(
χ2
)

On S (7)

where ∇t = ∇−
(→

n · ∇
)

represents the tangential gradient evaluated over the smooth polarizable

surface S and
→
n denotes the outward normal. In addition to the HS velocity slip boundary condition

Equation (74) the impervious boundary condition,
→
u ·→n

∣∣∣
s
= 0 must be also enforced together with the

requirement that
→
u → 0 away from the NP.
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3. The Electrostatic Problem of a Conducting Tri-Axial Ellipsoid

In this section, we present a new analytic solution for the nonlinear induced-charge electrostatic
problem of an ideally polarizable ellipsoidal particle embedded in an unbounded solute due to AC
ambient uniform electric field. Since we seek only time-independent streaming solutions (i.e., averaging
over a period), the DC solution thus obtained does not depend on the native (uniform) surface
charge of the particle. Once the electrostatic problem is solved, one can resolve the corresponding
hydrodynamic (electroosmotic) flow problem (Section 4) and determine both the dielectrophoretic
(DEP) and induced-charge electroosmotic flow (ACEO) which are exerted on a free QD located near
one of the stagnation points of the ellipsoid. In order to solve for the ACEO flow field about a perfectly
conducting ellipsoidal particle forced by the quadratic Coulombic density term under the assumption
of a relatively ‘thin’ EDL Equation (6), one can following [34] consider the homogeneous (unforced)
Stokes equation

∇2→u = ∇P; ∇ ·→u = 0 (8)

which is subjected to

→
ut = |ut|

→
T = 1

8

[
∇−

(→
n · ∇

)](
χ2); →

u ·→n = 0 On S (9)

where
→
T denote a tangential vector to S. Supplementing the above mixed velocity boundary condition

Equation (9), we also impose a proper decay of the velocity
→
u at large distances from S.

In order to determine the ACEO velocity field
→
u (x1, x2, x3) and pressure distribution P(x1, x2, x3)

around the polarized particle, we need first to analytically solve the electrostatic problem for both the
electric potential χ(x1, x2, x3) and the induced-charge density Q(x1, x2, x3). Note that χ is governed
by the Laplace equation whereas Q satisfies the Helmholtz equation. It is recalled that a separable
solution for the Laplace equation can be obtained by means of ellipsoidal harmonics and employing
Lamé functions expressed in terms of the three orthogonal ellipsoidal coordinates. However, unlike for
spherical shapes, such a procedure cannot be used in principle for ellipsoidal geometries when solving
the corresponding Helmholtz equation. This difficulty can be bypassed for a thin EDL by assuming
that (see [39,40]) ∂Q

∂n ∼ −
Qs
a1λ , where Qs denotes the value of Q evaluated on S. Imposing next the

equipotential boundary condition Equation (4) simply renders Qs = (λ/λ0)
2χ. Thus, when solving

for the quadratic ACEO flow field about a metallic ellipsoidal particle under the assumption of a thin
EDL, only the harmonic part of the polarization potential χ enters into the formulation.

Let us first solve the electrostatic problem for a uniformly applied AC electric field directed along
one of the three semi-axes of the ellipsoid by employing a triply orthogonal ellipsoidal coordinate
system (ρ, µ, ν), which is related to the dimensionless Cartesian one (x1, x2, x3) by (see for example [41,42])
the following transformations:

x2
1 = ρ2µ2ν2

h2
2h2

3
; x2

2 =
(ρ2−h2

3)(µ2−h2
3)(h2

3−ν2)
h2

3h2
1

x2
3 =

(ρ2−h2
2)(h2

2−µ2)(h2
2−ν2)

h2
2h2

1

(10)

where
h2

1 = a2
2 − a2

3; h2
2 = a2

1 − a2
3; h2

3 = a2
1 − a2

2 (11)

such that h2 ≥ h3; ∞ > ρ2 ≥ a2
1; h2

2 > µ2 ≥ h2
3; h2

3 ≥ ν2 ≥ 0 .
Any separable (normal) solution of the Laplace equation expressed in terms of ellipsoidal

coordinates Equation (10) which is regular at the origin (‘interior’) can be written as [41,42]

Em
n (ρ, µ, ν) = Em

n (ρ)Em
n (µ)Em

n (ν) (12)
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where Em
n (x) represents the Lamé function of the first kind of order n and degree m ≤ 2n + 1. In a

similar manner, a separable solution that decays at infinity (‘exterior’) can be expressed as

Fm
n (ρ, µ, ν) = Fm

n (ρ)Em
n (µ)Em

n (ν) (13)

where the Lamé function of the second kind is defined below as

Fm
n (ρ) = Im

n (ρ)Em
n (ρ); Im

n (ρ) = (2n + 1)
∞∫
ρ

ds
[Em

n (s)]2
√
(s2−h2

2)(s2−h2
3)

. (14)

Consider for example the case of a uniform ambient electric field of amplitude E0 applied along
the xj direction (j = 1, 2, 3). A general expression for χj(x1, x2, x3) can then be postulated according to
Equation (1) as;

χj(x1, x2, x3) = − 2E0
ajGj

[Ej
1(ρ)− CjF

j
1(ρ)

]
Ej

1(µ)Ej
1(ν) j = 1, 2, 3 (15)

where G1 = h2h3; G2 = h3h1; G3 = h1h2 . Clearly, at infinity (ρ→ ∞) , χj → −2E0(xj/aj) and
thus the coefficient Cj in Equation (15) can be determined explicitly by Equation (4) for a ‘thin’ EDL

(or at low-frequency where λ→ λ0 ) and using ∂Q
∂n

∣∣∣
S
= − QS

a1λ , from the following Robin (mixed)
boundary condition:

