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Abstract: With the advent of ultrafast lasers, new manufacturing techniques have come into existence.
In micromachining, the use of femtosecond lasers not only offers the possibility for three-dimensional
monolithic fabrication inside a single optically transparent material, but also a means for remotely, and
arbitrarily, deforming substrates with nanometer resolution. Exploiting this principle and combining
it with flexure design, we demonstrate a monolithic micro-mirror entirely made with a femtosecond
laser and whose orientation is tuned in a non-contact manner by exposing some part of the device to
low energy femtosecond pulses. Given the non-contact nature of the process, the alignment can be
very precisely controlled with a resolution that is many orders of magnitude better than conventional
techniques based on mechanical positioners.

Keywords: femtosecond laser machining; non-contact; tunable optics; micro-optics; flexures;
repositioning; monolithic; fused silica; integrated optics

1. Introduction

Most optical devices are sensitive to precise alignment between their various elements. In some
cases, even a small degree of misalignment—albeit small and comparable to a fraction of the wavelength,
can lead to a degradation in performance or even operational failure. Regardless of the fabrication
tolerances, inherently present in any manufactured product, most optical circuits are prone to
misalignment due to environmental factors, such as temperature fluctuations or mechanical vibrations.
While such environmental constraints can be mitigated in a laboratory environment, in a fully assembled
product, it is imperative to achieve a very high degree of stability against such factors in field operation.

Here, we investigate novel concepts for integrating free-space optical components in a way such
that high accuracy permanent alignment is achieved, in a contact-less manner, without the need for
adjusters. In this particular work, we focus our attention on micro-mirrors, one of the most basic
components in an adaptive optical system.

In industrial environments, alignment errors can creep in during the assembly process itself.
Such errors can have multiple origins. One of them is a lack of accuracy in the positioning tool used
to place an element with respect to the other. A second one is related to fabrication tolerances of
each of the components to be assembled, and, finally, a third one may originate from the attachment
method used. For instance, techniques such as, soldering, gluing or brazing—common in assembly
processes—create interfaces between materials with different properties, such as different thermal
conductivities, coefficients of thermal expansion (CTE) and Young’s modulus [1]. Consequently, this
leads to post-assembly shifts or built-in stresses. In the case of an optical system, these issues can be
dramatic, due to usually high alignment accuracy requirements, typically approaching a fraction of
the optical wavelength. For all these reasons, translating a laboratory optical system into a reliable
assembled product can be a daunting task, requiring dedicated assembly methods and designs.
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Various ideas have been proposed to solve these issues, including post-assembly corrective actions
and pre-compensating whenever possible during assembly [2,3].

Among these methods, localized laser thermal melting offers a non-contact alignment
approach [4,5], but suffers from intrinsic limitations, such as the presence of heat affected zones
and design-limitations, as it relies on a linear absorption process and, consequently, can only be applied
to the surface of materials.

To cope with these issues, laser-shock adjustment with short pulses has been proposed [6-8].
While still relying on linear absorption events, the use of short pulses lowers the timescale of interaction
and minimizes thermal diffusion effects. However, it still remains a surface interaction effect and
induces localized stress concentration.

One step further is to use ultrashort pulsed laser-matter interaction that allows for non-linear
absorption events to occur with no heat transfer to the surrounding matter—at least, not beyond the
area under direct laser exposure. Applied to transparent materials, thanks to the rich-taxonomy of
complex material transformations occurring under ultrafast laser exposure [9], this effect can be used
inside the bulk to create localized volume expansion or shrinkage of micron-size volumes (‘voxels’)
and, thus, resulting in displacements in the nanometers range [10-12].

In addition to localized volume modifications, femtosecond laser exposure together with wet
chemical etching offers a very versatile three-dimensional manufacturing process [13,14]. Starting
with a single substrate, structures of any given shape can be created almost anywhere inside the
specimen volume. Particularly in fused silica, the process has been used to create both optical as well as
pure mechanical devices. Active and passive waveguides [15-18], couplers [19,20], diffractive optical
elements [21,22], wave plates [23], and polarizing optics [24,25] have been demonstrated, as well as
mechanical devices like actuators [26,27] and flexures [28]. The integration of optical and mechanical
functionalities has also been demonstrated inside a single substrate, while maintaining the monolithic
nature of the overall device [29]. Cheng et al. have demonstrated a micro-optical circuit machined
inside photo-sensitive glass [30]. It is therefore possible to realize an optical circuit in a single chip of
glass, where passive components are fabricated in place with a femtosecond laser.

