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Abstract: This paper details study of the anti-symmetric response to the symmetrical electrostatic
excitation of a Micro-electro-mechanical-systems (MEMS) resonant mass sensor. Under higher order
mode excitation, two nonlinear coupled flexural modes to describe MEMS mass sensors are obtained
by using Hamilton’s principle and Galerkin method. Static analysis is introduced to investigate the
effect of added mass on the natural frequency of the resonant sensor. Then, the perturbation method is
applied to determine the response and stability of the system for small amplitude vibration. Through
bifurcation analysis, the physical conditions of the anti-symmetric mode vibration are obtained.
The corresponding stability analysis is carried out. Results show that the added mass can change
the bifurcation behaviors of the anti-symmetric mode and affect the voltage and frequency of the
bifurcation jump point. Typically, we propose a mass parameter identification method based on the
dynamic jump motion of the anti-symmetric mode. Numerical studies are introduced to verify the
validity of mass detection method. Finally, the influence of physical parameters on the sensitivity of
mass sensor is analyzed. It is found that the DC voltage and mass adsorption position are critical to the
sensitivity of the sensor. The results of this paper can be potentially useful in nonlinear mass sensors.

Keywords: MEMS; anti-symmetric mode; bifurcation jump; parameter identification; nonlinear
dynamic

1. Introduction

Doubly clamped microbeam is a common resonant element in Micro-electro-mechanical-systems
(MEMS) sensors [1–3]. Due to their great potential and unique characteristics, microbeam resonant
sensors have the advantages of small, fast, high sensitivity [4,5]. Besides, only a small amount of
power is required to operate [6,7]. However, the structure nonlinearity and nonlinear electrostatic
force seriously affect the performance of conventional micro-mass sensor [8–10]. For example, the
nonlinear electrostatic force can cause shifts in their resonant frequency and lead to error of the
measured mass [11]. Recently, nonlinear MEMS mass sensors have attracted attention due to their
unique advantages. Firstly, the nonlinear parameter identification method of mass sensors can solve
the error caused by nonlinear stiffness [12]. Besides, the sensitivity and accuracy of the sensor can be
improved by using frequency stability and amplitude jump in nonlinear vibration [13]. In this paper,
we study the effect of added mass on anti-symmetric mode vibration and utilize the dynamic jump
motion of anti-symmetric mode to propose a new mass detection method.
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The mode coupled vibration can introduce rich nonlinear phenomena into the MEMS research
and reveal the mechanism of the complex dynamic behaviors [14–18]. Anti-symmetric response
can be induced by the mode coupled vibration. Li et al. [17] presented coupled vibration behavior
between second order and third order modes caused by the axial stress, which can be used to suppress
large amplitude vibration and to reduce the possibility of large deflection. Kirkendall et al. [19]
reported multi-stable coupled vibration between resonant modes of an electroelastic crystal plate
and introduced a mixed analytical-numerical approach to provide new insight into these complex
interactions. Wang et al. [20] proposed a simplified oscillation system, which consists of two
beam-shaped cantilevers. The results showed the possibility of doubling the frequency response signal
from the low frequency cantilever to the high-frequency cantilever based on this super harmonic
synchronization. Okamoto et al. [21] used anti-symmetric vibration in two coupled GaAs oscillators to
realize the high-sensitivity charge detection. In contrast to the frequency-shift detection using a single
oscillator, coupled vibration allowed a large readout up to the strongly driven nonlinear response
regime. Hammad et al. [22,23] presented an analytical model and closed form expressions describing
the response of mechanically coupled resonant structures. Mode coupled vibration was utilized to
implement an adjustable filter. Younis et al. [24] studied possibility of activating a three-to-one internal
resonance between the first and second modes. Besides, Mode coupled vibration can be used to
improve the frequency stability of nonlinear systems [13]. Du et al. [25] reported the experimental
observations of the internal resonance in a coupled ductile cantilever system from the viewpoint of
mass sensing and disclosed a frequency enhancement mechanism. Hajjaj et al. [26] used the nonlinear
hardening, softening and veering phenomena to realize a bandpass filter of sharp roll off from the
passband to the stopband. In general, mode coupled vibration behavior was gradually applied to
improve the performance of resonators and expand the scope of MEMS applications [27].

A MEMS resonant mass sensor mainly realizes the detection by changing the resonant frequency
and vibration amplitude of the structure caused by the adsorption of the elastic element of the
sensor to the target analyzers [28]. Frequency shift tracking is the most common method [29].
Bouchaala et al. [30] obtained analytical formulations to calculate the induced resonance frequency
shifts caused by the added mass. The results indicated that the detection sensitivity increases with
the decrease of size. However, with the reduction of size, there are obvious nonlinear effects and
complex bifurcation behaviors [31], which seriously affect the dynamic mechanical characteristics
and mass detection performance of the sensor. Therefore, nonlinear mass sensors were proposed.
Younis et al. [32] utilized the dynamic bifurcations to realize novel methods and functionalities for
mass detection. It was noted that bifurcation-based mass detection methods provided for dramatically
enhanced sensitivity and less performance deterioration due to measurement noise as compared
to frequency shift-based methods [33]. Similarly, Kumar et al. [34] also detailed proof-of-concept
experiments on bifurcation-based sensing. Preliminary results revealed the bifurcation-based sensing
technique to be a viable alternative to existing resonant sensing methods. Hasan et al. [35] studied the
intelligent adjustable threshold pressure switch. When the pressure exceeds the threshold, the system
can be induced to produce amplitude jump, realizing the rapid sensing of pressure. However, the
dynamic behavior near the bifurcation point is easily disturbed by the ambient noise, which affects the
stability of the sensor.

