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Abstract: Microelectromechanical switch has become an essential component in a wide variety
of applications, ranging from biomechanics and aerospace engineering to consumer electronics.
Electrostatically actuated microbeams and microplates are chief parts of many MEMS instruments.
In this study, the nonlinear characteristics of coupled longitudinal–transversal vibration are analyzed,
while an electrostatically actuated microbeam is designed considering that the frequency ratio is two
to one between the first longitudinal vibration and transversal vibration. The nonlinear governing
equations are truncated into a set of coupled ordinary differential equations by the Galerkin method.
Then the equations are solved using the multiple-scales method and the nonlinear dynamics of the
internal resonance is investigated. The influence of bias voltage, longitudinal excitation and frequency
detuning parameters are mainly analyzed. Results show that using the pseudo-arclength continuation
method, the nonlinear amplitude–response curves can be plotted continuously. The saturation and
jump phenomena are greatly affected by the bias voltage and the detuning frequency. Beyond the
critical excitation amplitude, the response energy will transfer from the longitudinal motion to the
transversal motion, even the excitation is employed on the longitudinal direction. The large-amplitude
jump of the low-order vibration mode can be used to detect the variation of the conditions or parameters,
which shows great potential in improving precision of MEMS switches.

Keywords: electrostatically actuated microbeam; coupled longitudinal–transversal vibration;
pseudo-arclength continuation method; multiple-scales method

1. Introduction

Electrostatic actuation is the most popular actuation mechanism used in microelectromechanical
systems (MEMS) [1,2]. Various electrostatic switches and resonators have been used in a wide
variety of applications, such as in biomechanics, aerospace engineering, and consumer electronics.
Understanding the mechanical behavior of microbeams [3–6] and microplates [7–9] is of great
importance due to their applications in devices such as in resonators, sensors, and actuators [10,11],
and nonlinear vibration analysis of micro/nanosystems has been widely studied based on continuum
theories [12–17].

Electrostatically actuated microbeams and plates exhibit significant nonlinearities due to the action
of the electrostatic force, as the electrostatic force is inversely proportional to the square of the distance
between the electrode and the host structure. On account of nonlinearities, a collapse of the movable
structure occurs at a critical voltage (pull-in instability), and the phenomenon can be used as change
of ON or OFF state [18–25]. Younis [26,27] used analytical approaches to investigate the behavior
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of electrically actuated microbeam-based MEMS, and proposed a reduced-order model in nonlinear
dynamic analysis of MEMS. Alsaleem [28] showed experimental and theoretical investigations of
dynamic pull-in of electrostatically actuated resonators, and the influences of different conditions
were investigated. Ouakad and Younis [29,30] studied the dynamic behavior of clamped–clamped
micromachined arches with a Galerkin-based reduced-order model, a variety of nonlinear phenomena
was analyzed in detail, such as hysteresis, softening behavior, dynamic snap-through, and dynamic
pull-in. Wang [31] presented a size-dependent model for electrostatically actuated microbeam-based
MEMS using strain gradient elasticity theory, in the study the relation of the geometry size and the
normalized pull-in voltage were analyzed in detail.

Early studies mainly focused on the static and dynamic behavior of microbeam-based MEMS.
Li [32] gave monostable dynamic analysis of microbeam-based resonators using an improved
reduced-order model, results showed that the ratio of the gap width to microbeam thickness affected
large-amplitude vibration significantly. Ghayesh [33] investigated the nonlinear size-dependent
behavior of an electrically actuated MEMS resonator based on the modified couple stress theory and
a high-dimensional reduced-order model. Based on reduced-order model, Caruntu [34] researched
parametric resonance of microelectromechanical (MEMS) cantilever resonators under soft damping
and soft alternating current (AC) electrostatic actuation. Kacem [35] constructed a comprehensive
multiphysics model for electrostatically actuated clamped–clamped resonators based on the Galerkin
decomposition method coupled with the averaging method. Feng [36] showed detailed analysis of
class of bipolar electrostatically actuated micro-resonators, and the electrostatic force nonlinearity,
neutral surface tension, and neutral surface bending were considered. Han [37] investigated the
static and dynamic characteristics of a doubly clamped micro-beam-based resonator driven by two
electrodes, nonlinear dynamic analysis for two cases were analyzed, including that the origin of the
system was at a stable center or an unstable saddle point.

To get more precise results, Muldavin [38] presented an accurate model of the switching mechanism
of MEMS switches based on an electro-mechanical analysis, varying force and damping versus
position (time) were taken into consideration. Ghayesh [39] investigated the size-dependent dynamical
performance of a microgyroscope using the modified couple stress theory, and size-dependent
frequency–response curves for the sense and drive directions were obtained to analyze the dynamical
performance of the microgyroscope. Li [40] used the modified couple stress-based strain gradient
theory to construct a unified nonlinear model for an electrostatic MEMS microbeam capacitive switch,
the quasistatic and dynamic behavior of which were studied systematically. Leus [41] applied
energy methods to study the undamped dynamic response of electrostatic MEMS switches under
a step-function voltage. Larose [42] analyzed the influences of inertial effects, structural, air damping
(squeeze-film damping) and the impact behavior of the microbeam. Lin [43] mainly investigated the
action of Casimir effect on the pull-in parameters of nanometer switches. Shear deformation was taken
into account in the analysis of microbeams with geometric nonlinearities [44–49].

