
micromachines

Article

Dipolophoresis and Travelling-Wave Dipolophoresis
of Metal Microparticles

Jose Eladio Flores-Mena 1, Pablo García-Sánchez 2 and Antonio Ramos 2,*
1 Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18

Sur, San Manuel, CU. FCE2, Puebla 72570, Mexico; jefloresmena@gmail.com
2 Departamento de Electrónica y Electromagnetismo, Facultad de Física, Universidad de Sevilla, Avda. Reina

Mercedes s/n, 41012 Sevilla, Spain; pablogarcia@us.es
* Correspondence: ramos@us.es; Tel.: +34-954556410

Received: 6 February 2020; Accepted: 27 February 2020; Published: 28 February 2020
����������
�������

Abstract: We study theoretically and numerically the electrokinetic behavior of metal microparticles
immersed in aqueous electrolytes. We consider small particles subjected to non-homogeneous
ac electric fields and we describe their motion as arising from the combination of electrical
forces (dielectrophoresis) and the electroosmotic flows on the particle surface (induced-charge
electrophoresis). The net particle motion is known as dipolophoresis. We also study the particle
motion induced by travelling electric fields. We find analytical expressions for the dielectrophoresis
and induced-charge electrophoresis of metal spheres and we compare them with numerical
solutions. This validates our numerical method, which we also use to study the dipolophoresis
of metal cylinders.
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1. Introduction

The precise control of small particles in liquid suspension is possible by application of AC electric
fields [1,2]. In particular, manipulation of metal and semiconducting particles dispersed in aqueous
electrolytes has received much attention in the last decade. Examples of particle manipulation by
AC fields include the transport of metal spheres and nanowires [3,4], orientation of metal [5–8] and
semiconducting nanowires [9–11], continuous rotation of metal spheres and nanowires [12–17], and
self-assembly of metal nanowires [18,19]. Additionally, the electrical manipulation of metallo-dielectric
Janus spheres has been recently investigated and electrokinetic phenomena such as transport [20,21],
orientation [22], rotation [23], and assembly [24] of Janus spheres have been demonstrated.

Several works are focused on the theoretical modelling of the electrokinetic behavior of metal
particles [25–27]. In general, these works show that the electrical response of metal microparticles is
determined by the formation of an induced electrical double layer (EDL) at the particle surface—that
is, at the interface between the particle and the electrolyte. The applied electric field not only induces
charges within the EDL, but also interacts with them and gives rise to a series of phenomena commonly
referred to as induced-charge electrokinetics [28,29]. In contrast, the electrokinetics of insulating
particles is mainly determined by the intrinsic surface charge that naturally appears at solid-electrolyte
interfaces [30]. This charge is only slightly perturbed by applied electric fields. Several theoretical
papers deal with the electrorotation and electro-orientation of metal nanowires and elongated particles
in the limit of thin EDL [8,31–34]. The electrorotation of metal and semiconducting spheres with
arbitrary thickness of the EDL is theoretically described in [35,36]. The particle displacement when a
metal sphere is subjected to a non-homogeneous DC field was first studied by Shilov and Simonova [37]
and they coined the term dipolophoresis (DIP) to refer to this phenomenon. Miloh extended this term
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to the more general case of AC electric fields [25,26]. Most theoretical works identify two distinct
mechanisms that can lead to motion of a metal particle [27]: (i) the electrical force acting on the induced
charges, and the motion induced by this mechanism is known as dielectrophoresis (DEP); and (ii) the
particle displacement generated by the induced-charge electroosmostic (ICEO) flows on its surface,
which we refer to as induced-charge electrophoresis (ICEP) [38]. Consequently, DIP can be described
as the combined effect of DEP and ICEP.