∂χ

∂n
=

1
hρ

∂χ

∂ρ
= i

Ω

λ
χ. on S (16)

Here, hρ(ρ, µ, ν) denotes the normal metric coefficient evaluated on the ellipsoidal surface [43].
ρ = a1. Equation (16) can be further simplified yielding

∂χ
∂ρ

∣∣∣
S
= iΩ∗

a1
χ; Ω∗ = r1Ω

λ = ωra2
1λ0

D

√
1 +

iωa2
1λ2

0
D

(17)

where Ω∗ represents the non-dimensional RC forcing frequency and r is a dimensionless ‘geometric’
parameter [40] defined as the average value of 1/hρ taken over the ellipsoidal surface S, namely

1
r
=

1
S

∫
S

ds
hρ

=
3∀
a1S

(18)

with ∀ = (4π/3)a1a2a3 denoting the volume of the ellipsoid (see Section 12.6 in [42]). Note that r = 1
for a sphere and r ∼ a1/a3 > 1 for a slender prolate spheroid.

Substituting next Equations (14) and (17) in Equation (15) renders

Cj =
iΩ∗Ej

1(a1)− a1
.
E

j
1(a1)

iΩ∗Fj
1(a1)− a1

.
F

j
1(a1)

=
iΩ∗(

aj
a1
)

2
− 1

I j
1(a1)

[
iΩ∗(

aj
a1
)

2
− 1
]
+ 4π/∀

(19)

where the upper dot represents differentiation with respect to the argument (i.e.,
.
E

j
1(a1) =

∂Ej
1(ρ)
∂ρ

evaluated at ρ = a1). Note also that the coefficient Cj/∀ is dimensionless. Finally, in order to enforce

the HS velocity slip condition Equation (7), we need to determine the value of
(
χj
)2 on ρ = a1.

This quadratic can be readily obtained from Equation (15) as (no sum over j)∣∣∣ χj
2E0

∣∣∣2 = K(j)
(

xj /aj

)2
;

K(j) = 1− 2Re{Cj}I j
1(a1) +

∣∣∣Cj I
j
1(a1)

∣∣∣2 =

[(
1− ∀I j

1(a1)
4π

)2
+

(
∀I j

1(a1)
4π Ω∗(

aj
a1
)

2
)2
]−1 (20)
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which provides the corresponding coupling term between the electrostatic and hydrodynamic
problems in terms of a geometric parameter K(j) and the direction (j = 1, 2, 3) of the applied
electric field.

4. Hydrodynamic Problem

Our next task is to analytically solve the homogeneous Stokes equation (8) for the ACEO velocity
field, which is subjected to the velocity-slippage Equation (9). For this purpose, let us assume the

following expression for the velocity field
→
u
(n)(

u(n)
1 , u(n)

2 , u(n)
3

)
that is induced by polarization due to

uniform ambient electric excitation E0 acting along the xn direction [44] (n = 1, 2, 3)

u(n)
i (x1, x2, x3) =

3

∑
k=1

A(n)
k

(
xk

∂ψk
∂xi
− δikψk

)
+ a1B(n) ∂Φ(n)

∂xi
(21)

such that both ψk(x1, x2, x3) and Φ(n)(x1, x2, x3) are harmonic functions (namely
∇2ψk = 0; ∇2Φ(n) = 0 ) which decay away from S and δij denotes the Kronecker delta.

Here, A(n)
k and B(n) are dimensionless geometric coefficients to be determined depending on the

direction (n = 1, 2, 3) of the applied AC electric field. In particular, we choose for k = 1, 2, 3

ψk(ρ, µ, ν) =
a2

1Fk
1(ρ, µ, ν)

Gk
= a2

1xk Ik
1(ρ) (no sum over k) (22)

since according to Equations (12) and (14) Ek
1(ρ, µ, ν) = Gkxk and Fk

1(ρ, µ, ν) = Ik
1(ρ)Ek

1(ρ, µ, ν).
The slip velocity on the surface of the ellipsoid is proportional by virtue of Equation (7) and

Equation (20) to the tangential gradient of the coordinate square x2
k . For this reason, we make use of

the following relation (see Equation (G.83) in [42]) which expresses the monomial of the second-degree
evaluated on S(ρ = a1) in terms of ellipsoidal surface harmonics as

3
(

xn
an

)2
= 1− E1

2(a1,µ,ν)
E1

2(a1)(∧−∧′)(∧−a2
n)

+
E2

2(a1,µ,ν)
E2

2(a1)(∧−∧′)(∧′−a2
n)

; n = 1, 2, 3 (23)

Here ∧ and ∧′ represent the two roots of the binomial equation
3
∑
k
(∧− a2

k)
−1

= 0, which are explicitly

given in terms of the geometric parameters (h1, h2, h3) defined in Equation (11) as [42]

∧− ∧′ = 2
3

√
h4

1 + (h2h3)
2; ∧+ ∧′ = 2

[
a2

1 −
1
3
(
h2

2 + h2
3
)]

. (24)

The particular quadratic nature of the HS velocity slip condition combined with Equation (20)
suggests then that the harmonic function Φ(n) in Equation (21), can be chosen (up to a constant) as

Φ(n)(ρ, µ, ν) =

[
F1

0(ρ,µ,ν)
F1

0 (a1)
− F1

2(ρ,µ,ν)
F1

2 (a1)(∧−∧′)(∧−a2
n)

+
F2

2(ρ,µ,ν)
F2

2 (a1)(∧−∧′)(∧′−a2
n)

]
(25)