It can be concluded from the above analysis that mode coupled vibration can induce anti-symmetric
modes and improve the performance of resonators, which may be beneficial to improve the accuracy
and sensitivity of mass sensors [36–38]. Recently, most nonlinear mass sensors were realized by using
the periodic saddle bifurcation of the resonant system, which greatly increases the sensitivity of the
sensor. To the best of our knowledge, there are fewer quantitative results about a general analysis of
nonlinear mass sensors by using anti-symmetric mode vibration. Besides, the mechanism of the effect
of added mass on anti-symmetric mode vibration is not well understood. Through bifurcation analysis,
the influence of added mass on transition mechanism of nonlinear jumping phenomena and complex
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nonlinear dynamic behaviors can be predicted, which motivates our present work. In this study we
exploit the nonlinear jump phenomenon of the anti-symmetric mode to realize mass detection.

The structure of this paper is as follows. In Section 2, the Hamilton’s principle and Galerkin
discretization is applied to obtain the equation of motion of a mass sensor. Then static analysis is
carried out under different direct current (DC) voltage and added mass. In Section 3, the method of
multiple scales is applied to produce an approximate solution. In Section 4, we analyze the physical
conditions of the anti-symmetric mode vibration. Meanwhile, the effect of added mass on nonlinear
dynamic behavior is considered. In Section 5, we propose the mass detection method by exploring the
exploitation of amplitude jump behavior. In Section 6, the influence of DC voltage and mass adsorption
position on the sensitivity of the sensor is considered. Finally, summary and conclusions are presented
in the last section.

2. Problem Formulation

The bifurcation-based mass detection methods provide for dramatically enhanced sensitivity and
less performance deterioration [32]. In our previous work, it was found that the anti-symmetric mode
vibration of microbeams can be realized under the symmetrical electrostatic excitation [17]. Here, the
dynamic jump behavior of anti-symmetric mode is utilized to realize mass detection. Figure 1 shows
the schematic of a resonant mass sensor. The adsorption material is added to the microbeam. Then, a
lumped mass m is added at x = L1. The added mass can affect the equivalent mass of the system and
lead to a shift in the natural frequency of the resonator. The actuation of the microbeam is realized by
means of a bias voltage and an alternating current (AC) voltage component.
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By using Hamilton’s principle, the equation of motion that governs the transverse deflection
ŵ(x̂, t̂) is written as [17]

[ρA + δ(x− L1)m]
..
ŵ + EIŵiv + c

.
ŵ = (

EA
2L

∫ L

0
ŵ′2dx)ŵ′′ +

ε0b[Vdc + Vac cos(Ω̂t̂)]2

2(d− ŵ)2 (1)

with the boundary conditions

ŵ(0, t̂) = ŵ′(0, t̂) = ŵ(L, t̂) = ŵ′(L, t̂) = 0 (2)

where
.

ŵ = ∂ŵ
∂t̂ and ŵ′ = ∂ŵ

∂x̂ .
Size parameters and physical properties of resonators are listed in Table 1. The last two terms

of Equation (1) represent mid-plane stretching effect and the parallel-plate electric actuation which
is composed of DC and AC components. A and I represent the area and moment of inertia of the
cross section.

Then, the non-dimensional variables are introduced

w =
ŵ
d

, x =
x̂
L

, t = t̂

√
EI
ρAL4

(3)
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Substituting Equation (3) into Equation (1,2), yields the non-dimensional equation of motion of
the mass sensor

..
w + η

..
w + wiv + cn

.
w− (α1

∫ 1

0
w′2dx)w′′ = α2

V2
dc

(1−w)2 + α2
2VdcVac cos Ωt + (Vac cos Ωt)2

(1−w)2 (4)

with the boundary conditions

w(0, t) = w′(0, t) = w(1, t) = w′(1, t) = 0 (5)

The parameters in Equation (4) are

η =
δ(x− L1/L)m

ρAL
, α1 = 6× (

d
h
)

2
, α2 =

6ε0L4

Ed3h3 (6)

where η represents added equivalent mass.

Table 1. Mass sensor parameters and physical properties.