Monolithic fabrication process, to a large degree, removes the need of post-fabrication alignment
as by definition there is no assembly. However, as inherent to any fabrication method, manufacturing
tolerances still remain, and are critical when aiming at sub-100 nm accuracy in a permanent and stable
manner. Post-fabrication alignment thus remains a necessity.

The possibility of making tunable integrated optical devices is still an ongoing endeavor. Not only
does it push further the idea of device miniaturization, it also offers more flexibility, higher precision
and better stability over time and in harsh environments.

In the present work, we show that in-volume modifications resulting from femtosecond laser
exposure, combined with monolithic flexures in a single fused silica substrate, can lead to unprecedented
levels of angular positioning accuracy, and this, in a permanent manner. Building up on our previous
work [31], here we specifically demonstrate a gimbal mirror with its own flexure positioning element,
entirely made of fused silica, and whose orientation is locally adjusted by a laser and in both directions.

2. The Device

2.1. Concept and Working Principle

The proof-of-concept device, shown in Figure 1A, consists of a mirror surface (gold-coated to
make it reflective) and a flexural element, all made-out of a single silica substrate. The mirror surface is
suspended on two thin intersecting beams, and connected to a rigid bar (‘the actuator’) through a lever
mechanism. The actuator is a wide and long cantilever, fixed on one end, which contains laser-modified
regions as explained later. On the other end, it is connected to the amplification mechanism through
a thin bar. To align the mirror in plane, the ‘actuator” can rotate the mirror in either direction. The
method of actuation is non-contact and permanent. It is based on femtosecond laser-induced volume
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changes [10] inside the bulk and provides sub-nanometer linear displacement resolution. The detailed
functioning for the actuation principle is explained in another paragraph. Combined with specific
flexure kinematics (Figure 1B), the linear displacement of the actuator is converted into a pure rotational
motion of the mirror surface.

Mirror surface Center of rotation

Lever amplification

Actuator
fixed end
Static frame —

Notch hinge

Actuator
Laser affected zones

Actuator
fixed end «- - @

(A) CAD rendering of the device (B) Equivalent kinematics

Figure 1. (A) Computer-aided design (CAD) drawing of a proof-of-concept of laser-tunable gimbal
mirror. (B) Schematic of the mirror kinematics. The strain inside the actuator is coupled through a
thin beam (a) to the lever arm (b). A second thin beam at the top (c) ultimately pulls on the mirror
through (e) to cause a rotation. The lever mechanism is implemented through a circular notch hinge (d)
fabricated by the same process. As the actuator is exposed, there is a net displacement towards the left
and a subsequent rotation of the mirror. A deformed state of the mirror is shown in light gray.

As a substrate material, fused silica offers unique advantages for a chip-based monolithic optical
assembly. Apart from having one of the lowest known coefficients of thermal expansion, it is optically
transparent over a broad range of wavelengths and is chemically inert, making it suitable for a variety
of applications.

2.2. Kinematics

The kinematics of the gimbal mirror are shown in Figure 1B. Each pivot joint represents one
degree of freedom. The center of the mirror—denoted here as R, is defined by the intersection of
the two thin beams oriented at 45 degrees with respect to the mirror normal. The mirror is further
supported by a thick arm (e) at its center that is used to transfer the force from the actuator. The
latter, shown in red here, is exposed throughout its volume to short pulses to induce a net strain. As
one end—the anchoring point of the actuator—is infinitely stiff in comparison to the other end, these
volume changes are directed towards the less stiff end, thus causing a net displacement. A classic lever
mechanism is employed to amplify this motion. An amplification ratio of 15 is chosen here to get an
appreciable rotation of the mirror surface. Another thin beam couples this linear displacement to the
mirror, effectively pulling or pushing on the beam and causing the mirror to rotate about its center.
The mechanism connecting the actuator and the rotating mirror flexure is similar to a slider-crank
mechanism. The two beams (a, ) are designed to be loaded in both tension or compression, without any
appreciable effect on the overall functioning of the mechanism. For illustrative purposes, a deformed
state of the device, corresponding to the situation where shrinkage occurs inside the actuator, is shown
in dashed lines underneath.
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2.3. Analytical Model

In this section, we present a brief analytical model of the flexure mechanism, whereby we define
our system mathematically to better understand its response and to provide further optimization
tools. Such an analysis is helpful to understand how the system will respond under the influence of an
external force or moment. At the same time, it also helps to characterize the effect of various flexure
dimensions and immediately identify the most critical parameters for ease of design.