The dynamical behavior of microelectromechanical systems (MEMS) plays a pivotal role in
determining their performance, such as natural frequency [50–53], critical pull-in voltage [54–56],
bifurcations [57,58]. Dynamical bifurcations have been taken into account in MEMS sensors for mass
detection [59–61], which may lead to new mass measurement architectures to miniaturized mass
spectrometers [62]. Studies on coupled vibrations have introduced a host of nonlinear phenomena
in micro- and nano-scale resonators for their use to reveal the mechanism of the complex dynamic
behaviors. Alkharabsheh [63] investigated the effect of axial forces on the static behavior and the
fundamental natural frequency of electrostatically actuated MEMS arches. Li [64] investigated the
nonlinear characteristics of microbeam-based resonators under higher-order modes excitation.

It can be concluded that coupled vibration behaviors caused by internal resonance are gradually
considered, and the jump phenomenon is also focused on [65–67]. The phenomenon is interesting,
but the application of this phenomenon is scarce. Classical MEMS switches are usually designed
based on pull-in instability, here this study aims to investigate application of jump phenomena



Micromachines 2019, 10, 315 3 of 19

in nonlinear bifurcation in improving the precision of MEMS switches. A nonlinear model for a
microbeam is established, taking electrostatic force, axial load, coupled longitudinal–transversal
vibrations and mid-plane stretching into consideration. A single mode approximation is derived and
the physical condition for the jump is determined, then the influence of longitudinal excitation
and frequency detuning parameters are analyzed qualitatively. Pseudo-arclength continuation
method and a direct time-integration technique are used to investigate the nonlinear dynamic
behavior of the electrostatically actuated microbeam due to the axial load. Using numerical method,
frequency-amplitude responses and force-amplitude responses are given to demonstrate the nonlinear
characteristics.

The rest of the paper is arranged as follows: In Section 2, mathematical model is given using
Galerkin’s method, and the multiple-scales method is used to derive an approximate average equation.
Static analysis with convergence analysis and perturbation analysis are shown in Sections 3 and 4,
respectively. A brief introduction of pseudo-arclength continuation is given in Section 5. Section 6
gives resonant conditions for this kind of electrostatically actuated microbeam. In Section 7, nonlinear
dynamical properties of the resonant microbeam are investigated in detail. Several conclusions are
summarized in the last section.

2. Mathematical Model

A slender microbeam under the action of electric field and axial load is considered, as shown in
Figure 1. The total length of the beam is L, with a thickness of h and width of b. The distance between
the fixed electrode and the microbeam is d. On the right end of the beam, an axial force is applied.
Two electric field Vdc is applied to detune the stiffness of the switch. In the following derivation,
same assumptions from Reference [33] are to be applied:(1) the Euler-Bernoulli beam theory is applied
without regard to shear deformation effect and rotary inertia; (2) the microbeam and the parallel-plate
electrodes have a complete overlapping area; (3) the geometric nonlinearity is caused by the mid-plane
stretching of the microbeam; (4) the transversal deflection is constant along the width.

Microbeam

Fixed Electrode

h

d

Fcos(Ω t)1

Vdc

L

Figure 1. Schematic of an electrically actuated microbeam

By Hamilton’s principle and nonlinear Euler-Bernoulli beam theory, the coupled
longitudinal–transversal vibration of the microbeam can be written as [32,52]:

ρA
∂2ū
∂t2 + c1

∂ū
∂t
− EA

∂2ū
∂x2 − EA

∂w̄
∂x

∂2w̄
∂x2 = F̄1 cos(Ω1t) (1)

ρA
∂2w̄
∂t2 + c2

∂w̄
∂t

+ EIz
∂4w̄
∂x4 = EA

(
∂2ū
∂x2

∂w̄
∂x

+
∂ū
∂x

∂2w̄
∂x2

)
+

EA
2L

∫ L

0

(
∂w̄
∂x

)2
dx

∂2w̄
∂x2 +

1
2

ε0bCV2
dc

(d− w̄)2 −
1
2

ε0bCV2
dc

(d + w̄)2

(2)

where ū is the longitudinal displacement and w̄ is the transversal displacement; E and Iz are the
Young’s modulus and moment of inertia of the cross section of the microbeam, ρ is the material density
and A is the area of the cross section. An axial force F̄ cos(Ω1t) is applied at the right end of the
microbeam. The terms on the right-hand side of Equation (2) represent the axial force, mid-plane
stretching effects, and two parallel-plate electric actuation, respectively. In the approximated electric
forces, C is the fringing field coefficient and ε0 is the dielectric constant of the gap medium. It should be
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mentioned that the fringing field always exists in the electrostatically actuated microbeams. However,
in this study, we aim to investigate the bifurcation phenomena and its potential in improving the
precision of MEMS switches. Considering that the response trend will not be influenced by the fringing
effect, the fringing effect is neglected for the sake of simplicity, and here C = 1.