One can readily verify that the parenthesis in Equation (25) is non-dimensional and that it satisfies
Equation (23) for ρ = a1. It can also be shown by using Equations (22) and (25) that the velocity field
Equation (21) vanishes at large distances (ρ→ ∞) from the polarizable particle. Furthermore, it is
evident that the velocity vector Equation (21) is solenoid and automatically satisfies the continuity
equation ∂u(n)

i /∂xi = 0, since both ψk and Φ(n) are harmonic functions. In addition, it is also possible
to analytically determine the hydrodynamic pressure distribution P(n)) in the solute by substituting
Equation (21) in the homogeneous Stokes momentum equation Equation (8) which simply leads to
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P(n)(x1, x2, x3) = 2a1

3

∑
k=1

A(n)
k

∂ψk
∂xk

+ P0, (26)

where P0 denotes the ambient (constant) pressure.
What remains now is to explicitly determine the velocity field by obtaining the coefficients A(n)

k
in (21) and B(n) in Equation (25) using the boundary conditions Equation (9). Let us first note that by
combining Equations (22) with (21), the ACEO velocity field can be expressed in a vector form as [44]

→
u
(n)

(x1, x2, x3) = a2
1

3

∑
k=1

A(n)
k x2

k∇Ik
1(ρ) + a1B(n)∇Φ(n) (27)

which implies that the first term on the right hand side of Equation (27) does not have any tangential
component along S, since by definition ∇t Ik

1(ρ) = 0 on ρ = a1. Thus, by virtue of Equation (23)
and Equation (25), one gets Φ(n)(a1, µ, ν) = 3(xn/an)

2 + const and when combined together with
Equations (7), (9), and (20), the coefficient B(n) can be finally resolved in terms of the parameter K(n)

Equation (20), as

B(n) =
E2

0
6

K(n). (28)

Next, in order to enforce the impervious velocity boundary condition Equation (9) on the ellipsoid,
we recall that the normal derivative on S can be expressed as ∂

∂n = 1
hρ

∂
∂ρ

∣∣∣
ρ=a1

and thus by multiplying

the right hand side of Equation (27) by the normal vector
→
n to S, renders

a1

3

∑
k=1

A(n)
k x2

k I
k
1(a1) + B(n) ∂Φ(n)

∂ρ
= 0 On ρ = a1. (29)

The second term on the left-hand side of Equation (29) can be accordingly expressed for any point
(a1, µ, ν) on S following Equation (25), as

∂Φ(n)

∂ρ

∣∣∣∣∣
ρ=a1

=

 .
F

1
0(a1)

F1
0 (a1)

−
.
F

1
2(a1)E1

2(a1, µ, ν)

E1
2(a1)F1

2 (a1)(∧− ∧′)(∧− a2
n)

+

.
F

2
2(a1)E2

2(a1, µ, ν)

E2
2(a1)F2

2 (a1)(∧− ∧′)(∧′ − a2
n)

 (30)

In order to express Equation (30) in terms of monomials of the second-degree, we make use of the
following identities (see Equations (F.42-43) in [42])

E1
2(ρ, µ, ν) = L[

3
∑

k=1

x2
k

(∧−a2
k)

+ 1]; E2
2(ρ, µ, ν) = L′[

3
∑

k=1

x2
k

(∧′−a2
k)

+ 1] (31)

where the two parameters in Equation (31) are defined below as

L =
(
∧− a2

1

)(
∧− a2

2

)(
∧− a2

3

)
, L′ =

(
∧′ − a2

1

)(
∧′ − a2

2

)(
∧′ − a2

3

)
.

Note also that E1
2(a1, µ, ν) =L

3
∑

k=1

∧x2
k

a2
k(∧−a2

k)
and E2

2L′
3
∑

k=1

∧′x2
k

a2
k(∧′−a2

k)
.

Substituting Equation (28) back into Equation (29) and Equation (30) and collecting (xk/ak)
2 like

terms, finally leads to

A(n)
k = −B(n) T(n)

k (a1)

(a1ak)
2 .

I
k
1(a1)

= − E2
0

6 K(n) T(n)
k (a1)

(a1ak)
2 .

I
k
1(a1)

; (k, n = 1, 2, 3) (32)

where the geometric second-order dimensionless tensor T(n)
k in Equation (32) is defined below as (since

E1
2(ρ) = ρ2 − a2

1 + ∧ and E2
2(ρ) = ρ2 − a2

1 + ∧′):
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T(n)
k (ρ) = a1


.
F

1
0(ρ)

F1
0 (a1)

− 1
(∧− ∧′)

 .
F

1
2(ρ)L

F1
2 (a1)

(
∧− a2

k
)
(∧− a2

n)
−

.
F

2
2(ρ)L′

F2
2 (a1)

(
∧′ − a2

k
)
(∧′ − a2

n)

. (33)

The above expression can be further simplified by using the identities Equations (G.19-20) in [38],
as demonstrated in the next section. Once the ‘streaming’ (DC) part of the non-linear ACEO velocity
field around a perfectly polarizable ellipsoidal particle forced by an AC uniform electric field, has been
established, one can also determine the vorticity field, by taking the curl of Equation (27) which renders(

∇×→u
(n)
)

i
= 2a2

1

3

∑
k=1

εikj A
(n)
k xk

∂Ik
1(ρ)

∂xj
(34)

where εijk denotes the permutation (Levi-Chivita) tensor. This completes the ACEO analysis for general
tri-axial ellipsoidal particles.

