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Abstract: Photodiode is one of the key components in optoelectronic technology, which is used
to convert optical signal into electrical ones in modern communication systems. In this paper, an
avalanche photodiode (APD) is designed and fulfilled, which is compatible with Taiwan Semiconductor
Manufacturing Company (TSMC) 45-nm standard complementary metal–oxide–semiconductor (CMOS)
technology without any process modification. The APD based on 45 nm process is beneficial to realize
a smaller and more complex monolithically integrated optoelectronic chip. The fabricated CMOS APD
operates at 850 nm wavelength optical communication. Its bandwidth can be as high as 8.4 GHz
with 0.56 A/W responsivity at reverse bias of 20.8 V. Its active area is designed to be 20 × 20 µm2.
The Simulation Program with Integrated Circuit Emphasis (SPICE) model of the APD is also proposed
and verified. The key parameters are extracted based on its electrical, optical and frequency responses
by parameter fitting. The device has wide potential application for optical communication systems.

Keywords: CMOS compatible technology; avalanche photodiode; SPICE model; bandwidth; high
responsivity; silicon photodiode

1. Introduction

As one of the promising photoelectric sensors, avalanche photodiode (APD) breaks the limitations
of electrical interconnects, which results in high-speed, dense, and low-power interconnects [1]. It has
become one of the research hotspots in the field of optical communication in recent years [2]. Avalanche
photodiodes are widely used in optical communication systems and optical interconnection equipment,
such as local area network, chip-to-chip, and board-to-board interconnect [3]. As one of them, 850 nm
optical interconnects are actively being investigated, because 850 nm can be easily available as light
sources in the high-speed optical interconnects [4,5]. The monolithically integrated high speed 850 nm
wavelength silicon APDs based on standard complementary metal–oxide–semiconductor (CMOS)
technology are particularly attractive because of significant advantages in cost, power, and performance
that CMOS technology brings [6].

However, the optical absorption coefficient of silicon is fairly low at 850 nm. Since in standard
CMOS technology, the silicon substrate is thicker than the penetration depth of light, which generates
a large number of carriers in the silicon substrate and diffuses around [6]. Secondly, the maximum
support voltage is reduced as the CMOS technology shrinks, which limits the reverse bias voltage for
the integrated APDs [7].

Several approaches have been proposed to overcome the deficiencies and improve the performance
of CMOS silicon technology. In [8], Huang et al. fabricated a silicon photodiode in standard 0.18 µm
CMOS technology. The basic structure of proposed photodiode is formed by multiple p-n diodes
with shallow trench isolation (STI) between p and n region. The fabricated photodiode demonstrates
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the −3 dB bandwidth of 1.6 GHz and a high responsivity of 0.74 A/W. In order to reduce the limit of
bandwidth, Lee [9] proposed a spatially modulated avalanche photodiode (SM-APD), which showed a
bandwidth of 12 GHz and responsivity of 0.03 A/W. Iiyama et al. fabricated a triple-well structure
Si photodiode with standard 0.18 µm CMOS process [10]. The N+ and P+ layers are alternatively
arranged and then the electrodes are interdigital structure. The device shows a 10 GHz bandwidth
with 0.05 A/W responsivity [10]. Deep N-well CMOS technology can greatly improve the electrical
isolation performance between different circuit blocks, which is especially important for integrating
RF-to-baseband mixed-mode circuits in a single chip. The device with Deep N-well structure can
substantially increase the cut-off frequency. In the paper [11], Chou et al. used extra bias on the Deep
N-well in standard CMOS technology, which achieved a high bandwidth (8.7 GHz) with a responsivity
of 0.05 A/W under a 11.45 V bias.

In this paper, a P-well/Deep N-well APD based on 45 nm CMOS technology is proposed. The light
current, dark current, responsivity, and photodetection frequency response are measured based on the
fabricated APD device. The results show that the fabricated APD presents a high responsivity and a
high bandwidth. The 8.4 GHz bandwidth is available at 850 nm with 0.56 A/W responsivity. Finally,
the key parameters of APD are extracted from the frequency response. A SPICE model is established
for future integrated circuit design and simulation.

2. Design and Analysis of CMOS Compatible Avalanche Photodiode (APD)

P-well/Deep N-well structure is considered to be the most suitable structure for fabricating CMOS
photodiodes [12]. J. Goy et al. compared various photodiode structures, such as N-well/P-substrate
structure, N+/P-substrate structure, and N+/P-well structure. The results indicated that the P-well/Deep
N-well structure can improve the responsivity while reducing the parasitic capacitance [12].

Two types of APDs, with different active areas, 20 × 20 µm2 and 50 × 50 µm2, are fabricated,
separately. Figure 1 shows the schematic structure of the 20 × 20 µm2 CMOS APD device. The size of
50 × 50 µm2 device is proportional to the 20 × 20 µm2. The design is compatible with TSMC 45 nm
standard CMOS technology without any process modification or special substrate. The APD is realized
by vertical P-well/Deep N-well with shallow trench isolation (STI).
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Figure 1. Structure of the designed complementary metal–oxide–semiconductor (CMOS) avalanche photodiode.