The boundary conditions for this microbeam are:

w̄(0, t) = 0, w̄′(0, t), w̄(L, t) = 0, w̄′(L, t), ū(0, t) = 0, ū(L, t) = 0 (3)

To simplify the dynamic equations, the following dimensionless variables are applied:

x =
x̄
L

, w =
w̄
g

, u =
ū
g

, t =
t̄
τ

(4)

where τ =
√

ρAL4

EIz
is the time scale.

Substituting nondimensional variables into Equations (1) and (2) yields

∂2u
∂t2 + µ1

∂u
∂t
− µ2

∂2u
∂x2 − µ2

g
L

∂w
∂x

∂2w
∂x2 = F1 cos(Ωt) (5)

∂2w
∂t2 + µ1

∂w
∂t

+
∂4w
∂x4 = ν1

(
∂2u
∂x2

∂w
∂x

+
∂u
∂x

∂2w
∂x2

)
+ν2

∫ 1

0

(
∂w
∂x

)2
dx

∂2w
∂x2 + ν3

(
V2

(1− w)2 −
V2

(1 + w)2

) (6)

where the new parameters are given as:

µ1 =
cL4

τEIz
, µ2 =

AL2

Iz
, F1 = F̄1

L4

EIz

Ω = Ω1τ, ν1 =
dAL

Iz
, ν2 = 6

d2

h2 , ν3 =
6ε0L4

Ed3h3

(7)

To analyze the dynamic equations qualitatively, a reduced-order model is firstly derived using
Galerkin’s method, transforming the complex equations into a multi-degree of freedom system.
The solutions of the equations can be presented by mode shapes and generalized coordinates:

w(x, t) =
m

∑
k=1

φk(x)qk(t), u(x, t) =
n

∑
k=1

ψk(x)pk(t) (8)

where φk(x) and ψk(x) are mode shapes for transversal vibration and longitudinal vibration,
respectively; qk(t) and pk(t) are generalized coordinates for transversal vibration and longitudinal
vibration, respectively. The linear undamped mode shape of the transversal vibration of the straight
beam is:

φk = Ak

(
cos βkx− cosh βkx +

cosh βk − cos βk
sin βk − sinh βk

(sin βkx− sinh βkx)
)

(9)

where λk = β2
k

√
EIz
ρA , and the following relationship should also be satisfied for βk:

1− cos βkx cosh βkx = 0 (10)

For the transversal vibration of the straight beam, one characteristic of the linear undamped mode
shape is:

∂4φi(x, t)
∂x4 = λ2

i φi(x), φi(0) = φi(1) = φ′i(0) = φ′i(1) = 0 (11)
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For longitudinal vibration of a fixed-free beam, the linear undamped mode shape has the form:

ψk = Bk sin αkx (12)

where αk = (2k+1)π
2L

√
E
ρ and βkL = (4.7300, 8.8532, 10.9956, · · ·).

In Galerkin’s method, the linear mode shapes of the beam can be used as basis functions, and the
differential Equation (5) have the following equivalent form:

∂2 p
∂t2

∫ 1

0
ψψdx + µ1

∂p
∂t

∫ 1

0
ψψdx− µ2 p

∫ 1

0
ψψdx

−µ2
g
L

q2
∫ 1

0
φxφxxψdx = F1ψ(L) cos(Ωt)

(13)

For small w, the electric actuation force is simplified using Taylor approximation, and carried out
as follows [68]:

V2

(1− w)2 −
V2

(1 + w)2 =
4wV2

[(1 + w)(1− w)]2
≈ 4wV2(1 + 2w2) (14)

Using Equations (11) and (14), multiplying Equation (6) by φ, and integrating the outcome from
x = 0 to 1, yields:

∂2q
∂t2

∫ 1

0
φφdx + µ1

∂q
∂t

∫ 1

0
φφdx + q

∫ 1

0
φxxxxφdx− ν1 pq

∫ 1

0
(ψxxφx + ψxφxx) φdx =

ν2q3
∫ 1

0

∫ 1

0
φ2

xdxφxxφdx + 4ν3V2q
∫ 1

0
φφdx + 8ν3V2q3

∫ 1

0
φ3φdx = 0

(15)

Taking the orthogonality of mode shapes and Equation (11) into consideration, and only use the
first order mode function, the coupling transversal-longitudinal vibration equations are obtained:

p̈ + µ1 ṗ− µ2 p− γ1q2 = F1 cos(Ωt) (16)

q̈ + µ1q̇ + λ2q− γ2 pq− γ3q− γ4q3 = 0 (17)

where

F1 = F1ψ(L)