In this work, we study the DIP motion of metal spheres and cylinders subjected to AC electric
fields in two different cases. First, we consider an AC field with a non-homogeneous magnitude but a
homogeneous phase. The DIP of spheres in this situation has been already studied and we reproduce
previous analytical results [27]. In addition, we compare these analytical expressions with numerical
results. Subsequently, we exploit the same approach to study the DIP of metal cylinders: numerical
results for the DEP and ICEP of metal cylinders with different aspect ratios are reported for the first
time. Secondly, we also consider an AC field with a space-dependent phase. In particular, we assume
that the metal particles are subjected to travelling-wave electric fields and the motion that emerges is
named as travelling-wave DIP (twDIP). Travelling-wave dipolophoresis of a polarizable colloid in a
pore was considered by Miloh and Boymelgreen [39] in the case of EDL overlapping between particles
and walls. Here, we consider thin double layers and the electrokinetic flow induced on a single particle.
Specifically, we report novel analytical expressions for the twDIP of spheres and numerical results for
metal cylinders with different aspect ratios.

2. Theoretical Background

Our goal is to find the velocity of a metal particle suspended in an aqueous electrolyte and
subjected to an electric field. As mentioned above, the particle motion can be described as the net
effect of two distinct contributions: the motion that arises from the electrical forces acting on the
electrolyte-particle system and the particle displacement generated by ICEO flows on the particle
surface. Therefore, the net particle velocity can be written as:

UDIP = UDEP + UICEP (1)

where UDEP is the dielectrophoretic velocity, i.e., the velocity induced by electrical forces, and UICEP
corresponds to the induced-charge electrophoretic velocity. Since the net motion of the metal particle
is named dipolophoresis, we use UDIP to indicate the net particle velocity.

In the following, we analyze this problem in two different situations: (A) a metal particle subjected
to a non-homogeneous field (Dipolophoresis); and (B) a metal particle subjected to a travelling-wave
electric field (Travelling-wave Dipolophoresis).

2.1. Dipolophoresis of a Metal Particle

Let us consider a metal particle in the origin of coordinates and subjected to a non-homogeneous
electrostatic field (see Figure 1). We assume that the electric field is originated by a time-harmonic
electric potential given by φ = Re[φ̃ exp iωt], where ω is the angular frequency, Re[· · · ] means the
real part of [· · · ], and φ̃ is the electric potential phasor. We choose the following expression for the
applied potential:

φ̃ = −E0(z−Q(ρ2 − 2z2)) (2)

where E0 and Q are constants and ρ and z are the cylindrical coordinates. Thus, the applied electric
field has axial symmetry and can be written as:

E = −2E0Qρuρ + E0(1 + 4zQ)uz (3)
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Figure 1. Metal particle subjected to a non-homogeneous electric field.

We choose this functional form of the electric field for convenience, as shown below. We anticipate
that the results that we obtain are valid for any divergent axisymmetric field as long as the particle size
is smaller than the typical length scale for variation of the applied field. The electrical current driven by
this applied field induces an EDL at the electrolyte–particle interface. The thickness of the EDL is given
by the Debye length [30] and for aqueous electrolytes is typically around tens of nanometers or less.
Therefore, the thin EDL approximation remains valid for particles with typical size in the micrometer
range. We assume that the metal particle is uncharged and perfectly polarizable (i.e., there are no
Faradaic currents at the metal–electrolyte interface). This assumption remains valid if the voltage drop
across the EDL remains relatively small. More rigorously, as long as this voltage drop is of the order
or smaller than the thermal voltage kBT/e = 25 mV, the charging of a thin EDL can be described as
the charging of a capacitor with surface capacitance CDL [40]. Since this capacitor is charged by the
current flowing in an electrolyte with conductivity σ, the following boundary condition applies for the
electric potential on the particle surface S:

σ
∂φ̃

∂n

∣∣∣∣
S
= iωCDL(φ̃−V) (4)

where ∂/∂n is the partial derivative in the direction normal to the particle surface. V is the potential of
the metal particle and, in principle, it is determined by imposing that the total current on the particle
must vanish: ∫

S

∂φ

∂n

∣∣∣∣
S

dS = 0 (5)

From the solution of the electric potential, the time-averaged electrical force on the metal particle
can be computed as the flux of Maxwell stress tensor on the particle surface:

FDEP = (1/2)ε
∫

S
Re[EE∗ − (1/2)I(E · E∗)] · dS (6)

where ∗ indicates the complex conjugate, ε is the dielectric constant of the electrolyte, and I is the
identity matrix.