Physical Parameter (units). Value

Length of the beam electrode, L (µm) 150
Thickness of the beam electrode, h (µm) 1

Width of the beam electrode, b (µm) 10
Gap between the electrodes, d (µm) 1.5

Density of the electrode material, ρ (kg/m3) 2300
Young’s Modulus, E (GPa) 169

Dielectric constant of the medium, ε0 8.85 × 10−12

Quality factor, Q 12.5

The microbeam deflection under an electric force is composed of a static component due to the
DC voltage, denoted by wdc(x), and a dynamic component due to the AC voltage, denoted by wac(x);
that is

w = wdc + wac (7)

Ignoring the time derivatives and the AC forcing term in Equation (4), we can obtain the static
deflection of the microbeam

wiv
dc − (α1

∫ 1

0
w′dc

2dx)w′′dc = α2
V2

dc

(1−wdc)
2 (8)

The static displacement of the resonator is very important to the natural frequency of the system.
It was found that the nine-order mode discretization can accurately predict the static behavior of the
resonator [9]. Here, the Galerkin method is introduced to calculate Equation (8). Meanwhile, the finite
element method results are obtained from the software COMSOL (COMSOL Inc., Stockholm, Sweden)
by using the Multi-field solver [39]. Figure 2 shows the relationship between midpoint deflections
and the DC voltages obtained with the Galerkin method and the finite element method. Results are
presented for values of Vdc ranging from 0 V to pull-in voltage, where the solid line represents the
position of the potential well and the dotted line represents the position of the barrier. Finite element
results verify the validity of the theoretical model. It should be noted that the added mass has no effect
on the static displacement.
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Substituting Equation (7) into Equation (4) and using Equation (8) to eliminate the terms
representing the equilibrium position, the problem governing the dynamic behavior of the microbeam
around the deflected shape is generated. To third-order in wac, the result is

..
wac + η

..
wac + cn

.
wac + [wiv

ac − α1w′′ac

∫ 1
0 w′2dcdx− 2α1w′′dc

∫ 1
0 w′acw′dcdx− 2α2

V2
dcwac

(1−wdc)
3 ]

−α1w′′dc

∫ 1
0 w′2acdx− α1w′′ac
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V2
dcw2
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(1−wdc)
4

−α1w′′ac
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0 w′2acdx− 4α2

V2
dcw3
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(1−wdc)
5

= 2α2
VdcVac cos Ωt
(1−wdc)

2

(9)

Due to Vdc >> Vac [17], (Vdc + Vac cos Ωt)2
≈ V2

dc + 2VdcVac cos Ωt is obtained.

The solution of Equation (9) can be expressed as wac(x, t) =
∞∑

i=1
ui(t)φi(x), where φi is the i-th

linear undamped mode shape of the straight microbeam. Then, the linear undamped eigenvalue
problem is obtained

φiv
i = (α1

∫ 1

0
w′2dcdx)φ′′′i + β2

i φi (10)

Substituting Equation (10) into the resulting Equation (9), multiplying by φi, and integrating the
outcome from x = 0 to 1, yield

..
un + ηn

..
un + cn

.
un + β2

nun −
M∑

i=1
[2α1

∫ 1
0 w′′dcφndx

∫ 1
0 φ

′

i w
′

dcdx + 2α2V2
dc

∫ 1
0

φiφn

(1−wdc)
3 dx]ui

−

M∑
i, j=1

[α1
∫ 1

0 w′′dcφndx
∫ 1

0 φ
′

iφ
′

jdx + α1
∫ 1

0 φ
′′

i φndx
∫ 1

0 2φ′jw
′

dcdx + 3α2V2
dc

∫ 1
0
φiφ jφndx

(1−wdc)
4 ]uiu j

−

M∑
i, j,k=1

[α1
∫ 1

0 φ
′

iφ
′

jdx
∫ 1

0 φ
′′

k φndx + 4α2V2
dc

∫ 1
0
φiφ jφkφndx

(1−wdc)
5 ]uiu juk

= fn cos Ωt

(11)

where fn = 2α2VdcVac
∫ 1

0
φndx

(1−wdc)
2 , ηn = φ2

n(L1/L)m/ρAL.

Through Equation (11), we can obtain the resonant frequency

ωn =

√
β2

n − 2α1

∫ 1

0
w′′dcφndx

∫ 1

0
φ′nw′dcdx− 2α2V2

dc

∫ 1

0

φ2
n

(1−wdc)
3 dx (12)
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χn =
1√

1 + ηn
ωn (13)

where χn is the resonant frequency of the n-th order mode.
In our previous work, it was found that the third-order frequency is approximately equal to two

times the second order frequency [17]. Hence we study the possibility of activating a 1:2 internal
resonance between the second and third modes when the third mode is excited with a higher order
excitation. Firstly, the effect of added mass on the second and third natural frequencies is considered,
as shown in Figure 3. It should be noted that the effect of different adsorption positions on the natural
frequency is very important. L1 = 50 µm and L1 = 75 µm are considered. When L1 = 75 µm, the
added mass has a significant effect on the third modes. However, it has no effect on the second mode.
Similarly, when L1 = 50 µm, the added mass has a significant effect on the second modes, and it has
no effect on the third mode. To explain this phenomenon, the shape diagram of the second and third
modes is obtained, as shown in Figure 4. When L1 = 75 µm, the added mass is at the node of the
second-order mode. Thus, it has no effect on the second mode. Similarly, the added mass is at the node
of the third-order mode under L1 = 50 µm.Micromachines 2019, 10, x 7 of 23 
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To study the dynamic behavior of the anti-symmetric mode, we take wac(x, t) ≈
3∑

i=2
ui(t)φi(x) and

obtain that

(1 + η2)
..
u2 + cn

.
u2 +ω2

2u2 + a2ru2u3 + a2su3
2 + a2tu2u2

3 = 0
(1 + η3)