In our analysis, we use six-by-six stiffness matrices to estimate the elastic deflection of the
mechanism under a given loading condition. The primary governing equation is given by:

(FP)g = (KP)g < (#), 1)

where (FP),; represents a wrench (a six-coordinate vector containing force and moment), (K¥), represents
the stiffness matrix and (), denotes the overall displacement of the system at any arbitrary point p,
all represented in the same coordinate frame g. These equations can become very complex to handle,
however, one can simplify the calculations manifold by representing the individual stiffness matrices
in the principal frame of reference, and then use transport equations to calculate them at any other
location. In such a representation, all the off-diagonal elements are zero. Once the overall stiffness
matrix is known, for any given force, the net displacement can be calculated using Equation (1).

For a thin cantilever beam with length /, width w and thickness 4, the principal stiffness matrix
is given by the von Mises stiffness matrix [32]. The von Mises matrix can be further adapted to the
case of a notch hinge too, although the individual terms are more complex. However, under the
approximation = (d/2r) << 1, the terms can be simplified further as is discussed in detail in the annex.
Here, d and r denote the thickness at the center and radius of the hinge, respectively.

The global stiffness matrix for the entire system is obtained by combining unit stiffness matrices,
such as the von Mises one. To do so, we transport all the stiffness matrices to point O (Figure 1A) and
rewrite them in the global coordinate frame, the details of which are presented in the annex (refer to
Figure A1). In particular, the overall translational stiffness along the x direction writes as:

1,2 4 1

Kix=E—+—+—+

* L b Z? 7 Vrd

Here, I}, I, represent the lengths of the inclined beams and the straight beams, respectively, w, d

denote their width and thickness and E is the Young’s modulus of fused silica. Since d is much smaller
than I; and with the assumption that ;2 7%rd, this expression can be further rewritten as:

dw ()

Ky  2dw
S 2P
R (ERY ©
where k denotes the ratio of /; and l,. Using this equation, we can immediately see that in order to
reduce the overall stiffness acting against the volume changes, the ratio w/l; should be made as small

as possible without compromising other stiffnesses.

2.4. Finite Element Modelling

We used a commercial FEM simulation software (Solidworks Premium 2017 x64 Edition from
Dassault Systems, Vélizy-Villacoublay Cedex, France) to optimize the design and flexure kinematics.
First, a design analysis was performed to optimize the different parameters of the device. The
dimensions of the flexures were chosen to minimize the overall stiffness in the direction of interest
(according to Equation (3)), while maximizing it along other directions, thus limiting parasitic
movements. Further, a static analysis was done as illustrated in Figure 2. For this simulation, a
conservative 500 nm displacement was applied to the actuator along its length. The dimensions of
the flexures were then iterated to maximize the rotation of the mirror for the applied displacement.
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As predicted by the simulations, the maximum stress in the device is of the order of a few MPa. We
have shown previously that flexures manufactured with femtosecond laser processing can withstand a
tensile load in excess of 2 GPa [33]. Note that here we consider a conservative value for the maximum
stress. If we allow for higher stress levels, the design can be made more compact (i.e., occupying a
smaller footprint) and significantly stiffer if one aims for higher resonance frequencies.

AY (Hm)

4
H M1: 1705 Hz M2: 2675 Hz M3: 5915 Hz

L=
i

M4: 6425 Hz  M5: 10363 Hz

Figure 2. Results of the prescribed displacement analysis simulation corresponding to a 0.5 pm
displacement applied to the actuator showing the (a) corresponding stress plot with a maximum stress
level equal to 12 MPa and (b) total displacement along the y-axis (the figures are in the x-y plane with
the z axis pointing outwards and y axis pointing upwards). (c) Natural vibrating modes of the device
(Note that the vibration-induced displacements are exaggerated for visualization purposes).

A dynamic study was also conducted to determine the natural vibrating modes of the device.
As expected, there is not a very strong decoupling between in-plane and out-of-plane modes. This
is due to the small thickness of the sample and the long length of the beams supporting the mirror.
The vibrating modes are shown in Figure 2c. The primary out-of-plane mode occurs at the lowest
frequency of 1.7 kHz, while in-plane modes occur at slightly higher frequencies.

Based on the mathematical analysis and the results of the simulations, the following parameters
were chosen for the dimensions of the various flexures as listed in Table 1. However, the thickness (w)
of the device was fixed by the available substrate to be 1 mm.

Table 1. Main design parameters.

w (um) d (um) I; (mm) I(mm) 7 (mm)

1000 50 9 1.2 45

Substituting these values into Equation (2), we can calculate the overall translational stiffness
along the x direction, and we find Ky, =7 X 10% N/m, which is in close agreement to the simulated
value of 7.15 x 10° N/m.