γ1 = µ2
g
L

∫ 1

0
φxφxxψdx

γ2 = ν1

∫ 1

0
(ψxxφxφ + ψxφxxφ)dx

γ3 = 4ν3V2

γ4 = ν2

∫ 1

0

∫ 1

0
φ2

xdxφxxφdx + 8ν3V2
∫ 1

0
φ3φdx

(18)

3. Static Analysis and Convergence Analysis

An example of eigenfrequency analysis in the steady state are given at first. Here, results by single
mode Galerkin approximation, finite element simulations, and results from previous literature are
performed. The parameters from previous literature is applied in the calculation, and the calculated
simulation results are shown in Figure 2, one can see that the results agree well with each other.
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Figure 2. Comparison of eigenfrequency of the first transversal vibration.

To activate the internal resonance between two vibrational modes, dimensions of the switch need
carefully designed. A two-to-one frequency ratio between the longitudinal mode and transversal mode
can cause the energy exchange between the two modes. However, a perfectly 2:1 frequency ratio is not
always effective and feasible in practical engineering, as small changes in structural dimensions and
material properties can deviate the nominal 2:1 ratio. In the numerical simulation, the material and
geometric parameters for the microbeam are designed as E = 169 GPa, ρ = 2300 kg/m3, L = 24 µm,
h = 2.92 µm, g = 0.5 µm and b = 10 µm. Using finite element software ANSYS R15.0, modal analysis is
carried out, and the first transversal mode shape and longitudinal mode shape are plotted in Figure 3.
The natural frequency of the first longitudinal mode is 8.93 × 107 Hz and the natural frequency of the
first transversal mode is 4.47 × 107 Hz, therefore a frequency ratio near two to one is obtained. Then a
bias DC voltage between the electrodes and microbeam is applied, resulting in two electrostatic forces
which will change the mechanical stiffness of the microbeam and consequently a frequency ratio of 2:1
is ensured.

Figure 3. The first transversal mode shape and longitudinal mode shape.

To verify the validity of the coupled Equations (16) and (17), the convergence analysis is carried
out, comparing the results obtained by the reduced-order model and the results by direct numerical
simulation of Equations (5) and (6). The direct numerical simulation is given by differential quadrature
method [32]. The force-amplitude curves are simulated as shown in Figure 4, and three cases with
different bias voltages are calculated. The results predicted by those two methods agree very well for
small deformations. Therefore, the single mode model can describe the dynamic behavior of the system
with small deformation assumption. It is interesting that two kinds of force-amplitude responses are
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obtained, one for Vdc = 30 V with a jump in the amplitude response, and another for Vdc = 60 V and
Vdc = 90 V with continually increasing amplitude, and the difference will be explained in Section 7.
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Figure 4. Comparison of the force-amplitude response curves obtained by single mode Galerkin
approximation and differential quadrature method.

4. Perturbation Analysis

In this section, the method of multiple-scales is to be applied to analyze the steady-state
responses of the microbeam around equilibrium position. Before the analysis, a small nondimensional
bookkeeping parameter ε is introduced to indicate the significance of each terms in Equations (16)
and (17). Taking the electrostatic force term F1 = O(ε2) into consideration, the coupling vibration
equations become:

p̈ + ε2µ1 ṗ + µ2 p + γ1q2 = ε2F1 cos(Ωt) (19)

q̈ + ε3µ1q̇ + λ2q + γ2 pq + γ3q + γ4q3 = 0 (20)

From Equation (19), one can find that there is no transversal vibration when the amplitude
of external force F1 is small or driving frequency Ω is far away from two times of the first nature
frequency of the transversal vibration. For the two-to-one internal resonance, two parameters ∆ and δ

are introduced to describe the nearby vicinity of the resonance.

Ω = ωp − ε2δ, ωp = 2ωq − ε2∆ (21)

Based on multiple-scales method, the approximate solutions of the longitudinal vibration and
transversal vibration can be defined in the following forms:

p = εp1(T0, T1, T2) + ε2 p2(T0, T1, T2) + ε3 p3(T0, T1, T2) + · · · (22)

q = εq1(T0, T1, T2) + ε2q2(T0, T1, T2) + ε3 p3(T0, T1, T2) + · · · (23)

where Tn = εnt represents different timescale.
Substituting the approximate solutions into the dynamic equations and equating the coefficients

of equal powers of ε, a series of second-order ordinary differential equations will be obtained.
For O(ε1):

D2
0 p1 + ω2

p p1 = 0, D2
0q1 + ω2

qq1 = 0 (24)

For O(ε2):
D2

0 p2 + w2
p p2 = γ1 p2

1 − 2D0D1 p1 + F1 cos(ΩT0) (25)

D2
0q2 + w2

qq2 = γ2 p1q1 − 2D0D1q1 (26)
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For O(ε3):

D2
0 p3 + w2

p p3 = −(D2
1 + 2D0D2)p1 − 2D0D1 p2 − µ1D0 p1 + 2γ1 p1 p2 (27)

D2
0q3 + w2

pq3 = −(D2
1 + 2D0D2)q1 − 2D0D1q2 + 2γ2(p1q2 + p2q1)− γ4q3

1 (28)

where ω2
p = µ2 and ω2

q = λ2 − γ3, and the differential operator Dn indicates the derivative with respect
to timescale Tn.