When the particle is much smaller than the length scale for variation of the electric field, the
net electrical force on the particle can be calculated as the time-averaged of the force on the induced
dipole: FDEP = (1/2)Re[p̃ · ∇Ẽ∗], where p̃ is the induced dipole phasor. For the electric field given
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by Equation (3), this approximation holds as long as a� Q−1, where a is the typical size of the metal
particle (a is the radius for the case of a sphere; for a cylinder, a is half of its length).

For example, in the case of a spherical particle, the induced dipole is usually written as p̃ = α̃Ẽ,
where α̃ is the particle polarizability. Thus, the DEP force for a spherical particle in the origin of
coordinates and subjected to the field given by Equation (3) is written as:

FDEP = (1/2)Re[α̃(Ẽ · ∇)Ẽ∗] = 2Re[α̃]QE2
0uz (7)

The DEP velocity (UDEP) is determined by the balance of the viscous drag on the particle and the
electrical force. For example, the viscous drag on a sphere that moves with velocity v within a fluid
with viscosity η is given by Stokes equation, Fdrag = −6πηav. Thus, the DEP velocity is obtained as
UDEP = FDEP/6πηa.

The induced-charge electrophoretic velocity (UICEP) is originated by the electroosmotic slip
velocity (vs) induced at the particle surface. According to Helmholtz–Smoluchowski formula [30], and
under the thin EDL approximation, the time-averaged of vs can be computed as [40,41]:

vs = −(ε/4η)∇t|φ̃−V|2 (8)

where ∇t is the gradient operator tangential to the particle surface.
Making use of the Lorentz reciprocity theorem [25,42,43], and taking the Z-axis as the direction of

ICEP motion, i.e., UICEP = UICEPuz:

UICEP = −
∫

S(n ·T · vs)dS∫
S(n ·T · uz)dS

(9)

where T is the hydrodynamic stress tensor that arises when the particle displaces with a certain velocity.
Thus, the denominator in Equation (9) corresponds to the viscous drag on the particle.

Equation (9) allows us to compute the particle ICEP velocity without solving the fluid velocity
field (Stokes problem) induced by the slip velocity. Instead, we only need to know the stress tensor
associated to the velocity field induced by a particle that displaces within the fluid.

2.2. Travelling-Wave Dipolophoresis

In the previous section, we consider the motion of a metal particle subjected to an AC electric
field with a non-homogeneous magnitude but a homogeneous phase (Equation (3)). This is not always
the case and, for instance, several applications are based on the use of travelling-wave electric fields
that induce a continuous displacement of particles [44]. For example, let us consider the electric field
in Figure 2. This field is obtained when the substrate (y = 0) is subjected to a travelling-wave electric
potential of the form V = V0 cos(ωt− kx) = Re[V0 exp(i(ωt− kx))], where V0 is the amplitude of
the applied voltage and k is the wavenumber. Thus, E0 = kV0 in the expression of Figure 2. The
electric force that appears with this field has two components: (i) a vertical component due to the
spatial dependence of the magnitude of the electric field with the y-coordinate; and (ii) a horizontal
component that arises from the dependence of the phase on the x-coordinate. In effect, the electrical
force can be calculated as the force on an induced dipole for particles smaller than k−1:

FDEP = (1/2)Re[α̃(Ẽ · ∇)Ẽ∗] = −kE2
0 exp(−2ky)(Im[α̃]ux + Re[α̃]uy) (10)

The x-component of the force in Equation (10) is commonly known as travelling-wave DEP
force [45], while the y-component is the “conventional” DEP force, as in the previous section.

Besides the electrical force on the particle, ICEO flows induced by travelling-wave fields also
affect the net particle motion. In general, the effect of a travelling-wave field on a metal particle can be
described as the superposition of two distinct mechanisms: the velocity induced by the net electrical
forces on the particle (commonly known as travelling-wave dielectrophoresis [45]) and the particle
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velocity due to the induced electroosmotic flows on the particle surface. By analogy with the previous
case, we name the particle motion induced by these flows as twICEP. Likewise, we name the net
motion of the metal particle subjected to travelling wave fields as travelling-wave dipolophoresis
(twDIP). Accordingly, we write the net particle velocity

UtwDIP = UtwDEP + UtwICEP (11)

As in the previous section, UtwDEP is calculated from the balance between the time-averaged
electrical force and the viscous drag, while UtwICEP is calculated by using the reciprocity theorem in
Equation (9).

substrate

X

Y

Figure 2. Metal particle subjected to a travelling electric field.