The contribution of slow diffusion photo-generated carriers in the P-substrate region can be excluded
by the Deep N-well [13]. Moreover, the P-substrate is grounded or connected to a negative potential,
which can effectively absorb slow diffusion photo-generated carriers. As a result, the P-well/Deep
N-well shows a better performance in photodetection bandwidth than N-well/P-substrate photodiode.

When the reverse bias voltage is high, the electric field of the p-n junction increases rapidly. Because
of curvature effect, the local electric field is increased, which makes the edge of the photodiode easily to
breakdown [14]. It has a detrimental effect on the stability and performance of CMOS photodiodes.
The most common method to prevent photodiode edge breakdown is to use a guard ring structure [15].
In this paper, STI with width of 0.15 µm is used as the guard ring (the junction depth is about 0.5 µm).
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The STI can improve the reverse bias by mitigating the premature edge breakdown during avalanche.
A high reverse bias provides better avalanche gain and higher responsivity.

To investigate its characteristics, a 100 µW, 850 nm, 10 Gb/s VCSEL modulated by Agilent E8257D
signal generator is used as the light source. Figure 2 shows I-V characterizations of the APDs under
light and dark environments, separately. All APDs show very low dark currents, which being less
than 0.1 nA before the avalanche breakdown. Due to the influence of the STI structure, the avalanche
breakdown voltage is increased from 14.5 V to 21.5 V. When the reverse bias approaches the avalanche
breakdown voltage of 21.5 V, the dark current begins to increase sharply because of the occurrence
of the avalanche breakdown. The 50 × 50 µm2 APD active area is larger than 20 × 20 µm2, so the
photocurrent of 50 × 50 µm2 APD is also larger.
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Figure 2. Electrical responses of the avalanche photodiodes (APDs) with different sizes (a) without
shallow trench isolation (STI); (b) with STI.

Responsivity is defined as the photocurrent per incident optical power, which is determined by
the current under illumination minus the dark current [16]. Figure 3 shows the avalanche gain, and
the responsivity obtained from the measured I-V characterization. The dark current will increases
to the same level as the photocurrent when the avalanche breakdown occurs. In order to reduce the
influence of the dark current noise, the operating point should be slightly less than 21.5 V. Considering
all the related aspects, the operating point is set to be 20.8 V, and the gain is about 23 dB. Due to the STI
structure, the reverse bias is significantly improved. As the reverse bias increases, the photocurrent
and the responsivity of APDs are improved obviously. When the reverse bias voltage is 20.8 V, the
responsivity of the APD with area of 50 × 50 µm2 is 0.59 A/W. On the same condition, the responsivity
of the APD with area of 20 × 20 µm2 is 0.56 A/W.Micromachines 2020, 11, x FOR PEER REVIEW 4 of 8 
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Figure 3. Optical responses of the APDs.
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Figure 4 shows the frequency response of the two APDs with different active areas. The bandwidth
of 50 × 50 µm2 is much lower than that of 20 × 20 µm2. With the increasing of the active area, the
parasitic capacitance and the carrier transit time increase accordingly, which deteriorates the frequency
property. The APD with active area of 20 × 20 µm2 shows a bandwidth of 8.4 GHz at a reverse bias of
20.8 V.
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3. The SPICE Model of the CMOS APD

In order to better understand the photodetection frequency response characterization of the CMOS
APD, the SPICE model is set up in the section. We have adjusted and optimized the SPICE model
proposed in reference [16] to fit the proposed structure in the paper. The values of the key parameters
are extracted from the results of Figures 2–4 by parameter fitting. For the parameter fitting, the initial
value comes from the theoretical equation and then is manually modified. Figure 5 shows the updated
SPICE model based on the detailed structure of the device. The active part is composed by an inductor
and a resistor in series, a resistor in parallel and a capacitor. The capacitor C denotes the capacitance
of the depletion region. Resistor Rl denotes the resistance of the depletion region [17]. Inductor La

indicates the phase delay between the current and voltage caused by the impact ionization [17]. Series
resistor Ra indicates reverse saturation current and field-dependent velocity [17]. Rnw indicates the
Deep N-well resistance. Rsub indicates the substrate resistance. Csub1 denotes the capacitance between
Deep N-well and P-substrate [18]. Rsub and Csub2 are caused by the parasitic effects of P-substrate [18].
The effect of the photo-generated slow carrier transit time is denoted by the current source ftr [16].
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Figure 6 shows the extracted parameter values for the simulation. The values of La, C, and Rnw

are calculated by the following equations.
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La = τa/(2α′I0), C = εsA/WD, Rnw ≈Wd/2Aεsνs

where τa is the transit time across the avalanche region, α’ is the derivative of the ionization coefficient
with respect to the electric field, I0 is the bias current, εs is the semiconductor permittivity, A is the
cross sectional area, WD is the depletion region width, Wd is the drift region width, and νs is the
saturation [19].Micromachines 2020, 11, x FOR PEER REVIEW 6 of 8 
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The ftr is estimated as ftr ≈ (1/(2πτtr)), and τtr is expressed as τtr ≈ 4L2/
(
π2D
)
, where L is the

diffusion length, D is the diffusion coefficient [20]. Later, these parameters will be re-corrected by the
parameter fitting of the measured reflection coefficients and the frequency response.