..
u3 + cn

.
u3 +ω2

3u3 + a3ru2
2 + a3su2

3 + a3tu3
3 + a3pu2

2u3 = f3 cos Ωt
(14)

where the dots indicate the time derivative and the parameters are given in “Appendix A”. η2

represents equivalent added mass when L1 = 50 µm; η3 represents equivalent added mass when
L1 = 75 µm. When the driving frequency is close to two times the natural frequency of the second
order mode, the second order amplitude can produce the bifurcation jump phenomenon [17]. We take
advantage of the dynamic jump behavior of the anti-symmetric mode to realize mass detection.

3. Perturbation Analysis

The method of multiple scales is introduced to investigate the response of the mass sensor with
small amplitude vibration. Then, ε is introduced as a small nondimensional bookkeeping parameter to
indicate the significance of each term in the equation of motion. Considering the electrostatic force
term f3 = O(ε3), scaling the dissipative terms, we obtain

(1 + η2)
..
u2 + ε2cn

.
u2 +ω2

2u2 + a2ru2u3 + a2su3
2 + a2tu2u2

3 = 0
(1 + η3)

..
u3 + ε2cn

.
u3 +ω2

3u3 + a3ru2
2 + a3su2

3 + a3tu3
3 + a3pu2

2u3 = ε3 f3 cos Ωt
(15)

To describe the 1:2 internal resonance, detuning parameters δ and ∆ are defined by

ω3 = 2ω2 − ε
2∆, Ω = ω3 − ε

2δ (16)

Finally, the frequency response equation can be derived as

c2
n + [(δ+ ∆ − η2ω2) + κ2a2

3]
2
−

a2
2ra

2
3

4ω2
2

+ 2κ1[(δ+ ∆ − η2ω2) + κ2a2
3]a

2
2 + κ2

1a4
2 = 0 (17)

(δ−
η3ω3

2 + κ3a2
3 + κ4a2

2)
2
a2

3 +
c2

n
4 a2

3 + (
a3ra2

2
4ω3

)
2
+

c2
n
8 a2

2

−
1
4 (δ+ ∆ − η2ω2 + κ1a2

2 + κ2a2
3)(δ−

η3ω3
2 + κ3a2

3 + κ4a2
2)a

2
2 =

f 2
3

4ω2
3

(18)

The detailed derivation process is given in “Appendix B”. In this paper, pseudo-trajectory
processing method is introduced to solve Equations (17) and (18).

4. The Anti-Symmetric Mode Vibration

In this section, anti-symmetric mode vibration behaviors of MEMS mass sensors are considered.
Firstly, we study the physical conditions of the anti-symmetric mode vibration.

4.1. Physical Conditions for Mode Transition

Anti-symmetric modes cannot be directly excited by symmetric driving forces. Mode coupled
vibrations can be utilized to induce anti-symmetric modes. When the driving frequency is far away
from two times the second natural frequency or the electrostatic excitation is very small, there is no
second order vibration [17]. The bifurcation analysis is introduced to obtain the physical conditions of
the second order vibration. When the second order amplitude occurs, we can obtain the following
equation by Equation (17)

c2
n + [(δ+ ∆ − η2ω2) + κ2a2

3]
2
−

a2
2ra

2
3

4ω2
2

= 0 (19)
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Then, the threshold of third order amplitude can be obtained by solving Equation (19)

a2
3 =

a2
2r

4ω2
2
− 2κ2(δ+ ∆ − η2ω2) −

√
[

a2
2r

4ω2
2
− 2κ2(δ+ ∆ − η2ω2)]

2
− 4κ2

2[(δ+ ∆ − η2ω2)
2 + c2

n]

2κ2
2

(20)

Because the displacement of the second order vibration mode at the midpoint of the microbeam is
always 0, the added mass has no effect on the critical amplitude when L1 = 75 µm.

When third order amplitude is more than the above threshold, the mode coupled vibration can
occur. From Equation (20), the precondition of anti-symmetric mode vibration is obtained.