3. Mathematical Methods and Results

Our goal is to find the dipolophoretic and travelling-wave dipolophoretic velocities for spherical
microparticles and for nanowires. We first consider spheres because we can find analytical solutions
for the particle velocity. This allows us to check our numerical methods against analytical results.
Later, the dipolophoretic motion of a metal cylinder is numerically studied.

3.1. Dipolophoresis of a Metal Sphere

Let us consider a metal sphere with radius a in the origin of coordinates and subjected to a
harmonic non-homogeneous electric field, as in Section (Figure 1). We look for the solution of Laplace
equation for the electric potential phasor (∇2φ̃ = 0) subjected to boundary condition in Equation (4)
on the sphere surface. Far from the particle, we impose that ∇φ̃ is given by the applied electric field
phasor (Equation (3)). This choice of applied electric field ensures that integration of the current
density is zero on any surface enclosing the particle and, in particular, on the sphere surface. Therefore,
Equation (5) is satisfied. In this case, the potential of the metal particle is an arbitrary constant and we
choose V = 0. Thus, the boundary condition on the particle surface (r = a) is ∂φ̃/∂r|a = i(ωCDL/σ)φ̃.

From linearity of Laplace equation, the solution to the electric potential can be written as the
superposition of two solutions: the potential associated to the homogeneous applied field (E0aφ̃1)
and the potential associated to the non-homogeneous part of the applied field (that can be written as
E0a2Qφ̃2). Thus, we write φ̃ = E0a(φ̃1 + Q̄φ̃2), where Q̄ = aQ is a non-dimensional parameter that
characterizes the non-uniformity of the applied field. Taking a as the scale for distances, boundary
conditions far from the particle are ∇̄φ̃1 = −uz and ∇̄φ̃2 = (−4z̄uz + 2ρ̄uρ), where ∇̄ = a∇, z̄ = z/a
and ρ̄ = ρ/a. In addition, after defining a non-dimensional angular frequency as Ω = ωCDLa/σ,
boundary conditions on the sphere surface are ∂φ̃1/∂r̄|S = iΩφ̃1 and ∂φ̃2/∂r̄|S = iΩφ̃2, (r̄ = r/a).

The solutions for φ̃1 and φ̃2 in spherical coordinates can be written as follows:

φ̃1 = −r̄ cos(θ) +
A1

r̄2 cos(θ) (12)

φ̃2 = −2r̄2P2[cos(θ)] +
A2

r̄3 P2[cos(θ)] (13)
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where P2[x] indicates the Legendre polynomial of order 2 (P2[x] = (1/2)(3x2 − 1).). The constants A1

and A2 are determined from the boundary conditions:

A1 =
−1 + iΩ
2 + iΩ

(14)

A2 = 2
−2 + iΩ
3 + iΩ

(15)

From the solution of the electric potential phasor, the DEP force can be found by integration of
Maxwell stress tensor (Equation (6)):

FDEP = 8πεa2Re[A1]Q̄E2
0uz (16)

Alternatively, the DEP force can be found from the particle polarizability. Considering the
solution of the electric potential when the applied filed is homogeneous φ̃1, the dipole term allows us
to identify α̃ = 4πεa3 A1. Using Equation (7), the DEP force is FDEP = 8πεa2Re[A1]Q̄E2

0uz, as found
from Equation (6). This means that multipoles of order higher than two do not contribute to the net
force on the metal sphere, as expected from the symmetry of the applied field.