5. Spheres and Spheroids as Limiting ACEO Cases

Using the above methodology, one can readily obtain the corresponding expressions for the case
of a perfectly symmetric conducting spherical particle of radius a as a limiting case, by simply letting
a = a1 = a2 = a3 = 1 in the above formulation. For this purpose it is convenient to employ a spherical
coordinate system (R, θ, ϕ) such that x1 = Rµ, x2 + ix3 = R

(
1− µ2)1/2eiϕ where µ = cos θ. We also

recall that a general ‘exterior’ spherical harmonic (satisfying Laplace’s equation) can be expressed in
term of the associate Legendre function Pm

n (µ) as R−(n+1)Pm
n (µ)eimϕ for n = 0, 1, 2 . . . and m ≤ 2n + 1.

In particular, for a spherical particle of unit radius which is exposed to a uniform AC field acting in
the x1 direction (n = 1), we note following Equation (21) that due to symmetry k = n = 1 and thus
according to Equation (22),

ψ1(R, µ) =
a2P0

1 (µ)

R2 = a2x1
R3 ; Φ(1)(R, µ) = a

R + 2a3

3
P0

2 (µ)

R3
(35)

where Φ(1) in Equation (35) satisfies Φ(1)(a, µ) = µ2 + 2/3 and ∂Φ(1)

∂R

∣∣∣
R=a

= −3x2
1/a3. Furthermore,

by substituting Equation (35) into Equation (27) and using P0
2 (µ) =

1
2
(
3µ2 − 1

)
, one gets

→
u
(1)

(x1, x2, x3) = a2 A(1)
1 x2

1∇
(

1
R3

)
+ a2B(1)∇

[
1
R
+

a2(3x2
1 − R2)

3R5

]
. (36)

The impermeability requirement that
→
u
(1)
·→n = 0 on R = a implies then that B(1) = −A(1)

1 .

Finally, in order to determine the coefficient A(1)
1 by imposing the velocity slippage boundary

condition Equation (9), it is necessary first to express (in a similar manner to Equation (15)) the electric
potential for a spherical geometry as

χ1(R, θ, ϕ) = −2E0

(
R/a− C1

R3

)
cos θ; (37)

Substituting next Equation (37) in Equation (17), namely

∂χ1
∂R = iΩ∗

a χ1; Ω∗ = ωa2λ0
D

√
1 +

iω(aλ0)
2

D
(38)

and recalling that for a spherical shape I1
1 (a) = 1/a3, one finds from Equations (19) and (20), that

C1 = a3 iΩ∗−1
iΩ∗+2 ; K(1) = 9

4+|Ω∗ |2
; χ1(1, θ, ϕ) = − 6(x1/a)E0

2+iΩ∗ . (39)
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The HS velocity slip condition Equation (7) then yields for the tangential velocity component on R = a,

u(1)
θ =

(9/2)E2
0

4 + |Ω∗|2
∂

∂θ

( x1

a

)2
(40)

Comparing Equation (40) against Equation (36) promptly renders B(1) =
(9/2)E2

0
4+|Ω∗ |2

.

The sought expression for the non-dimensional polarization induced velocity past a spherical

metallic particle can then be found from Equation (36) by replacing P0
2 (µ)

R3 = 1
2

∂2

∂x2

(
1
R

)
as

→
u
(1)

(x1, x2, x3) =
(9/2)E2

0a2

4 + |Ω∗|2

{
x2

1∇
(

1
R3

)
−
(

1 +
a2

3
∂2

∂x2
1

)
∇
(

1
R

)}
(41)

where the last term represents the Faxen [45] correction. The quadrupole-type ACEO velocity field
Equation (41) preserves axial-symmetry about the x1 axis and thus may be also obtained directly from
the following Stokes stream-function:

Ψ(R, θ) =
(9/2)E2

0

4 + |Ω∗|2

(
a2

R2 − 1
)

sin2 θ cos θ (42)

Implying that the corresponding radial and tangential velocity components are given by

VR(R, θ) =
(9/2)E2

0
4+|Ω∗ |2

(
a4

R4 − a2

R2

)(
3 cos2 θ − 1

)
Vθ(R, θ) =

9E2
0

4+|Ω∗ |2
sin θ cos θ

(R/a)4 .
(43)

The ACEO velocity field in Equation (43) decays to zero for large values of Ω∗ and has a maximum
at Ω∗ = 0. The analytic expression for the Stokes stream-function Equation (42) and the associated
velocity components Equation (43) for an induced ACEO flow past a sphere are identical with those
given in [32]. A Cartesian leading-order representation of the same quadrupole-type velocity field in
the DC limit (i.e., Ω∗ = 0) which is similar to Equation (41) (but without the last Faxen’s term), has
been also obtained in [46]. The ACEO flow along the axis of symmetry (x1) is directed towards the
conducting particle with stagnation points at x1 = ±a and a maximum velocity on the major axis at
x1 = ±

√
2a. In a similar manner, the velocity field around the other two semi- axes, is directed away

from the particle, exhibiting again a maximum at x2, x3 = ±
√

2a with a total of six stagnation points
located on the conducting particle.

Before concluding this section, let us apply a similar methodology to analytically determine the
corresponding ACEO velocity field for the case of a prolate spheroid. For this purpose we employ a
spheroidal coordinate system (ζ, µ, ϕ), such that x1 = cµζ, x2 + ix3 = c(1− µ2)

1/2
(ζ2 − 1)1/2eiϕ and

2c denotes the distance between the two spheroidal foci. For the axisymmetric case (m = 0) where
the ambient electric field is directed along the x1 axis, the harmonic functions in Equation (21) can be
defined in terms of the corresponding Legendre functions of the first Pn(µ) and second kind Qn(ζ), as
ψ1 = (x1/c)I1(ζ) with I1(ζ) = Q1(ζ)/ζ and Φ(1) = Q0(ζ) + βP2(µ)Q2(ζ). Here β = 2

.
Q1(ζ0)/

.
Q2(ζ0)

is a coefficient determined from imposing the impermeability conditions on ζ = ζ0. For the purpose of
illustration, we also provide below an analytic expression for the ACEO velocity component which
prevails along the axis of symmetry x1 = cζ of a prolate spheroid, namely

u(1)(x1, 0, 0) =
E2

0K(1)ζ0
.