δ ≤
a2

2r

16κ2ω2
2

−
4κ2ω2

2c2
n

a2
2r

− ∆ + η2ω2 (21)

When the anti-symmetric mode vibration occurs, a2 = 0 becomes unstable. Then, substituting
a2 = 0 into Equation (17) and Equation (18), the physical conditions of anti-symmetric mode vibration
under different DC voltage and added mass are obtained, as shown in Figure 5. The unstable region
represents the occurrence of anti-symmetric mode vibration. It is noted that: (1) with the increase of
DC voltage, the minimum critical frequency of anti-symmetric mode vibration decreases; (2) the added
mass cannot affect the minimum critical frequency of anti-symmetric mode when L1 = 75 µm; (3) the
added mass can decrease the minimum critical frequency of anti-symmetric mode when L1 = 50 µm;
(4) the anti-symmetric mode vibration behavior depends heavily on DC voltage and added mass.
Therefore, we can use the bifurcation behavior of anti-symmetric mode vibration to detect the mass.
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4.2. Stability of the Nontrivial Solution

To further study the bifurcation behavior when the anti-symmetric mode vibration occurs, the
stability analysis of the nontrivial solution is introduced. The subcritical bifurcation can lead to
unstable branches near the critical points. On the contrary, the supercritical bifurcation can lead to
stable branches. To determine the stability of periodic vibration, we ignore the higher-order nonlinear
terms and obtain the following equation by Equation (17)

c2
n + [(δ+ ∆ − η2ω2) + κ2a2

3]
2
−

a2
2ra

2
3

4ω2
2

+ 2κ1[(δ+ ∆ − η2ω2) + κ2a2
3]a

2
2 = 0 (22)

Substituting Equation (20) into Equation (22) yields the discriminant

M = κ1[a2
2r(δ+ ∆ − η2ω2) + 4ω2

2κ2c2
n] (23)

The case M < 0 results in the subcritical bifurcation. With the increase of AC voltage, the second
order amplitude suddenly appeared. Likewise, the case M > 0 results in the supercritical bifurcation.
With the increase of AC voltage, the small vibration in the second order mode appears.

Figure 6 shows variation of the bifurcation behavior versus δ, DC voltage and added mass. In the
yellow area, the dynamic jump behavior of anti-symmetric mode vibration occurs with the increase of
AC voltage. It is found that the increase of the DC voltage makes the dynamic jump behavior occur
easily. It is interesting to note that low frequency perturbation parameter is more advantageous to
realize the dynamic jump behavior than the high frequency perturbation parameter. Meanwhile, the
added mass has obvious influence on the bifurcation behavior of the system when L1 = 50 µm. As the
added mass increases, the critical frequency of subcritical bifurcation decreases. However, the added
mass has no influence on the critical frequency of subcritical bifurcation when L1 = 75 µm.Micromachines 2019, 10, x 10 of 23 
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4.3. Dynamic Analysis

To further study the effect of added mass on anti-symmetric mode vibration behaviors, dynamic
behaviors of the anti-symmetric mode under different adsorption position and mass are introduced.

� L1 = 50 µm

Firstly, L1 = 50 µm is considered. As shown in Figure 6, point A and point B represents supercritical
bifurcation and subcritical bifurcation, respectively. Then, Figure 7 shows the force-amplitude curves
corresponding to point A and point B. When m = 1× 10−6 µg, the supercritical bifurcation voltage Vac1

is obtained. With the increase of the driving voltage, the second order amplitude appears gently. When
m = 5 × 10−6 µg, the bifurcation voltage increases and the supercritical bifurcation is transformed
into subcritical bifurcation. The subcritical bifurcation voltage Vac2 is obtained and the second order
amplitude is suddenly generated with the increase of the driving voltage. To validate the above
analysis, long-time integration (LTI) of Equation (14) is used to obtain some numerical solutions
(discrete points), compared with the analytical solution derived from the method of multiple scales.Micromachines 2019, 10, x 11 of 23 
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Then, Figure 8 shows the effect of added mass on amplitude-frequency response curve. There are
four critical frequencies for anti-symmetric mode vibration behavior without considering the added
mass. P1, P2, P3 and P4 indicate the bifurcation frequency of the anti-symmetric mode vibration as
shown in Figure 5c. It is found that: (1) when the frequency is less than P1, no anti-symmetric mode
vibration occurs; (2) when the frequency is between P1 and P2, the anti-symmetric mode vibration
occurs and there is only one stable periodic solution in the system; (3) when the frequency is between
P2 and P3, the trivial solution of the second order amplitude becomes stable. There are two stable
and one unstable periodic solutions in the system and the second order amplitude depends on the
initial conditions; (4) when the frequency is between P3 and P4, the anti-symmetric mode vibration
occurs and there are two stable periodic solutions in the system; (5) when the frequency is more than
P4, the anti-symmetric mode vibration behavior disappears. Then, there are two critical frequencies
for anti-symmetric mode vibration behavior with considering added mass. When the frequency is
between F1 and F2 (Figure 5d), the anti-symmetric mode vibration occurs and there are two stable
periodic solutions in the system. F1 represents the supercritical bifurcation type and F2 represents
the subcritical bifurcation type. As the drive frequency decreases, the second order amplitude can be
suddenly generated when the frequency is equal to F2. From Figure 8, it is found that the added mass
can change the number of critical frequencies for anti-symmetric mode vibration behavior. Meanwhile,
the added mass reduces the subcritical bifurcation frequency.
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� L1 = 75 µm

Similarly, L1 = 75µm is considered. From Equation (23), the added mass has no effect on bifurcation
type when L1 = 75 µm. However, the added mass can affect the bifurcation voltage and frequency.
Figure 9 shows the force-amplitude curves obtained by pseudo-trajectory processing method (line)
and long-time integration method. With the increases of added mass, the subcritical bifurcation
voltage increases and the supercritical bifurcation voltage decreases. Then, amplitude-frequency
response curves of the system considering the different added masses are introduced, as shown in
Figure 10. There are two critical frequencies for anti-symmetric mode vibration behavior. The increase
of the added mass shifts down the forced frequency response, ∆Ω being the subcritical bifurcation
frequency shift.Micromachines 2019, 10, x 12 of 23 
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Figure 9. Comparison of the force-amplitude curves with considering the different added mass when
L1 = 75 µm.