2.5. Fabrication Process

The device is fabricated by drawing the contour in a 25 mm X 25 mm X 1 mm silica substrate
(synthetic fused silica with high OH content), which is mounted under the focus of an amplified
femtosecond laser system (Yb-fiber, Amplitude Systemes, Pessac, France), delivering 270 fs pulses at
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1030 nm. The laser is focused by a 20x objective (N.A 0.4) mounted on a vertical stage. The sample is
translated under the focus of the laser with the help of a precise positioning stage (Micos, Ultra-HR,
Eschbach, Germany). Starting from the lower surface of the substrate, laser affected zones are stitched
together as planes, gradually moving up until the top surface is reached.

After the exposure, the edge containing the mirror is polished to optical quality and the sample
is placed in a bath of dilute Hydrofluoric acid (2.5%) for 30 hours, thus dissolving the laser-affected
zones (LAZs). As a final step, the edge is gold coated to make it reflective. For the fabrication, a pulse
energy of 250 nJ and a writing speed of 8 mm/s is used with the repetition rate set at 750 kHz. The
device is shown in Figure 3.

Figure 3. The fabricated device is shown here (middle). A digital microscope image of the mirror edge
(left) and the notch hinge (right) are also shown.

3. Results

3.1. Exposure Setup

The magnitude of the strain induced by femtosecond pulses is a function of various parameters
such as pulse energy, spot size and deposited energy (net fluence). Depending on the pulse width,
volume expansion (positive strain or ‘regime II” as referred in the literature [34,35]) is observed for
long pulses while as an overall reduction in volume (negative strain or ‘regime I’ [15]) occurs for short
pulses with low pulse energy. However, in terms of magnitude, it ranges from 0.01% to 0.05% of the
exposed volume. Under our experimental conditions, this corresponds to a few hundred nanometers
of linear motion of the actuator.

To measure the angular rotation of the mirror, we use a triangulation scheme as shown in Figure 4.
A fiber pigtailed laser diode at 980 nm is used as a light source. The laser beam is focused and then
re-collimated such that the spot size is less than 1 mm on the test-mirror surface. This ensures that
the beam is contained completely within the mirror and does not diffract off the edges. The reflected
beam then passes through an ‘f-6 lens’ and is focused on a position sensing device (PSD, SiTek Electro
Optics, Partille, Sweden), that measures the actual position of the beam in a plane, therefore, not
only measuring lateral, but also vertical motion. The f-0 lens, in addition to amplifying the output
displacement, has a flat image plane at the position of the detector, thus ensuring the beam is always
focused in the same plane. By design, the displacement in the image plane is linearly proportional to
the change in angle of incidence, and is given by:

Ax = fx AO 4

Here, AQ is the change in the in-plane angle of incidence of the incident ray with respect to the
optical axis of the lens, f is the focal length of the lens and Ax is the net displacement observed on the
surface of the detector.

Similarly, any change in the out-of-plane angle can also be measured by recording the movement
of the focal spot along the y-axis. The two are then related as:

Ay = fxAd 5)

where AQ is the change in the out-of-plane angle of incidence with respect to the optical axis of the lens.
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Figure 4. A schematic of the experimental test bench. A probe laser beam is focused, re-collimated and
reflected off the test mirror. The reflected beam is then focused by an f-theta lens on a position sensing
detector (PSD) that records its position in real-time. The whole assembly is then moved under the focus
of a femtosecond laser and a sequential pattern of laser affected zones is written inside the actuator.
The modifications induce a net strain causing the mirror to rotate about its center. The subsequent
change in the position of the focal spot is then recorded and monitored on the detector.

The entire assembly is then mounted on a precision x-y stage and under the focus of a short pulse
laser. The actuator is exposed by writing a series of closely spaced lines in the bulk. Starting near
the bottom surface, a 1 mm-wide plane of laser-affected region is written. This plane consists of 2.5
mm-long parallel lines separated horizontally from each other by 2 um. The laser focus is then moved
up 11 um, gradually stacking the lines on top of each other. To prevent surface ablation, we leave
a buffer of 50 pm, both on top as well as on the bottom surface, effectively reducing the height of
the exposed region to 900 pm. Due to optical aberration effects, the volume change is not uniform
throughout the bulk of the exposed region [36]; the absorption decreases as one goes deeper into the
material and expectedly so, thus causing non-uniform strain. This can be simply compensated for by
either ramping up the power with depth or by writing fewer lines near the top surface, thus creating a
uniform modification throughout the bulk. We follow the latter strategy and write the laser-affected
zone as a trapezoidal block, gradually decreasing the number of lines as we move towards the top
surface by 20%. Another alternative—albeit more costly, is to use adaptive optics to correct for spherical
aberrations [37].