Q2(ζ0)

3Q2(ζ0)

[ .
Q2(x1/c)

.
Q2(ζ0)

+

.
Q0(x1/c)

2
.

Q0(ζ0)
− 3

2
(x1/cζ0)

2
.
I1(x1/c)

.
I1(ζ0)

]
. (44)
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The frequency dependent parameter K(1)(Ω∗, ζ0) in Equation (44) for a prolate spheroid, can

be obtained directly from Equations (18) and (19) as 1/K(1) = (ζ2
0 − 1)

{
[Ω∗Q1(ζ0)]

2 + [
.

Q1(ζ0)]
2
}

.

It can be also easily verified that the longitudinal velocity (i.e., u(1)
1 = 0) indeed vanishes at x1 = ±cζ0

(stagnation points). In the limit of a sphere of radius a one gets [40] ζ0 → ∞ , c→ 0 such that a = cζ0.
Under these limits, Equation (44) renders u(1)

1 (x1, 0, 0) = E2
0K(1)

[
(a/x1)

4 − (a/x1)
2
]

which agrees

with Equation (43) with K(j) given by Equation (39). Equation (44) is found useful in the next section
when addressing the problem of controlled positioning of free molecules (QD) or biosensors by means
of AC electrokinetics. Figure 2 shows the variation of the axial velocity component u(1)

1 (x1, 0, 0) along
the major axis for various shapes (i.e., sphere, prolate spheroid and tri-axial ellipsoid), displaying a
boundary-layer type behavior in the vicinity of the nearby stagnation points.

6. Positioning and Manipulation of Quantum Dots

The technical problem addressed in this work is the manipulation and positioning of a single QD
at some prescribed small distance from a non-spherical micron-size object and the ability to simply
control this distance by adjusting and tuning the forcing frequency of the ambient field. The polarizable
entity is regarded in this context as a nano-antenna (NA). We consider here a single (spherical) molecule
(QD) of radius b which is located at a distance d̃ from a stagnation point next to a polarizable tri-axial
ellipsoid (Figure 1). In order to obtain maximum plasmon electromagnetic enhancement [14–19],
the QD must be placed next to the NA such that d̃ ≤ a1,2 is of the same order of magnitude as the size
of the fluorophore (i.e., few tenths of a nm).
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Figure 1. Schematic quadrupole ACEO flow field induced around a tri-axial ellipsoidal nano-antenna
by an AC electric field acting along the longitudinal x1 axis and displaying the position of a free QD at
a distance d̃ from the nearest stagnation point.

As demonstrated (see for example [28–30]) active manipulation and positioning (trapping) of a
sole QD or single molecule, can be effectively achieved by means of AC electrokinetics. The freely
suspended QD is generally exposed to both dielectrophoresis (DEP) force due to the presence of a
nearby NA as well as to electroosmotic (ACEO) flow. The short-range DEP force, resulting from the
field non-uniformity around the NA at the location of the spherical QD, is given by [21]

→
F DEP = 2πb3εRe{K(ω)}∇|Erms|2 (45)
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where ε (real) is the typical medium (solute) permittivity, Erms denotes the root-mean square of the
electric field and Re{K(ω)} represents the real part of the frequency-dependent CM coefficient of
the fluorophore. Following Jones [21], the CM coefficient can be expressed in terms of the complex
dielectric constants of the molecule (m) and fluid (f) as ε f ,m = ε f ,m + σf ,m/iω, where ε f ,m and σf ,m
represent the permittivity and conductivity coefficients (real) of the corresponding phase. For example,
for a spherical QD one gets K(ω) = (εp − ε f )/(2ε f + εp), implying that the CM coefficient can change
sign depending on the relative polarizability between fluorophore (m) and electrolyte (f). In general,
at relatively low frequencies it is plausible to assume that Re{K(ω)} ∼ 1 for a ‘metallic’ (perfect
conductor) QD and Re{K(ω)} ∼ 0.5 for ‘organic’ (biological) or synthetic molecules. Thus, the
dielectrophoretic force can be either positive, i.e., directed towards the NA (pDEP) or be repelled
from it (nDEP) when acting in the opposite direction (away from the NA). Free QDs can be generally
regarded as simple tracers in the sense that they follow the induced ACEO velocity field

→
v ACEO

around the polarizable NA. Hence, the Stokes drag experienced by a spherical QD, is simply given by
→
F ACEO = 6πηb

→
v ACEO, where η denotes the dynamic viscosity of the solute.