When L1 = 50 µm and L1 = 75 µm, the added mass can increase the inertial forces of the second
order vibration mode and the third order vibration mode, respectively. Through Figures 7–10, the
effect of added mass on anti-symmetric mode vibration behavior can be summarized as follows: (1) the
added mass can adjust the number of bifurcation points near the origin; (2) the supercritical bifurcation
near the origin can be transformed into subcritical bifurcation by the added mass; (3) the added mass
can reduce the bifurcation frequency of the dynamic jump motion near the origin and increase the
bifurcation voltage of the dynamic jump motion near the origin.
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5. Mass Detection Method

In Section 4, we study the effect of added mass on anti-symmetric mode vibration behavior in
detail. Subcritical bifurcation can lead to the dynamic jump motion, which greatly improves the
sensitivity of the sensor. It is found that the added mass has an important influence on the bifurcation
voltage and frequency of the dynamic jump motion. Then, we utilize of amplitude jump behavior to
realize mass detection in MEMS.

First of all, the principle of mass detection is given as follow:
(1) It is found that when the driving voltage increases and the driving frequency decreases, the

dynamic jump motion of the anti-symmetric mode can occur. Through the force-amplitude curve and
amplitude-frequency response curve, we can obtain the bifurcation frequency and voltage.

(2) Then, we consider the mass identification formula in the case of L1 = 50 µm and
L1 = 75 µm, respectively.

� L1 = 50 µm

From Figures 7–10, the third order amplitude is very small when the subcritical bifurcation occurs.
Thus, we can ignore the nonlinearity of the third order mode and obtain by Equation (18)

δ2a2
3 +

c2
n
4

a2
3 =

f 2
3

4ω2
3

(24)

Then, substituting Equation (24) into Equation (19) yields

η2 =
1
ω2

[δ+ ∆ + f 2
3 κ2/(4ω2

3δ
2 +ω2

3c2
n) +

√
a2

2r f 2
3 /4ω2

2(4ω
2
3δ

2 +ω2
3c2

n) − c2
n] (25)

� L1 = 75 µm

Substituting Equation (20) into Equation (18) yields

η3 =
2
ω3

(δ+ κ3a2
3 +

√√
f 2
3

4ω2
3a2

3

−
c2

n
4
) (26)

where a3 can be obtained by Equation (20).
(3) Finally, we can obtain the added mass m with dimensional transformation.

m = ηnρAL/φ2
n(L1/L) (27)
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The numerical studies are introduced to prove the mass identification method. Firstly, L1 = 50 µm
is considered. Figure 11 show force-amplitude curve obtained by sweeping up the AC voltage. As the
added mass increases, the bifurcation voltage increases when δ = −0.55. With Equations (25) and (27),
we obtain three kinds of parameter identification results, as shown in Table 2. The results show that
the mass detection method presented in this paper can identify the added mass. Figure 12 show
amplitude-frequency response curve of the system considering the different added mass obtained
by sweeping down the frequency. As the drive frequency decreases, there are jump phenomena
in the second order amplitude. Besides, the added mass reduces the bifurcation frequency of the
jump point. Then, swept harmonic responses for midpoint displacement are introduced to further
verify the bifurcation jump phenomenon, as shown in Figure 13. Here, we also obtain three kinds of
parameter identification results by using Figure 12, as shown in Table 3. Similarly, Figures 14 and 15
show force-amplitude curve and amplitude-frequency response curve in the case of L1 = 75 µm. With
Equations (26) and (27), we obtain mass identification results, as shown in Tables 4 and 5. There is
a small error between the identification result and the real result. There are two main error sources:
(1) The nonlinear stiffness terms of the third order modes are ignored when L1 = 50 µm; (2) the accuracy
of numerical studies depends on the density of discrete points. An insufficient number of discrete
points may lead to identification error.
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Table 2. Three groups of mass detection results obtained by the force-amplitude curve when L1 = 50µm,
δ = −0.55.

Number The True Mass m (10−6 µg) Bifurcation Voltage (V) Identification Results m (10−6 µg) Error (10−6 µg)

1 1 0.537 0.995 0.005
2 3 0.774 2.833 0.167
3 5 1.032 4.624 0.376
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Table 3. Three groups of mass detection results obtained by the amplitude-frequency response curve
when L1 = 50 µm, Vac = 0.35 V.