3.2. Identification of Optimal Writing Parameters

Here, we explore exposure conditions that will lead to either a shrinkage or expansion of the
actuator, so that a bidirectional motion can be obtained. Indeed, it has been shown that an interplay
between the pulse width and/or the pulse energy can reverse the sign of the overall strain [38]. In our
case, it presents an opportunity to achieve bi-directional motion of the mirror.
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To identify the optimal exposure parameters, it is important to know the relationship between the
overall strain and the deposited energy for different pulse widths. Such a relationship is necessary to
predetermine the amount of strain that will be generated, thus avoiding cracks/failure due to excessive
stress or limited to no deflection due to a too low a stress level. To do so, we follow a method developed
earlier by our group [10]. A series of cantilevers are fabricated on a 250 pm-thick sample of fused silica.
These cantilevers are 18 mm-long and 1 mm-wide. After chemical etching, they are loaded near the
anchor point by writing a series of parallel lines 35 um below the surface. The exposure is carried
out for two pulse widths—50 fs and 300 fs—and only near the top surface, thus forming a bilayer of
modified and unmodified material. For each fixed pulse energy, the deposited energy is gradually
increased by reducing the writing speed, as shown in Figure 5. Depending on the pulse width, volume
expansion is observed for long pulses while as an overall reduction in volume occurs for short pulses.
This change in volume is amplified by the length of the cantilever causing the other end to bend out of
plane. Afterwards, the deflection of the cantilever tip is measured using a white light interferometer

and the strain is calculated using:
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Figure 5. Strain in the laser-affected zones as a function of deposited energy for (a) T =50 fs and (b) T =
300 fs and for two different pulse energies. One should note the switch from regime I (a) to regime II
(b) with the increase of the pulse duration.

Here, 6 is the total measured deflection, h,; is the height of the exposed region from the neutral
line, [; is the line spacing, L, is the length of the exposed region, L. is the length of the cantilever, and
w- denotes the width of a single modification. The details of this method can be found in [10].

Based on this data, we can predict the overall deflection of the mirror and, more importantly, stay
within the elastic limits. For shorter pulses, we see a monotonic growth in the strain as the deposited
energy increases towards higher pulse energies. However, for longer pulses, we confirm an already
established trend, where the strain peaks around a fluence of 10-20 J/mm? before declining sharply [39].
It is also important to note that at higher pulse energies, the strain observed at longer pulse lengths is
much larger as compared to that of shorter pulses. Later on, we see that this translates directly into a
larger angular rotation of the mirror.

3.3. Measurement with Short Pulses (50 fs)

For this experiment, we use an optical parametric amplifier (OPA) (from Amplitude Systemes),
which emits short pulses with a pulse width of 550 fs which are then compressed to 50 fs by passing
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them through a prism compressor. The seed laser for the OPA is an ytterbium-based femtosecond
source, emitting 300 fs laser pulses at a 120 kHz repetition rate with a maximum average output power
of 2.6 W.

The first exposure is carried out close to the actuator fixed end as shown in Figure 1. For this
exposure, a pulse energy of 260 nJ] and a writing speed of 1.38 mm/s is used, thus having a net fluence
of 20 J/mm?. To ensure a uniform deposition of energy across the actuator width, a buffer of 500 um is
kept on both sides. This allows enough time for the x-y position stages to accelerate to a constant speed
before the beam is effectively scanned across the material. As the exposure process starts, the position
of the probe laser beam reflecting off the mirror is continuously monitored on the position sensing
device. The readouts from this device are the x and y coordinates of the laser beam, which are measured
within an accuracy of £1 um on the detector surface. The final width of the laser affected zone is 1
mm at the bottom and 0.68 mm at the top, and consists of ~34,000 lines arranged in a trapezoidal
shape. As the material gets exposed, the actuator begins to shrink in volume, thus rotating the mirror
anti-clockwise. In this experiment, the exposure process takes approximately 27 hours. Note that
this time could be considerably reduced by shaping the beam and increasing the writing speed, for
instance by scanning. The results are presented in Figure 6.