The general solutions of Equation (24) can be written as

p1 = A1(T1, T2)ejωpT0 + Ā1(T1, T2)e−jωpT0

q1 = B1(T1, T2)ejωqT0 + B̄1(T1, T2)e−jωqT0
(29)

where Ā and B̄ are complex conjugate functions of A and B, and j represents imaginary component.
For convenience, the parameters in above solutions can be represented in polar form:

A1 =
1
2

a1ejθp , B1 =
1
2

b1ejθq (30)

where a1 and b1 represent the amplitudes of the first longitudinal vibration and the first transversal
vibration, respectively.

Substituting Equations (29) and (30) into Equations (25)–(28), the following secular terms are yielded:

ȧ1 =
γ1a1b1

4ωq
sin(ϕ)− µ1b1

2
(31)

ϕ̇ = δ + ∆ +
γ1a1

2wq
cos(ϕ) + k1b2

1 + k2a2
1 (32)

ḃ1 = −
γ1b2

1
4ωp

sin(ϕ)− µ1a1

2
− F1

2ωp
sin(χ) (33)

χ̇ = δ +
γ3b2

1
4ωpa1

cos(ϕ) + k3b2
1 −

F1

2ωpa1
cos(χ) (34)

The papameters ϕ, χ, k1, k2 and k3 are defined as:

ϕ = 2θq + ∆t− θp, χ = δt + θp (35)

k1 =
3γ2

4ωq
− γ1γ3

2ω2
pωq

(36)

k2 =
γ2

1
32ω3

q − 24ω2
q∆

(37)

k3 =
γ1γ3

32ω2
qωp − 24ωqωp∆

(38)

To obtain the steady-state solutions, one can set all the time derivatives (ȧ1, ϕ̇, ḃ1, χ̇) to be zero
and all the time-dependent variables to be constants in Equations (31)–(34), then solve the algebraic
equations with the right-hand side zero. The stability of steady-state solutions can be determined by
the eigenvalues of Jacobian matrix of Equations (31)–(34) near the steady-state solutions. If all the
eigenvalues of the Jacobian matrix have non-positive real parts, the system is stable otherwise the
system is unstable. Finally, the steady-state frequency responses are determined by the following
frequency-response equations:
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c2
n + s2 −

γ2
1a2

1
4ω2

2
= 0 (39)

(
2γ3b2

1ω2

γ1a1
+

cna1

2

)2

+

[
(δ + k3b2

1)a1 −
γ3b2

1ω2

2γ1a1ω3
s2

]2

=
F2

1
4ω2

3
(40)

where s = δ + ∆ + k2a2
1 + k1b2

1.
With the Routh-Hurwitz criterion, stability of the system can be easily analyzed by the characteristic

polynomial. Routh-Hurwitz stability criterion supplies a set of necessary and sufficient conditions for
the accurate delineation of the relevant parameter space into stable and unstable regions. To determine
the stability of the periodic solution, the Jacobian matrix of Equations (31)–(34) is obtained as shown in
Equations (31)–(41), then the stability of the solutions is analyzed by the Routh-Hurwitz criterion.

J =



γ1b1
4ωq

sin(ϕ) γ1a1b1
4ωq

cos(ϕ) γ1a1
4ωq

sin(ϕ)− µ1
2 0

γ1
2wq

cos(ϕ) + 2k2a1 − γ1a1
2wq

sin(ϕ) 2k1b1 0

− µ1
2 − γ1b2

1
4ωp

cos(ϕ) − 2γ1b1
4ωp

sin(ϕ) − F1
2ωp

cos(χ)

− γ3b2
1

4ωpa2
1

cos(ϕ) + F1
2ωpa2

1
cos(χ) − γ3b2

1
4ωpa1

sin(ϕ) γ3b1
2ωpa1

cos(ϕ) + 2k3b1
F1

2ωpa1
sin(χ)

 (41)

5. Pseudo-Arclength Continuation

To analyze the steady states, Equations (39) and (40) are calculated by a two-step pseudo-arclength
continuation method. Firstly, one advances along a branch of steady states with a varied parameter,
then the linear stability analysis of the most recently computed steady state is carried out [69,70].