Number The True Mass m (10−6 µg) Bifurcation Frequency (100 kHz) Identification Results m (10−6 µg) Error (10−6 µg)

1 1 21.598 0.949 0.051
2 3 21.591 2.772 0.228
3 5 21.585 4.542 0.458

Table 4. Three groups of mass detection results obtained by the force-amplitude curve when L1 = 75µm,
δ = −0.55.

Number The True Mass m (10−6 µg) Bifurcation Voltage (V) Identification Results m (10−6 µg) Error (10−6 µg)

1 1 0.482 1.191 0.191
2 3 0.538 3.219 0.219
3 5 0.602 5.342 0.342

Table 5. Three groups of mass detection results obtained by the amplitude-frequency response curve
when L1 = 75 µm, Vac = 0.35 V.

Number The True Mass m (10−6 µg) Bifurcation Frequency (100 kHz) Identification Results m (10−6 µg) Error (10−6 µg)

1 1 21.601 0.955 0.045
2 3 21.597 3.112 0.112
3 5 21.592 4.273 0.727

6. Sensor Sensitivity

In this section, considering different added positions and DC voltages, we study the sensitivity of
mass sensors. Variation of bifurcation voltage and bifurcation frequency caused by the added mass is
introduced to characterize the sensitivity of the sensor. Figures 16 and 17 show the effect of added mass
at different positions on bifurcation voltage and bifurcation frequency. As the DC voltage increases,
the sensitivity of the mass sensor in the case of L1 = 75 µm is improved and the sensitivity of the mass
sensor in the case of L1 = 50 µm is suppressed. Thus, we need to select a reasonable DC drive voltage
and adsorption position to improve the sensitivity of the mass sensor.
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7. Conclusions

This paper studies the anti-symmetric mode vibration behavior of MEMS mass sensors, obtains
the influence mechanism of added mass on anti-symmetric mode vibration behavior and utilizes the
dynamic jump motion of anti-symmetric mode vibration to realize the mass detection.

Firstly, the Hamilton’s principle and Galerkin discretization are applied to obtain two degrees
of freedom equations of the resonant structure. The results show that the added mass at different
adsorption positions has an important effect on the natural frequency of the resonator. Through
bifurcation analysis, physical conditions of anti-symmetric mode vibration behavior are obtained. The
anti-symmetric mode vibration behavior depends heavily on DC voltage and added mass. Besides, it
is found that the added mass can change the bifurcation type of the resonator and affect the bifurcation
voltage and bifurcation frequency of the anti-symmetric mode vibration.

The dynamic jump motion is introduced to realize mass detection, which greatly improves the
sensitivity of the mass sensor. The parameter identification formula of mass detection is deduced and
numerical studies are used to verify mass parameter identification method. Finally, the sensitivity of
the sensor is analyzed. With the increase of DC voltage, the sensitivity of the mass sensor is improved
when L1 = 75 µm. On the contrary, with the increase of DC voltage, the sensitivity of the mass sensor
is suppressed when L1 = 50 µm. Therefore, we need to adjust the DC drive voltage of the resonator
according to different mass adsorption positions. The framework presented here provides theoretical
support for nonlinear mass sensors. It should be emphasized that all the theoretical results in this paper
are compared with numerical results, which guarantees the accuracy of our whole investigations.

It is worthy to mention that the proposed mass detection method discussed in this paper need to
be investigated for their stability to external disturbances. Fork bifurcation occurs near the critical
voltage and frequency. Hence, the stability of operation prior to mass detection must be ensured to
prevent accidental bifurcation jump phenomenon due to noises or disturbances. This can be studied
by conducting global dynamic analysis to track the basin of attraction of the stable solution.
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Appendix A

a2r = −[α1

∫ 1

0
φ′′2 φ2dx

∫ 1

0
2φ′3w′dcdx + 6α2V2

dc

∫ 1

0

φ3φ2
2dx

(1−wdc)
4
] (A1)

a2s = −[α1

∫ 1

0
φ′2

2dx
∫ 1

0
φ′′2 φ2dx + 4α2V2

dc

∫ 1

0

φ4
2dx

(1−wdc)
5 ] (A2)

a2t = −[α1

∫ 1

0
φ′3

2dx
∫ 1

0
φ′′2 φ2dx + 12α2V2

dc

∫ 1

0

φ2
2φ

2
3dx

(1−wdc)
5 ] (A3)

a3r = −[α1

∫ 1

0
w′′dcφ3dx

∫ 1

0
φ′2φ

′

2dx + 3α2V2
dc

∫ 1

0

φ2φ2φ3dx

(1−wdc)
4
] (A4)

a3s = −[α1

∫ 1

0
w′′dcφ3dx

∫ 1

0
φ′3φ

′

3dx + α1

∫ 1

0
φ′′3 φ3dx

∫ 1

0
2φ′3w′dcdx + 3α2V2

dc

∫ 1

0

φ3φ3φ3dx

(1−wdc)
4
] (A5)
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a3t = −[α1

∫ 1

0
φ′3φ

′

3dx
∫ 1

0
φ′′3 φ3dx + 4α2V2

dc

∫ 1

0

φ3φ3φ3φ3dx

(1−wdc)
5 ] (A6)

a3p = −[α1

∫ 1

0
φ′2φ

′

2dx
∫ 1

0
φ′′3 φ3dx + 12α2V2

dc

∫ 1

0

φ2φ2φ3φ3dx

(1−wdc)
5 ] (A7)