( a ) 00 04 08 12 16 20 24 28 32 36 40 44 ( b) 0,05
07 A, AR 1,50
E exposure st\op = /.
E 061 o %1125 & 0,00 y
c o5 o, E g
2 ] 102 E 008
= 100 © -0,05 4
S 0.4 < »E;
c to7s £ &
£ 0,3 : - s 0,104
© tart / 2 5
g 02 exposure S/// Loso § c‘g
S o1 & A 015y
B / Lo2s @
o ————— 2
3" 000 s -0,201
é -0,1 N §
0.2 25 0,25 ! . i |

00 04 08 1216 20 24 28 32 36 40 44 0o 02 04 06 08 10 12
Time (Hours) ABin.piane (Mrad)
) (d)

—_
O

j—y

[=4

w
1

Measured change in position (um)

32 36 40
Time (Hours)

Figure 6. (a) Position measurement of the laser probe-beam spot on the detector surface. The measured
change in position is plotted in black, while the corresponding angle change is plotted in red. (b)
Out-of-plane bending angle vs the in-plane angle of rotation. (c) A magnified view of one of the position
coordinates (y) after the exposure is stopped to show case the stability of the mirror in its deformed
state. The observed noise is within the error of the detector. (d) The exposure configuration.

Along with the in-plane rotation, an out-of-plane parasitic movement is also observed (marked as
Y, Oy in Figure 6a. This effect is attributed to the writing strategy, which follows a sequential pattern
of bottom-to-top writing of successive planes. As the laser starts to write near the bottom surface,
the exposed volume contracts (or expands depending on the pulse duration), while the top surface
remains unaffected. This creates a bimorph-like layered structure of modified and unmodified material,
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causing the actuating element to bend down during this sequence. Next, as the laser focus moves up
and crosses the neutral line, the strain in the lower layers is gradually compensated, and the bending
effect is cancelled, leaving only a net contraction (or, conversely for longer pulses, an expansion) of the
actuating element without out-of-place deflection.

The angular position of the mirror is back calculated from the measured change in the x and y
coordinate of the spot using Equation (6):

Ax = 2X f X AOpiproy and Ay = 2X f X AOy mirror (7)

where f is the focal length of the focussing lens, and the indices &, v denote the horizontal and vertical
rotations, respectively.

As any out-of-plane motion is amplified manifold by the length of the actuator, resulting in
a magnified movement at the other end. Consequently, to reduce the amplitude of the parasitic
movement appearing during the imprinting of the pattern, we expose the actuator again, this time
away from the anchor point and close to its far end. As expected, the parasitic movement is vastly
reduced as shown in Figure 7.
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Figure 7. (a) Experimental observation of the spot position when the actuator is exposed at the far end
away from the anchoring point. Plots (b—d) follow their respective plots in Figure 6.

It can also be seen that by moving the LAZ to the far end of the actuator, the angular rotation is
almost doubled, for the exact same exposure conditions. This effect can be attributed to the fact the
nearly all of the strain is transferred to the mobile mirror, since the stiffness of the unexposed region
of the actuator itself no longer comes into play. In other words, less of the strain energy is lost in the
actuator bar itself.
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3.4. Measurement with Long Pulses (300 fs)

We repeated the experiment in a new sample, however, with a longer pulse duration to access the
modifications in regime I, i.e. the so-called nanogratings.

For this part of the experiment, we bypass the prism compressor and the OPA to directly use the
output of the seed-amplifier. For the exposure, we use a pulse energy of 160 nJ] and a deposited energy
of 8 J/mm?. The whole process is then repeated as earlier. The results are presented in Figure 8.
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Figure 8. (a) Experimental observation of the laser beam spot on the detector surface when the actuator
is exposed to long pulses at T = 300 fs. (b) Out-of-plane bending angle vs. the in-plane angle of
rotation. (c) A 3D representation of a single laser affected zone used in all the experiments. In the inset,
two vertically separated planes containing the lines are shown. (d) The exposure configuration. The
direction of strain is reversed here as is pointed by the arrows.

As observed with the cantilever experiments (Figure 5), the ratio between the measured values of
strain for the deposited energies used is about 1:3 between short and long pulses. A similar ratio is
obtained in the total deflection angle measurement between the two pulse widths.

As can be seen from Figure 8a, and as expected, the mirror movement is reversed as compared
to earlier experiments with 7 = 50 fs, thus confirming an overall volume expansion (positive strain)
inside the actuator. In addition, we see a vertical offset of nearly 53 p-radians between the initial and
final out-of-plane angle (Figure 8b). This is due to a large in-plane deflection angle causing the beam to
travel beyond the active area of the detector (marked by a cross). As discussed in the previous section,
any parasitic offset can be corrected for by modifying the writing strategy and writing more lines near
the top surface, as in this case, or writing fewer, as in the earlier cases. In general, out-of-plane bending
can be nearly completely suppressed by writing close to the neutral line of the actuator rather than
exposing the whole bulk from bottom to top.