Let us consider for example the particular configuration depicted in Figure 1. The AC ambient
electric field is collinear with the longitudinal x1 axis and thus the induced quadrupole ACEO velocity
field is directed towards the two poles (stagnation points) of the NA located on the major axis (suction)
and away from the NA (ejection), along the other two semi-axes [23,32–36]. Thus, depending on QD

location,
→
F ACEO can be either positive (directed away from the NA) for QDs lying on the semi-axes, or

negative (directed towards the NA), for QDs placed along the major axis. Under certain conditions

and depending on the sign of CM,
→
F ACEO and

→
F DEP can augment or counteract each other. For this

reason, a single QD can be trapped and positioned at a certain point at a small distance d̃ from the
NA, providing the DEP and ACEO forces are equal in magnitude and act in opposite directions

(
→
F ACEO +

→
F DEP = 0), as illustrated for example in Figure 3. Such a trapping point can be either stable

to perturbations along all three orthogonal directions here defined as a stable trapping (S), or only
for agitation along one or two directions, which is labeled here as equilibrium (saddle-like) trapping
(E). In addition to the above two trapping cases, there is yet a third possible physical stable labeled as
wall trapping (W), which generally occurs around one of the stagnation points of the NA. These three
trapping scenarios will be further analyzed and demonstrated below for the case of ellipsoidal NA
and spherical QD.

For the purpose of illustration, we first examine the possibility (Figure 1) of trapping a free QD at
a certain point x1 = a1 + d̃ placed along the major x1 axis of a tri-axial ellipsoid when the AC ambient
field is acting in the same direction (n = 1). The induced ACEO flow is then directed towards the

NA (i.e., u(1)
1 (x1, 0, 0) < 0). Recalling that

→
u
(1)

Equation (27) is made dimensionless with respect to
εϕ2

T/a1η = εE2
0a1/η, a simple force balance between DEP and ACEO then yields

1
3

b2

a1
Re{K(ω)}∇|Erms|2 = −→u

(1)
(x1, 0, 0), (46)

since along the x1 axis, µ = h2, υ = h3 and thus following Equation (10) one gets x1 = ρ ≥ a1. It is
important to note that trapping on the x1 axis is possible only for the case of nDEP, namely when,
Re{K(ω)} < 0 (organic or artificial QDs), where both sides of Equation (46) are positive. The ACEO
velocity component along the x1 axis can then be obtained directly from Equations (20), (27), (28),
and (32) as

u(1)
1 (x1, 0, 0) = a2

1 A(1)
1 x2

1

.
I

1
1(x1) + a1B(1) ∂Φ(1)

∂x1
=

K(1)E2
0

6

a1
∂Φ(1)

∂x1
−
(

x1

a1

)2 .
I

1
1(x1)

.
I

1
1(a1)

T(1)
1 (a1)

. (47)

Equation (47) can be further simplified by making use of Equations (14) and (30), finally leading to
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u(1)
1 (x1, 0, 0) =

K(1)E2
0T1

1 (a1)

6

T(1)
1 (x1)

T(1)
1 (a1)

− a2a3√
(x2

1 − h2
2)(x2

1 − h2
3)

 (48)

where T(1)
1 in Equation (48) is defined in Equation (33). Note also that both points (±a1, 0, 0) are indeed

stagnation points since u(1)
1 (±a1, 0, 0) = 0 and u(1)

2,3 (x1, 0, 0) = 0 due to symmetry.
What remains in order to determine the DEP force exerted on the QD is to compute the gradient of

E2
rms given in Equation (46) and evaluate it at the potential trapping point (x1, 0, 0). Towards this goal

we recall following Equations (1) and (15) that under the assumption of a thin EDL,
→
E rms = −∇ϕ ≈

1
2∇χ1 and thus

|Erms/E0|2 ≈ 1− 2Re{C1}
∂

∂x1

[
x1 I1

1 (x1)
]
+

∣∣∣∣C1
∂

∂x1

[
x1 I1

1 (x1)
]∣∣∣∣2 > 0; for x1 > a1 (49)

Substituting next E1
1(t) = t in Equation (14), one can evaluate I1

1 (t) and show that

∇|Erms/E0|2 = − 6√
(x2

1 − h2
2)(x2

1 − h2
3)

(
1

x2
1 − h2

2
+

1
x2

1 − h2
3

)
(Ω∗). (50)

The parameter (Ω∗) evaluated near the stagnation points (±a1, 0, 0) is defined as

(Ω∗) = 2
[

Re{C1} − |C1|2
d

dx1
[x1 I1

1 (x1)]x1=a1

]
=
∀K(1)

2π
|Ω∗|2 (51)

where C1 and K(1) are defined respectively in Equations (19) and (20). The final expression for
the trapping point (x1,0,0) i is then obtained by substituting Equations (47), (49), and (50) into (45)
resulting in

T(1)
1 (x1)

√
(x2

1−h2
2)(x2

1−h2
3)

a2a3
− T(1)

1 (a1) = 4b2|Ω∗|2Re{K(ω)}
(

1
x2

1−h2
2
+ 1

x2
1−h2

3

)
. (52)

Equation (52) is the sought relation between the trapping distance x1 = a1 + d̃ of a single free
fluorophore placed near a tri-axial ellipsoid and the detuning frequency parameter Ω∗ where nDEP
and ACEO effects precisely cancel each other. The value of d̃ depends on the ellipsoid geometry and
the radius b of the QD, as well as on the forcing frequency and chemical properties of the ambient
electrolyte (i.e., its molar concentration and effective diffusivity). The precise location (position) of a
free QD next to a polarizable ellipsoid can be thus adjusted by tuning the AC frequency which serves
here as the control parameter. Since (see [14–16]) the ‘spacing’ d̃ is generally small compared to a1, the
left hand side of Equation (52) can be approximated to leading-order using Equations (14), (33) and the
relations given in ( see Equations (G.18-19) in [42]) by −(d̃/a1)∆(a1), where

∆(a1) = − a1
a2a3

d
dx1

[T(1)
1 (x1)

√
(x2

1 − h2
2)(x2

1 − h2
3)]x1=a1

= 3( a1
a2a3

)
2
[2a2

1 + a3
2 + a2

3] (53)

so that the trapping distance d̃ (a saddle-like equilibrium point) can be finally expressed using
Equation (52) as

d̃/a1 ∼ −
4
3
(

b
a1
)