Appendix B

The general solutions of Equation (15) can be written as

u2 = εu21(T0, T1, T2) + ε2u22(T0, T1, T2) + ε3u23(T0, T1, T2)

u3 = εu31(T0, T1, T2) + ε2u32(T0, T1, T2) + ε3u33(T0, T1, T2)
(A8)

where Tn = εnt.
Substituting Equations (16) and (A8) into Equation (15) and equating coefficients of like powers of

ε yield
O
(
ε1

)
: D2

0u21 +ω2
2u21 = 0

D2
0u31 +ω2

3u31 = 0
(A9)

O
(
ε2

)
: D2

0u22 +ω2
2u22 = −2D0D1u21 − a2ru21u31

D2
0u32 +ω2

3u32 = −2D0D1u31 − a3ru2
21 − a3su2

31

(A10)

O
(
ε3

)
: D2

0u23 +ω2
2u23 = −2D0D2u21 −D2

1u21 − 2D0D1u22 − cnD0u21

−a2ru21u32 − a2ru22u31 − a2su3
21 − a2tu21u2

31 + η2ω2
2u21

D2
0u33 +ω2

3u33 = −2D0D2u31 −D2
1u31 − 2D0D1u32 − cnD0u31 − 2a3ru21u22

−2a3su32u31 − a3tu3
31 − a3pu31u2

21 + η3ω2
3u31

+ f3 cos(ω3T0 − δT2)

(A11)

The general solutions of Equation (A9) can be written as

u21(T0, T1, T2) = A21(T1, T2)eiω2T0 + A21(T1, T2)e−iω2T0

u31(T0, T1, T2) = A31(T1, T2)eiω3T0 + A31(T1, T2)e−iω3T0
(A12)

It is convenient to express A21 and A31 in the polarform, A21 = 1
2 a2eiθ2 , A31 = 1

2 a3eiθ3 . where a2

and a3 indicate the second and third order amplitudes, respectively.
Substituting Equation (A12) into Equations (A10) and (A11) yields the bifurcation equations

.
a2 = a2ra2a3

4ω2
sinϕ− cna2

2
.
ϕ = δ+ ∆ − η2ω2 +

a2ra3
2ω2

cosϕ+ κ1a2
2 + κ2a2

3
.
a3 = −

a3ra2
2

4ω3
sinϕ− cna3

2 −
f3

2ω3
sin β

.
β = δ−

η3ω3
2 +

a3ra2
2

4ω3a3
cosϕ+ κ3a2

3 + κ4a2
2 −

f3
2ω3a3

cos β

(A13)

where
ϕ = 2θ2 + ∆t− θ3, β = δt + θ3

κ1 = 3a2s
4ω2
−

a2ra3r
2ω2

3ω2

κ2 = a2t
2ω2
−

a2ra3s
2ω2

3ω2
+

a2
2r

32ω3
2−24ω2

2∆

κ3 = 3a3t
8ω3
−

5a2
3s

12ω3
3

κ4 =
a3p
4ω3
−

a3sa3r
2ω3

3
+ a2ra3r

32ω2
2ω3−24ω2ω3∆
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To determine the stability of the periodic solution, we evaluate the Jacobian matrix of Equation (A13)
at (a20,ϕ0, a30, β0) as

J =



a2ra30
4ω2

sinϕ0 −
cn
2

a2ra20a30
4ω2

cosϕ0
a2ra20
4ω2

sinϕ0 0
2κ1a20 −

a2ra30
2ω2

sinϕ0
a2r
2ω2

cosϕ0 + 2κ2a30 0

−
a3ra20
2ω3

sinϕ0 −
a3ra2

20
4ω3

cosϕ0 −
cn
2 −

f3
2ω3

cos β0

a3ra20
2ω3a30

cosϕ0 + 2κ4a20 −
a3ra2

20
4ω3a30

sinϕ0 2κ3a30
f3

2ω3a30
sin β0


When all the matrix eigenvalues are negative, the system is stable; otherwise the system is unstable.

Finally, the frequency response equation can be derived as

c2
n + [(δ+ ∆ − η2ω2) + κ2a2

3]
2
−

a2
2ra

2
3

4ω2
2

+ 2κ1[(δ+ ∆ − η2ω2) + κ2a2
3]a

2
2 + κ2

1a4
2 = 0 (A14)

(δ−
η3ω3

2 + κ3a2
3 + κ4a2

2)
2
a2

3 +
c2

n
4 a2

3 + (
a3ra2

2
4ω3

)
2
+

c2
n
8 a2

2

−
1
4 (δ+ ∆ − η2ω2 + κ1a2

2 + κ2a2
3)(δ−

η3ω3
2 + κ3a2

3 + κ4a2
2)a

2
2 =

f 2
3

4ω2
3

(A15)
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