Further, we observe a slightly non-linear behavior in the variation of position with time (Figure 8a).
We attribute this effect to an increased loading along the axial direction of the pivoting hinge (in the
crank-wheel kinematics part of the mechanism) as the magnitude of the strain starts to be significant.
Indeed, it is known that a hinge sees its own bending stiffness reduced under the effect of transverse
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load [40]. In other words, a non-linear coupling takes place. As the actuator expands, an increasing
load is applied to the pivots (referred to as d and, to a lesser extent, a, in Figure 1) that see their own
transverse stiffness lowered and as a result deform more for the same amount of strain applied to them,
eventually causing the mirror to deform more (hence, the increase of slope in Figure 8a).

3.5. Stability

In this section, we explore the stability of the device once the actuator is loaded. The idea is to
test whether the mirror can hold its position in a deformed state without relaxing back to its normal
position or to see if there is any material relaxation effect to be expected. Any such relaxation, if
observed, could be caused by multiple factors, such as temperature variations, other environmental
factors, or the decay in stress itself—either in the flexures or in the laser affected zones. Since fused
silica has one of the lowest known CTEs, it is highly unlikely that temperature variations (in our lab, it
is stable within +2°) could play a role.

To understand this, we load our device with the same parameters as used in last experiments
(Section 3.4). After exposure, the deflection is measured under a white light interferometer as shown
in Figure 9c. For the stability test, we use a digital holographic microscope (Lyncée Tec, Lausanne
Switzerland) in a reflection mode that illuminates both the mirror and the static glass frame at the same
time while holograms are recorded. Based on the recorded pattern, the change in height difference
between any arbitrary point on the mirror surface and a fixed point on the base is monitored for 16
days. In Figure 9a, the data for four such points is plotted.
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Figure 9. Stability analysis of the mirror in the deformed state. (a) The change in height difference
between four arbitrary points on the mirror surface and a fixed point on the static edge. (b) The
normalized variation. (c) A 3D color map of the deformed mirror (left) and a line plot of the height
variation across the mirror (right). The height difference between the mirror and the base is used to
normalize the data in (b).

As can be seen, we do not observe any trend that would suggest any departure from the deformed
state, i.e., the mirror holds its place. Though the test is very specific to this device, it does not aim
to understand the general phenomenon of relaxation or failure that occurs in glasses subjected to
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high stresses. Although predominant at high stress levels (close to 1 GPa or more), there seems to be
almost no decay at low stress levels [41], with the peak stress not exceeding a few tens of MPa in our
case. It is important to mention that this decay also depends on environmental conditions such as the
surrounding humidity.

4. Discussion

In this paper, we have investigated the repositioning of a laser beam in a non-contact manner
using femtosecond laser-assisted structural modifications in fused silica. We have shown that by
changing the pulse width along with a proper selection of pulse energy and deposited energy, a
reversible motion can be achieved. Although the case is demonstrated in two different samples, the
same can be achieved inside a single specimen, as well.

We have further shown that such repositioning, in addition to being non-contact, is also permanent
at the present stress levels. This method of non-contact alignment is most suited for very fine
repositioning and, thus, does not risk very high stress levels. At very high stresses (a few hundred
MPa or more), relaxation is a real problem, with no concrete law explaining how the decay occurs.

To further optimize this method, it is necessary to reduce the overall time it takes to do the
realignment. With high pulse energies, high repetition rate lasers and by using fast scanning mirrors,
the overall time could be reduced to a fraction of the current time. Further, the long pulse laser already
reduces the repositioning time by more than 75%. In most high precision optical devices, a high degree
of alignment is achieved in the fabrication process itself, so what needs to be corrected for is much
smaller than what is demonstrated here. In the end, we estimate that the alignment time could be
reduced to just a few minutes, much like a conventional mirror mount, although permanently and
with a much higher precision.

Although, a single degree of freedom is explored here, with different kinematics, it is possible to
achieve a controlled movement along other directions too, without changing the underlying method.

Finally, femtosecond lasers have been widely used for the fabrication of various structures, both
optical and non-optical. The ability to fine tune such elements, in a non-contact manner, without the
requirement of any sophisticated tools and with unprecedented resolution is a step towards the larger
idea of fully monolithic optical circuits.

Author Contributions: S.I.N., as part of his Ph.D. work, designed the device, performed the experiments, and
wrote the manuscripts. Y.B. conceived, designed, and supervised the research. Both authors participated in the
manuscript’s revisions and improvements, as well as the data analysis.