Equations (39) and (40) can be written in the matrix form:

Φ(u, ς) = 0 (42)

where u = (a1, b1) and ς is the variation parameter. Function Φ(u, p) contains two functions here:

Φ1 = c2
n + s2 −

γ2
1a2

1
4ω2

2
(43)

Φ2 =

(
2γ3b2

1ω2

γ1a1
+

cna1

2

)2

+

[
(δ + k3a2

2)a1 −
γ3b2

1ω2

2γ1a1ω3
s2

]2

−
F2

1
4ω2

3
(44)

The pseudo-arclength continuation is naturally a predictor-corrector method, parametrizing
branches of solutions Γ(s) = (u(s), ς(s)) with an arclength parameter s. For every given solution (u0, ς0)
and the next solution (u, ς), the following relationship should be satisfied for a small step size ∆s:

u̇T
0 (u− u0) + ς̇0(ς− ς0)−∆s = 0 (45)

Furthermore, a normalization equation is supplemented to solve the extended system [70]:

|Γ̇0(s)|= 1 (46)

where Γ̇0 = (u̇0, ς̇0) represents the normalized direction vector of the solution family Γ(s) at (u0, ς0).
To compute the normalized direction vector Γ0, one can solve the following equation:[

Φ0
u, Φ0

ς

]
Γ̇0 = 0 (47)
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where Φu is the derivative of Jacobian matrix to parameter u and Φς is the derivative of Jacobian
matrix to parameter ς at point (u0, ς0). The predictor solution of is given by

u0 = u0 + ∆su̇0, ς0 = ς0 + ∆sς̇0 (48)

In corrector algorithm, the predictor solution (u0, ς0) is projected back to the branch in a direction
orthogonal to the tangent Γ̇0. The Newton-Raphson iterations is used here, and the iteration is
performed as: [

Φu(uk , ςk) Φς(uk , ςk)
u̇T

0 ς̇0

] [
∆uk+1

∆ςk+1

]
=

[
−Φ(uk , ςk)

rk

]
(49)

where rk = ∆s− u̇T
0 (uk − u0)− ς̇0(ςk − ς0). After getting the new iteration direction, (uk , ςk) is updated

by (uk+1, ςk+1).
uk+1 = uk + ∆uk+1 (50)

ςk+1 = ςk + ∆ςk+1 (51)

In practical calculation, it is sometimes better to solve two n× n linear systems instead of directly
solving, namely

Φu(uk , ςk)z1 = −Φ(uk , ςk) (52)

Φu(uk , ςk)z2 = Φς(uk , ςk) (53)

Finally, the new iteration direction can be obtained using the new parameters z1 and z2:

∆ςk+1 =
rk − u̇T

0 z1

ς̇0 − u̇T
0 z1

(54)

∆uk+1 = z1 + ∆ςk+1z2 (55)

The advantage of pseudo-arclength method is that the Jacobian matrix of the extended system has
rank n [69], even at folds where Φu becomes singular. Hence, using pseudo-arclength method, one can
plot the frequency responses curves easily without piecewise process, and the stable and unstable
solutions around folds can be computed continuously.

6. The Resonant Condition

The problem of Equations (1) and (2) can be classified as a parametrically excited system.
The resonance occurs if the excitation frequency of the longitudinal vibration approaches twice of
the any frequency of the transversal vibration, and the resonance curve typically displays a trivial
solution [58]. To determine the critical state of the dynamic system, it is advantageous to transform the
general solutions from polar coordinates b1 and ϕ to rectangular coordinates η and $:

η = b1 cos
ϕ

2
, $ = b1 sin

ϕ

2
(56)

Substituting Equation (56) into Equations (31) and (32), the derivatives of η and $ can be obtained:

η̇ = − cn

2
η +

(
γ1a1

4ωq
−

δ + ∆ + k2a2
1

2

)
$− k1

2
(η2 + υ2)$ (57)

$̇ = − cn

2
$ +

(
γ1a1

4ωq
+

δ + ∆ + k2a2
1

2

)
η +

k1

2
(η2 + υ2)η (58)

Similar to above introductions, the stability of steady-state solutions of Equations (57) and (58)
can also be determined by the eigenvalues of the linearized coefficients matrix (i.e., Jacobian matrix)
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near the steady-state solutions. If all the eigenvalues of the Jacobian matrix all have negative real part
at an equilibrium point, the point is asymptotically stable, the system is stable, otherwise at least one
eigenvalue has positive real part, the equilibrium is unstable. The linearized coefficients matrix has the
following form:

J =

 − cn
2

γ1a1
4ωq
− δ+∆+k2a2

1
2

γ1a1
4ωq

+ δ+∆+k2a2
1

2 − cn
2

 (59)

According to Equation (59), the local stability can be analyzed using the trace and determinant of
the Jacobian matrix. As cn is always larger than zero here, the critical point can be found while the
determinant of the Jacobian matrix is zero. With Det(J) = 0, the threshold for a1c is obtained:

a2
1c =

γ2
1

4ω2
q
− 2k2(δ + ∆)−

√(
γ2

1
4ω2

q
− 2k2(δ + ∆)

)2
− 4k2

2((δ + ∆)2 + c2
n)

2k2
2

(60)