2
(

a2
2 + a2

3
2a2

1 + a2
2 + a2

3
)|Ω∗|2Re{K(ω)}. (54)

In the limit of a perfectly symmetric sphere of radius a, h2 = h3 = 0 and I1
1 (a) = 1/a3. Thus, the

right-hand-side of Equation (52) simply reduces to 8(b/a)2|Ω∗|2Re{K(ω)}
(
a2/x2

1
)
< 0. Following
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Equation (33), it can then be shown that T(1)
1 (x1) =

.
F
(1)
0 (x1)/F(1)

0 (a1) − 2
.
F

1
2(x1)/F1

2 (a1), since in
this case F1

2 (x1) = F2
2 (x1). Furthermore, we note following Equation (14) that F1

0 (x1) = 1/x1 and

F1
2 (x1) = 1/x3

1. Hence, one finds that T(1)
1 (x1) = −(a/x1)

2 + 6(a/x1)
4 and for a spherical NA the

left-hand side of Equation (52) simply renders −6[1− (a/x1)
2]. Substituting these values back in

Equation (52), we finally get the following exact relation between the trapping distance d̃ and the
frequency control parameter Ω∗ near a spherical NA:(

a
x1

)2
= (1 + d̃/a)

−2
= 1 +

4
3

(
b
a

)2

|Ω∗|2Re{K(ω)} (55)

implying that d̃/a ∼ − 2
3

(
b
a

)2
|Ω∗|2Re{K(ω)} for d̃/a� 1. On the other hand, when using the above

expression for T(1)
1 (x1) in Equation (53), it yields ∆(a) = − 1

a
d

dx1
[x2

1T(1)
1 (x1)]x1=a = 12, which by virtue

of Equation (52), yields the exact relation (55) for a spherical morphology.
Regarding stability issues of these particular (nDEP) trapping points at (x1, 0, 0) where

x1 = ±(a1 + d̃), one finds that they are indeed stable for perturbations in the longitudinal x1 direction,
however closer scrutiny indicates that they are unstable for perturbations along the transverse x2,3

semi-axes and thus by definition they are labeled here as equilibrium (saddle-like) points (E), as
depicted in Figure 4a. Nevertheless, for the same longitudinal electric forcing but under pDEP
conditions (Figure 4b), there exist four stable (S) trapping points located on the semi-axes x2,3 and two
stable wall (W) trapping points at the tip stagnation points (±a1, 0, 0). For the case of a transverse
electric forcing (acting along the x2,3 direction), repeating the same analysis reveals that for nDEP,
there are four equilibrium (E) points lying on the semi-axes (Figure 4c). Finally, for the same transverse
forcing but under pDEP predicaments, one finds two stable (S) trapping points located along the major
x1 axis and four stable wall (W) trapping points coinciding with the corresponding x2,3 stagnation
points (Figure 4d). Thus, in principle, one can control the position d̃ of a free QD lying next to an
ellipsoidal NA, by simply adjusting the forcing frequency ω of the ambient field. The particular form
of the corresponding transfer function (i.e., distance vs. frequency) depends on the diffusivity and
concentration of the electrolyte (through the Debye scale) and on the sign of the CM coefficient (namely,
nDEP or pDEP).

To conclude this section and for the purpose of illustration, we provide a simple demonstration of
the equilibrium (E) nDEP trapping scenario depicted in Figure 4a and given explicitly by Equation (54)
for determining the relation between the frequency ω to be applied for positioning a free QD of
radius b at a prescribed distance d̃ from a polarizable ellipsoidal NA. In particular, let us choose (see
for example [14–19]) the following parameters; a1 = 1µm, a2 = 0.5µm, a3 = 0.2µm, b = 5 nm and
d̃ = 13 nm (i.e., minimum NA/QD clearance of d̃ − b ∼ 8 nm). As a reference frequency, we use
the Maxwell–Wagner value [23,24] ωMW = D/λ2

0, defined in terms of the solute diffusivity D and

the EDL thickness (Debye scale) λ0 =
√

Dε f /σf and use archetypal value of [34] λ0 ∼ 25 nm for DI
water. A typical value of the real part of the CM coefficient [47] (prevailing at forcing frequencies
above 500 kHz), is close to 0.9 for metallic colloids (pDEP) and about −0.46 for dielectric (silica) or
synthetic (nDEP) particles immersed in DI water. Hence, in accordance with Figure 4a, let us assume a
non-conducting organic (biological) dye molecule lying in a solute together with Re{K(ω)} ∼ −0.5.

Following Equation (17) and (54), one gets ω/ωMW [1 + (ω/ωMW)2]
1/4
∼ 1

r (
λ0
b )

√
3d̃(2a2

1+a2
2+a2

3)

2a1(a2
2+a2

3)
, where

the ‘slenderness’ parameter r defined in Equation (18) can be selected as r ∼ a1/a3 > 1. Finally, using
the above parameters for D = 10−9m2/ sec (DI water), one gets ω/ωMW ∼ 0.4 or a trapping frequency
equals to f = ω/2π ∼ 100 kHz.