Funding: This research received no external funding

Acknowledgments: The Galatea Lab acknowledges the sponsoring of Richemont International. The authors
would also like to thank Pieter Vlugter for his discussions and help with the Digital Holographic Microscopy
(DHM) measurements and the Soft Transducers Laboratory (LMTS Lab) at EPFL for providing the DHM. We
would also like to thank Alexander Franzen for his component library used in Figure 4.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this section, we present a mathematical model of our device. The model is based on stiffness
matrices that allow us to calculate the overall displacement for any given force at any point of the
device. The idea is to help understand the response of the device against external forces and also
identify key parameters and how they influence the stiffness of the whole system.

For a single flexure, there is usually a very direct relationship between the stiffness along the
different axes and the flexure dimensions. However, in an assembly, one has to analytically derive the
value of stiffness along a particular direction by combining all the stiffnesses that contribute to that
particular orientation. To do so, all the stiffness matrices need to be evaluated in the same coordinate
frame. The transport of stiffness matrices from one point to another or from one coordinate frame to
another, can be done with the help of transport matrices.
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In our assembly, we wish to calculate the overall stiffness at point O. This point is the point of
application of force (POAF). Once the total stiffness is known, we can solve for the displacements using
Equation (1).

Our device consists of four thin beams and one notch hinge as shown below, whose principal
stiffness matrices are given below.

Figure Al. A 2D representation of the device showing the beams in their respective coordinate frames.
The coordinate frames centered at R,, R'z, and Rj have the same orientation as the global frame at R.

For the beam at R1, the individual terms of the principal stiffness matrix can be written as:

_ Ewd _ 1fwd® E
kFx,érx I X kMx,éex = §(T)(2(1+y))
__ Ewd 3
— Lwd E(d
kFy,éry ;13 and kM%‘S@y = ﬁ(%) (Al)
Edw 3
— E (wd
kF 2,017 ;3 kMz,éez = ﬁ(u;_1)

All the terms have their usual meanings. The same matrix can be constructed for the other beams
in their respective coordinate frames.

To transport a stiffness matrix from one coordinate frame to another, we use the transport formula
derived from a method used in robotics and screw theory and given by:

Q _ (mP-Q\pP(1P—Q\
Ky = (TiZ5)KATAZ5) (A2)

Here, a stiffness matrix K4 at point A in coordinate frame P is transported to point B in a new
coordinate frame Q. The matrix T incorporates both the translational and rotational matrices and is
given by:

P—Q

Rot? 0
r=0 ] (a3

QPx Rot?
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where Rot? represents the rotational matrix between the two frames and QPx represents the position
vector from the center of one coordinate frame to another and can be written in matrix form as:

0 -z vy
QPx=| z 0 —x (A4)
-y x 0
Using the above methodology, we can now write down the transport matrices for all the flexures
as:
L L ] 1 1 _
:/12 \1& 0 0 0 1/15 \15 0 0 O
v Vv 0 0 0 v Vv 0 0 0
TRI-R _ 8 8 1b 0 0 8 and TR~k — 8 8 o0 8 (A5)
PG , 27
0 0 v Vv 0 0 0 b 2 Vv 0
| b -2« 0 0 0 1| | a b 0 0 0 1]

Here, r1 = —af — bj denotes the position vector from R; to R as seen in the frame R; and rp, = —b7
— aj denotes the corresponding vector from R’y to R as seen in R'1. Similarly, for the top and bottom
flexures:

1 0 0 0 0 0] (1 0 0 0 0 0]
001 0 000 01 0000
00 1 000 , 00 1 000
Ro—R __ RI—-R __
= =10 0 L 100|™T2"=/y 0 0100 (A6)
00 2 o010 00 2010
'L 2 0 00 1] (0 2 0 00 1)
Lastly, for the notch hinge:
1 0 0 00 0
0 1 0 00 0
0 0 1 000
TR = ) (A7)
0 0 L 100
0 0 r+hL 0 1 0
| & —r-L 0 0 01

where L and A denote the length and amplification factor of the lever mechanism.
By using the transport formula in Equation (A1), the final stiffness matrix at point R can be
calculated as: . .
final R1—R R, —R R’ —>R R’ —>R
K" = (TR=R)K, (TR=R) 4 (T5 )KRi(T 1R) 4
T / /r\T
Ry—R Rr,—R R,—R R,—R
(77K, (TR )+ (157 )i (T475) (A8)
T
R3—R R3—R
(T )R (1)
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