The DEP velocity results from the balance of the DEP force and the viscous drag:

UDEP =
8εQ̄E2

0a
6η

(
−2 + Ω2

4 + Ω2

)
(17)

The electroosmotic slip velocity can also be calculated from the solution of the electric potential by
applying Equation (8), vs = −(ε/4η)E2

0a2∇t(φ̃1φ̃∗1 + Q̄φ̃1φ̃∗2 + Q̄φ̃2φ̃∗1 + Q̄2φ̃2φ̃∗2 ). The terms φ̃1φ̃∗1 and
φ̃2φ̃∗2 give rise to slip velocity fields that are symmetric with respect to the plane z = 0 and, therefore,
they do not contribute to the particle ICEP velocity. Thus, we only have to consider the slip velocity
induced by the cross-terms φ̃1φ̃∗2 and φ̃2φ̃∗1 :

vs(cross− terms) = −
εQ̄E2

0a
4η

∂

∂θ
(φ̃1φ̃∗2 + φ̃2φ̃∗1 ) uθ = · · · (18)

. . . =
εQ̄E2

0a
8η

sin(θ)(7 + 9 cos (2θ))Re [(A1 − 1) (A∗2 − 2)] uθ (19)

where the gradient operator tangential to the sphere surface is written as ∇t = (1/a)(∂/∂θ)uθ .
Application of the Lorentz reciprocity theorem (Equation (9)) for a spherical particle leads to the
following integral for UICEP [38]: UICEPuz = −(1/2)

∫
vs sin(θ)dθ. The ICEP velocity of the metal

sphere is:

UICEP =
4aεQ̄E2

0
η

(
6 + Ω2

36 + 13Ω2 + Ω4

)
(20)

More generally, the DEP and ICEP velocities of a metal sphere can be written as:

UDEP =
εa2

6η

(
−2 + Ω2

4 + Ω2

)
∇E2 (21)

UICEP =
a2ε

2η

(
6 + Ω2

36 + 13Ω2 + Ω4

)
∇E2 (22)

where we take into account that ∇E2
0 = 8(Q̄E2

0/a)uz at the origin of coordinates. These results were
already obtained in [27]. For DC (Ω = 0), they are coincident with those found in [37].
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3.2. Travelling-Wave Dipolophoresis of a Metal Sphere

Our goal in this section is to study the motion of a metal particle subjected to an AC field with
a non-homogeneous phase. To this end, we consider that a sinusoidal travelling wave potential is
applied to the wall of an infinite cylinder of radius R. If the cylinder axis coincides with the Z-axis
of a cylindrical system of coordinates, the applied potential can be written as V = V0 exp[i(ωt− kz)],
where V0 and k are constants. Thus, from the solution of Laplace equation, the electric potential inside
the cylinder in cylindrical coordinates is φ(r, z) = V0 exp[i(ωt− kz)]I0(kρ), where I0(x) is the modified
Bessel function of first order. We assume that a metal particle is at position ρ = 0, z = 0. If the particle
size is much smaller than R and k−1, the electric potential phasor in the particle proximity can be written
as (keeping terms up to second order): φ̃(ρ, t) ≈ V0(1− ikz + k2/4(ρ2 − z2)). Thus, we consider that
the particle is subjected to an electric field with a phasor given by Ẽ(ρ, t) = V0∇(ikz− (k2/4)(ρ2− z2))

or, in spherical coordinates:

Ẽ(r, t) = ikV0∇(r cos(θ)− (ik/2)r2P2[cos(θ)]) (23)

This expression is equivalent to Equation (3) after identifying E0 = ikV0 and Q = −ik/4. The
force on the induced dipole is:

FtwDEP = (1/2)Re[α̃(Ẽ · ∇)Ẽ∗] = 8πεa2E2
0Re[A1ik/4]uz = 2πεk̄3V2

0 Im[A]uz (24)

where k̄ = ka. This result corresponds to a pure travelling-wave DEP force. Using Equation (14) and
balancing electrical and viscous forces on the spheres, the travelling-wave DEP velocity is:

UtwDEP = −
εk̄aE2

0
η

Ω
4 + Ω2 (25)

the negative sign indicates that the directions of the DEP velocity and the travelling-wave propagation
are opposite.

The ICEP velocity induced by the travelling-wave is determined by the cross-terms in the
expression for the slip velocity:

vs(cross− terms) = −
iεkE2

0a2

16η
∇t(φ1φ∗2 − φ2φ∗1 ) =

εkE2
0a2

8η
Im[∇t(φ1φ∗2 )] (26)

As before, we make use of the reciprocity theorem and, using Equations (14) and (15), the
travelling-wave ICEP velocity results:

UtwICEP =
εk̄aE2

0
η

Ω
(4 + Ω2)(9 + Ω2)

(27)

Hence, the ICEP contribution is in the same direction of the travelling-wave propagation, although
smaller than the DEP motion by a factor (9 + Ω2).