The reflection coefficients were measured by a vector network analyzer (Agilent E8362B) under
a 100 µW, 850 nm, 10 Gb/s optical signal. From the measured reflection coefficients (shown in
Figure 7a), Y-parameters and Z-parameters were calculated. Ra and Rl were extracted by the calculated
Z-parameters. Ra and Rl were also re-corrected by parameter fitting. Then using ADS to perform
parameter fitting of SPICE model to obtain the values of other parameters and manually modify them.
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Area (μm2) 5 × 5 50 × 50 10 × 10 30 × 30 20 × 20 

Bandwidth (GHz) 12 8.7 7.6 3.5 8.4 
Responsivity 

(A/W) 0.03 0.05 0.48 3.92 0.56 

La

Ra Rl

Rnw

C

Anode

Csub1
Csub2 Rsub

ftr

 Extracted parameters
20×20 50×50

La (nH) 12 12
Ra (Ω) 130 130

Rl (MΩ) 1.2 1.2
C (fF) 137 760

Rnw (Ω) 45 28
Csub1 (fF) 39 220
Csub2 (fF) 56 363
Rsub (Ω) 230 186
f tr (GHz) 3.6 1.3

Figure 7. Comparison of the reflection coefficient and the frequency response between the measured
and the simulated ones (a) reflection coefficients; (b) frequency response.

The extracted parameters for Rl, La, and Ra are the same for all prepared devices. Rl is defined
as the voltage to current ratio near 0 V. The slope of the I-V characterization for all APD is shown in
Figure 2, making Rl the same for prepared devices. La does not vary with device area at the same bias
voltage, because the prepared APDs have the same avalanche multiplication characteristics based on
the P-well/Deep N-well junction and guard ring as shown in Figure 2.
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Ra denotes the series resistance associated with the avalanche inductor La, which determines the
quality factor of the avalanche inductance [17]. It is not directly related to the device area. The junction
capacitance C is proportional to the area. Csub1 and Csub2 are also proportional to the area. Rnw and Rsub do
not change much because the increase in lateral resistance makes up for the decrease in vertical resistance.

Figure 7 shows the difference between experiment and simulation of the reflection coefficients
and frequency response characterization, respectively. Based on the comparison shown in Figure 7, the
simulation result based on the SPICE model coincides with the experiment ones, showing the accuracy
of the proposed SPICE model.

Table 1 shows the comparison of the performance of various silicon photodetectors fabricated
with standard CMOS technology. Our 20 × 20 µm2 CMOS APD shows the responsivity with 0.56 A/W
and a photodetection bandwidth of 8.4 GHz at a reverse bias voltage of 20.8 V.

Table 1. The performances of various silicon photodetectors.

Parameters Ref. [9] Ref. [11] Ref. [16] Ref. [21] This Work

Technology 0.13 µm 0.18 µm 0.13 µm 0.13 µm 45 nm

Structure P+/N-well
SM-APD

Multiple
N+/P-sub APD

P+/N-well
APD

N+/P-well
APD

Double P-well/Deep
N-well APD

Area (µm2) 5 × 5 50 × 50 10 × 10 30 × 30 20 × 20

Bandwidth (GHz) 12 8.7 7.6 3.5 8.4

Responsivity (A/W) 0.03 0.05 0.48 3.92 0.56

Gain 10.6 62.3 15.4 18.8 23

Bias voltage (V) 9.7 11.45 10.25 10 20.8

4. Conclusions

In this paper, an avalanche photodiode is designed and implemented based on 45 nm standard
CMOS technology without any process modification. The fabricated CMOS APD shows a high response
and high light detection bandwidth. Two types of CMOS APDs with different active areas are prepared,
and their I-V characterization, photodetection frequency responses are examined. By reducing the
active area from 50 × 50 µm2 to 20 × 20 µm2, the optical detection bandwidth of the prepared APD is
increased to 8.4 GHz due to the decreased transit time, and the responsivity achieved 0.56 A/W. At the
same time, the SPICE model of the fabricated CMOS APD device is set up for future circuit design and
simulation. The key parameters based on the actual structure and the measurements are extracted.
The simulation results show the accuracy of the proposed SPICE model. The proposed CMOS APDs
are very useful for achieving high responsivity, and high speed 850 nm integrated optical receivers
based on the standard CMOS technology.

Our future work will focus on reducing the bias voltage and power consumption of the device,
while improving its photoelectric detection performance. Improving the light absorption, optimizing
the doping concentration and doping depth can further improve the photoelectric detection performance
of the device. Light absorption can be increased by adding an anti-reflection layer on the surface of the
device. The optimization of doping concentration and doping depth requires more experiments to
explore. On the other hand, optimizing the structure and parameters of the design to suit different
wavelengths of photoelectric detection is also one of our future research directions.
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