The threshold implies that: if a1 > a1c, the transversal vibration may occur, else if a1 < a1c there
is no transversal vibration. For an a1c in physical meaning, the value in the radical sign must be
non-negative. Therefore, the physical condition for the transversal vibration is:

γ2
1

4ω2
q
> 2k2(δ + ∆) + 2k2

2

√
(δ + ∆)2 + c2

n (61)

The basic physical condition is also the critical condition for modal coupling vibration. As the
amplitude of the longitudinal vibration increases exceeding the critical value a1c, the energy transfers
from the longitudinal mode to the transversal mode. The stability analysis of the nontrivial solution
should be given as the nontrivial solution branches bifurcate. For this parametrically excited system,
Near the critical points, the supercritical Hopf bifurcation leads to stable branches, while subcritical
Hopf bifurcation leads to unstable branches. To characterize the stability of periodic vibration, Hopf
bifurcation of critical points is to be studied. Substituting the critical solution a1c into Equation (39),
the following discriminant can be obtained:

Λ = k1

(
γ2

1(δ + ∆) + 4k2c2
nω2

q

)
(62)

If Λ < 0, the subcritical Hopf bifurcation occurs, and the jump phenomenon will appear in
the transversal mode when the amplitude of the longitudinal vibration exceeds the critical value.
On the contrary, if Λ > 0, the supercritical Hopf bifurcation occurs, and the longitudinal vibration
only induces the small transversal vibration, even the amplitude of the longitudinal vibration is large.
For Λ = 0, the threshold of amplitude of the longitudinal vibration is minimum, meaning that a
relatively smaller electrostatic force could motivate the transversal vibration.

7. Dynamic Analysis

To further research the nonlinear dynamical behavior under different Hopf bifurcation parameter
range, the influences of electrostatic force and detuning frequency on the system are introduced. In this
section, we study the complex dynamical behaviors of electrostatically actuated microbeam using
pseudo-arclength continuation method and some interesting phenomena are obtained. The dynamic
responses of the system are simulated by Crank-Nicolson method, which is numerically stable.

Firstly, the bifurcation behavior of the longitudinal–transversal coupling vibration is investigated.
Figure 5 displays variation of the bifurcation behavior versus Vdc and δ. It is found that a larger
DC voltage corresponds to a larger δ, indicating that with a larger DC voltage, the modal coupling
coefficient is reinforced, and nonlinear modal interactions is enhanced. Here we can explain the
phenomenon in Figure 4: in the simulation δ = 0.1 is used, with Vdc = 30 V, subcritical bifurcation occurs
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while Vdc = 60 V and Vdc = 90 V supercritical bifurcation occurs, hence two kinds of force-amplitude
responses are obtained.

50 100 150 200

V
dc

 (V)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Supercritical bifurcation

Subcritical bifurcation

Figure 5. Variation of the bifurcation behavior versus δ and Vdc.

In Figures 6 and 7, the first transversal amplitude and the first longitudinal amplitude are plotted
as functions of the longitudinal excitation amplitude F1. To validate the numerical simulations, both
the pseudo-trajectory processing method (line) and long-time-integration method (points) are used
in the calculation, showing very good agreement. In the following figures, solid lines always denote
stable solutions and dashed lines denote unstable solutions.

0 0.5 1 1.5 2

F
1

0

0.05

0.1

0.15

0.2

0.25

a
1
(b

1
)

b
1

a
1

0 0.2 0.4

0

0.05

0.1

Figure 6. Amplitudes of response as functions of the excitation amplitude F1. Line: pseudo-arclength
continuation method, Points: long-time-integration method.

In Figure 6, Vdc = 140 V and δ = −0.1 is employed, and subcritical Hopf bifurcation occurs. Hence
as F1 increases, the jump phenomenon appears in the second-order mode and the amplitude of the
second mode is much larger than that of the third mode. The phenomenon of saturation can be found
for the longitudinal vibration, and the energy transfers from longitudinal mode to transversal mode.
In Figure 6, as the external force increases from zero, the amplitude of the longitudinal vibration



Micromachines 2019, 10, 315 13 of 19

increases along the natural relationship A = F1√
(Ω2−ω2

p)2+(cn)2
, and the amplitude of the transversal

vibration still keeps zeros. It is interesting that beyond a critical value of F1, the solution of longitudinal
vibration loss stability, and another branch of solution dominates the motion. Then the amplitude
of the longitudinal vibration becomes independent of the amplitude of the external force, i.e., the
saturation occurs. It is interesting that the jump phenomenon occurs in transversal mode, and the
jump amplitude is very large. Therefore, taking advantage of the nonlinear features of the frequency
response, a large-amplitude jump will provide an effective approach to improve the precision of MEMS
switches. In Figure 7, supercritical Hopf bifurcation occurs while Vdc = 140 V and δ = 0.1 is adopted.
From Figure 7, the phenomenon of saturation of longitudinal mode can also be found. However
different from the plots in Figure 6, as the external force increases from zero, the amplitude of the
longitudinal vibration increases as well, while the amplitude of the transversal vibration keeps zeros.
Beyond a critical value of F1, the amplitude of transversal vibration experiences a drastic rise first, and
then increases in a slow rate continually.

