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Biomedical imaging is the key technique and process to create informative images of the human
body or other organic structures for clinical purposes or medical science. Micro-electro-mechanical
systems (MEMS) technology has demonstrated enormous potential in biological imaging applications
due to its outstanding advantages of, for instance, miniaturization, high speed, higher resolution,
and convenience of batch fabrication. There are many advancements and breakthroughs developing in
the academic community, and there are a few challenges raised accordingly upon the designs, structures,
fabrication, integration, and applications of MEMS for all kinds of biomedical imaging. This Special
Issue of Micromachines, entitled “MEMS Technology for Biomedical Imaging Applications”, contains
13 papers (nine articles and four reviews) highlighting recent advances in the field of biomedical imaging
and covering broad topics from the key components to the applications of various imaging systems.

In the area of ultrasonic transducers, Brenner et al. reviewed the capacitive micromachined
transducers at all levels: Theory and modeling methods, fabrication technologies, system integration,
as well as imaging applications [1]. Future trends for capacitive micromachined ultrasonic transducers
and their impact within the broad field of biomedical imaging were also discussed. Work by Chen et al.
was aimed to provide a piezoelectric array to improve the acoustic field and spatial resolution in
medical ultrasonic imaging [2]. Photocurable resin and nano ceramic particles can be 3D-printed into
different concentric elements to consist annular piezoelectric arrays, which are capable of tuning the
focus zone and lateral resolution. The design, fabrication, and characterization of a tightly focused
high frequency needle-type ultrasonic transducer made by Co-doped Na0.5Bi4.5Ti4O15 ceramics was
demonstrated by Fei et al. [3]. Li et al. also presented tightly focused ultrasonic transducers, which
were designed using aluminum nitride thin film as piezoelectric element and using silicon lens for
focusing [4]. In addition, a custom designed integrated circuit combining a high frequency wideband
low noise amplifier with a common-source and common-gate structure was used to process the
ultrasonic medical echo signal with low noise figure, high gain, and good linearity.

This issue has two papers in the field of photoacoustic imaging. Lee et al. reviewed cutting-edge
MEMS technologies for photoacoustic imaging and summarizes the recent advances of scanning
mirrors and detectors [5]. Conventional silicon and water immersible scanning mirrors were introduced
respectively, followed by micromachined transducers, microring resonators, as well as silicon acoustic
delay lines and multiplexers. In the work of Qi et al., an optical resolution photoacoustic microscopy
system based on a MEMS scanning mirror was proposed [6]. The mirror was used to achieve raster
scanning of the excitation optical focus and the photoacoustic signal was detected by a flat transducer
in the system.

Two papers on microendoscopy are included in this issue. Qiu et al. presented a review
of the advancements of MEMS actuators for optical microendoscopy, including optical coherence
tomography, optical resolution photoacoustic microscopy, confocal, multiphoton, and fluorescence
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wide-field microendoscopy [7]. The work of Yang et al. provided an ultra-thin single-fiber scanner that
was electromagnetically driven by a tilted microcoil on a polyimide capillary [8].

This issue also contains three papers in the field of optical microscopy and its key components.
Yang et al. reviewed the micro-optical components and their fabrication technologies, focusing on
waveguides, mirrors, and microlenses [9]. Further, they emphasized the development of optical
systems integrated with these components for in vitro and in vivo bioimaging, respectively. Wang et al.
presented an integrated two-dimensional mechanical scanning system using an electrostatic actuator
and a SU-8 rib waveguide with a large core cross section [10]. Work by Seo et al. demonstrated an
electrostatic MEMS micromirror for high definition and high frame rate Lissajous scanning [11].
The micromirror comprised a low Q-factor inner mirror and frame mirror, which provided
two-dimensional scanning at two similar resonant scanning frequencies with high mechanical stability.

Furthermore, Fawole et al. presented two techniques for monitoring the response of smart
hydrogels composed of synthetic organic materials that can be engineered to respond (swell or shrink,
change conductivity and optical properties) to specific chemicals, biomolecules, or external stimuli [12].
Either the perturbation of microwave field or the current-voltage characteristics of a field-effect
transistor was monitored to correlate the response of hydrogel to chemicals. Tian et al. proposed an
adaptive absolute ego-motion estimation method using wearable visual-inertial sensors for indoor
positioning [13]. They introduced a wearable visual-inertial device to estimate not only the camera
ego-motion, but also the 3D motion of the moving object in dynamic environments. This proposed
system has much potential to aid the visually impaired and blind people.
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all the reviewers for dedicating their time and helping to ensure the quality of the submitted papers.
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