Micromachines 2019, 10, 83 16 of 20

7. Summary and Discussions

Single molecule (quantum dot) fluorescence imaging and spectroscopy are very powerful
present-day techniques often used in various branches of physics, chemistry, biology and material
sciences that are based on controlling and positioning of free fluorophores next to nano-antennas (NA)
of non-spherical shapes. It has been demonstrated that changing the morphology of the NA from
say spherical to a tri-axial ellipsoid, can lead to substantial enhancement of the spontaneous emission
radiative decay rates of a QD depending on its specific distance from the tip of the NA. Furthermore,
there exists an optimal QD spacing for a maximum enhancement. Motivated by this physical finding,
we chose to analytically study the possibility of accurately controlling the position of a free QD placed
next to an ellipsoidal NA using common AC electrokinetic procedures by means of adjusting the
frequency of the applied electric field. Stable or equilibrium (saddle-like) QD trapping points can
then be obtained, both in the fluid or at the NA stagnation points, depending on the direction of the
ambient AC field and sign of CM. Thus, the hydrodynamic effects associated with induced-charge
electro-osmosis (ACEO) and those resulting from dielectrophoresis (DEP), can either cancel or augment
each other.

In the first part of the paper, we analyze the nonlinear ACEO flow problem about a polarizable
tri-axial ellipsoidal entity. Employing the common ‘weak field’ and small Dukhin number assumptions,
we use the traditional Poisson–Nernst–Planck (PNP) formulation and the ‘thin’ EDL (small Debye
scale) conjecture to determine the polarization-induced electric field around the NA. Closed form
expressions are then obtained for the non-uniform electric field as well for the charge density
distribution in the solute in terms of ellipsoidal harmonics and Lamé functions. Substituting the
polarization-induced Coulombic force term in the non-homogeneous Stokes momentum equation,
renders explicit expressions for the induced ACEO velocity, pressure, and vorticity fields in the
symmetric (1:1) electrolyte surrounding the ellipsoid. It is shown that the new solution thus found
for tri-axial ellipsoidal morphologies, reduces to the well-known solution for a perfectly symmetric
spherical particles [33,36,46].

The quadrupole- type ACEO flow field in the solute is found by enforcing the HS velocity slip
condition on the ellipsoid (Figure 1). The velocity component along the major x1 axis decays to zero far
from the NA and vanishes at the stagnation points x1 = ±a1, exhibiting a local maximum close to the
ellipsoidal object (Figure 2.) depending on its morphology. For a spherical shape, the ACEO velocity
has a local peak at x1/a = ±

√
2 and this value decreases as the ellipsoid gets flatter (i.e., smaller values

of a3/a1) as depicted in Figure 2. Near the stagnation points the velocity displays a boundary-layer
type behavior and increases (linearly) with the distance d̃ = x1 − a1.
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Once the ACEO hydrodynamic problem about a perfectly conducting (metallic) tri-axial ellipsoid
has been solved (Section 3), we explore in the second part of the text (Section 4) the possibility of using
it as a nano-antenna for trapping single molecules (QD) placed near the stagnation points (Figure 3)
by means of conventional AC electrokinetics. The idea here is to treat the QD, or a single spherical
fluorophore (radius of few nm), as a free tracer which is carried by the ambient ACEO flow field and
thus experiences a common Stokes drag. Thus, for a free QD located on the x1 axis (collinear with the
applied AC field as shown in Figure 1), the ACEO (Stokes) force is directed towards the stagnation
points (Figure 3). Resisting (or adding) to this long-range hydrodynamic force, there is a short-range
DEP force acting on the QD (resulting from the non-uniformity of the electric field around the NA).
The DEP force can act along the x1 axis (nDEP) or in the opposite direction (pDEP), depending of
the sign of the real part of the CM coefficient of the QD. For most organic (biological) molecules
or synthetic (polymeric) QDs embedded in a conducting electrolyte within the Maxwell–Wagner
frequency range, Re{K(ω)} < 0 and thus a negative (nDEP) force prevails. In such a case, the DEP
force is acting in the opposite direction to the ACEO force (Figure 3) and trapping of a free QD can be
attained at a particular distance d̃ from the tip (stagnation point) of the NA where these two opposing
forces balance each other. This particular trapping point is apparently ‘stable’ only for perturbations in
the longitudinal x1 direction (see also Figure 4a) but it appears to be unstable in the transverse x2,3

directions. For these reasons and following our notations, we label it as an equilibrium (saddle-like)
point (E). Nevertheless, it is interesting to note that by applying the electric field along the semi-axes
x2,3 and depending on the sign of CM (namely nDEP vs. pDEP), one finds stable trapping points in the
fluid (S) or at the stagnation points (W) on the semi-axes (see Figure 4.).Micromachines 2019, 10, x 21 of 23 
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Figure 3. The competing effects between DEP and ACEO forces exerted on a free QD located on the
longitudinal axis and demonstrating the existence of an equilibrium (saddle-like) trapping point (E) at
a distance d̃ from the nano-antenna.

The above analysis provides us with an explicit relation between the desired (optimal) QD
position d̃ next to an ellipsoidal NA and the forcing frequency ω (control parameter). It is found that
depending on electrolyte physical properties and QD size, one can use the following approximation
d̃ ∼ χ2(1 + χ2)

1/2 for the optimal QD spacing d̃(ω) where χ = ω/ωMW . Optimal trapping
frequencies are usually below the Maxwell–Wagner limit and are thus of the order of few hundred kHz.
To conclude, we have theoretically demonstrated the feasibility of using conventional AC electrokinetic
techniques as an alternative effective procedure for manipulating, controlling, trapping, and
positioning quantum dots or free fluorophores placed next to non-spherical (ellipsoidal) nano-antennas.
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Figure 4. Four scenarios describing stable (S) and equilibrium (E) saddle-like trapping points in the
fluid as well as stable wall (W) stagnation trapping for different orientations of the ambient AC electric
field and sign of the Clausius Mossotti (CM) coefficient of a free QD.
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