0 0.5 1 1.5 2

F
1

0

0.05

0.1

0.15

0.2

a
1
(b

1
)

b
1

a
1

0 0.05 0.1

0

0.02

0.04

0.06

Figure 7. Amplitudes of response as functions of the excitation amplitude F1. Line: pseudo-arclength
continuation method, Points: long-time-integration method.

Figure 8 shows the amplitude responses of the coupled vibration as function of internal resonance
detuning parameter δ. A constant bias voltage Vdc = 140 V is applied to supply an electrostatic
force. The frequency sweep response shows a slight asymmetry. Before reaching the threshold, the
longitudinal vibration operates in its linear regime and the amplitude of longitudinal vibration
increases linearly, while there is no transversal vibration. Once reaching the certain threshold,
the solution of longitudinal vibration turns to another branch of solution. Meanwhile an amplitude
jump of transversal vibration occurs, and the vibration energy transfer from the longitudinal mode
into the transversal mode. In the design of switches, the jump phenomenon can be used to change
the ON and OFF state, as the amplitude jump is very large, the precision and switch speed can be
greatly promoted.

As introduced above, the jump phenomenon is used and the parametric excitation vibration only
in the subcritical Hopf regime is taken into consideration in this section. The parametric force-response
curves obtained by pseudo-arclength method for different values of DC voltages are plotted in Figure 9.
In the calculation, δ = −0.15 is used and Vdc ranges from 50 V to 200 V with an interval of 50 V. It is
found that with a larger DC voltage, a larger excitation F1 is needed to realize the jump phenomenon of
the transversal mode. As also seen from the plots, with a larger DC voltage, the amplitude of the jump
is larger as well, demonstrating that the performance of the switch can be improved by increasing the
DC voltage.
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Figure 8. Amplitudes of response as functions of the detuning parameter δ. Line: pseudo-arclength
continuation method, Points: long-time-integration method.

The force-response curves for different detuning parameter δ are plotted in Figure 10. Here
Vdc = 150 and δ = (−0.05,−0.1,−0.15) is used. The plots are similar with that in Figure 10. However,
the point of the limit point bifurcation and the period-doubling bifurcation are all delayed while δ

is smaller, and with a smaller δ the amplitude of the jump is larger. Both in the two figures, a larger
saturation value can be found with a larger jump, illustrating that the energy is transferred between
the longitudinal–transversal modes interaction.
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Figure 9. Amplitudes of response as functions of the excitation F1 for different Vdc.

Figure 11 shows the frequency sweep response of transversal vibration for different Vdc. The values
of Vdc is defined as 50 V, 100 V, 150 V, and 200 V. The whole frequency sweep response curves are
similar with the plots in Figure 8. It is visualized that the unsymmetrical configuration can still be
found, and the asymmetry is strengthened by a larger DC voltage. Here only the curves for transversal
mode are given. The plots show that with a lager bias voltage, the left jump is also bigger while the
right jump is smaller. Both the left and right threshold shift right while the bias voltage increases.
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Figure 10. Amplitudes of response as functions of the excitation F1 for different δ.
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Figure 11. Frequency-response curves for different Vdc.

8. Conclusions

To extend the application of bifurcations of the coupling longitudinal–transversal vibration
in the design of MEMS switches, this paper mainly focused on the nonlinear characteristics of an
electrostatically actuated microbeam, and the coupled longitudinal–transversal vibration was analyzed
in detail. A reduced-order model was obtained by Euler-Bernoulli beam theory and Galerkin’s
method, and the obtained single mode Galerkin model was verified by differential quadrature
method, demonstrating that the single mode model could describe the dynamic behavior of the
system accurately with small deformation assumption. Using the reduced-order model, the physical
condition for the energy transfer was obtained by Hopf bifurcation analysis. From theoretical analysis,
the critical values of parameters were obtained from the physical condition for the Hopf bifurcation.

The nonlinear behavior of the electrostatically actuated microbeam was analyzed via the
pseudo-arclength continuation technique and a direct time integration. The frequency-amplitude
responses and force-amplitude responses obtained by the pseudo-arclength continuation technique
and a long-time-integration method showed good agreement. From the nonlinear electrodynamical
resonance response, the mechanism of energy transfer between longitudinal vibration and transversal
vibration was presented. The numerical simulations revealed that the bias voltage, the detuning
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frequency, and the excitation amplitude of in longitudinal direction played important roles in the
capability of MEMS switches. Once the subcritical regime was activated, with a larger bias voltage or
a smaller detuning frequency, shifted forced frequency responses were obtained, and the amplitude
jump would become larger. The simulations gave a reliable analysis for reasonable design of structural
properties, providing a great potential in improving precision of MEMS switches due to the subcritical
bifurcation regime.
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