3.3. Comparison with Numerical Results for Spheres

In this section, we show how to calculate numerically the dipolophoretic motion of metal spheres
in the same situations of Sections 3.1 and 3.2. Thus, we can check the results of the numerical method
against the analytical expressions above.

We used the software Comsol Multiphysics to calculate the electric potential in the electrolyte.
Since the problem has axial symmetry, we solve the Laplace equation in a square domain whose side is
ten times longer than the sphere radius. The boundary condition on the sphere surface is Equation (4)
with V = 0. We impose that the electric field far from the spheres is given by Equation (3), with E0 = 1
and Q̄ = 0.1. From the solution of the electric potential, we calculated the DEP force on the sphere by
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using the Maxwell stress tensor in Equation (6) and from the sphere polarizability. As in the previous
section, the DEP velocity is obtained by balancing the DEP force with the viscous drag. Figure 3 shows
the numerical results for these two methods. It also shows the analytical solution in the section above.

Figure 3. Dipolophoresis of a metal sphere as a function of angular frequency of the applied ac
field. Analytical and numerical results are compared. The velocity is non-dimensionalized with
U0 = εQE2

0a2/η.

Maximum DEP velocities are obtained for Ω > 1. For a KCl water solution with concentration
10−4 M, the liquid conductivity is σ = 1.5 mS/m and, according to the Debye–Huckel formula, the EDL
specific capacitance is CDL ≈ 0.023 F/m2. Thus, for a particle with radius a = 5µm, the maximum
DEP velocity is obtained for f = ω/2π > 2 kHz. An estimate of this velocity can be obtained if we use
some typical values for the applied electric field in experiments, E2

0 = 108 (V/m)2, Q̄ = 0.1. Maximum
UDEP is around 50µm/s.

We also calculated numerically the ICEP velocity of a sphere by applying Equation (9), where T is
the viscous stress tensor that arises from the flow field induced by the motion of a sphere with a given
velocity. In principle, this flow field could be found by considering that the fluid velocity is zero far
from the particle, but an accurate numerical solution of this problem requires a domain much larger
than, for example, the domain we used for the electrical problem. However, we can greatly reduce
the size of the domain if we make use of the well-known solution for the fluid velocity and pressure
generated by a point force of magnitude F [46], which in cylindrical coordinates reads:

vρ =
F

8πη

ρz
(ρ2 + z2)3/2 ; vz =

F
8πη

ρ2 + 2z2

(ρ2 + z2)3/2 ; p =
F

4π

z
(ρ2 + z2)3/2 (28)

Thus, we apply the boundary conditions in Equation (28) on the boundaries far from the particle. The
problem is closed by imposing that the parameter F is equal to the viscous drag on the particle:

F =
∫

S
n ·T · uzdS (29)

where S is the particle surface. We obtained F/ηa = 18.7905, a relative difference of 0.6% with respect
to the Stokes law.

From the solution of the Stokes problem, we obtained UICEP by numerical integration of
Equation (9) on the sphere surface. Figure 3 shows the numerical results together the analytical
results obtained in the previous section. Maximum ICEP velocities are obtained for Ω < 1. We can
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estimate this velocity for the same experimental parameters that we considered in the estimation of
maximum UDEP. Thus, maximum UICEP in these conditions is around 25µm/s and it is obtained
when f = ω/2π < 2 kHz.

Likewise, UtwDEP and UtwICEP are calculated from the numerical solution of the electric potential
when the electric field far from the particle is given by Equation (23). Figure 4 is a plot of the
numerical together the analytical results obtained in the previous section. Both twDEP and twICEP
arise from the interaction of the electric field with the out-of-phase charge within the EDL and, thus,
the time-averaged velocity vanishes at low and high frequencies.

Figure 4. Travelling-wave dipolophoresis of a metal sphere as a function of angular frequency of the
applied ac field. Analytical and numerical results are compared. The velocity is non-dimensionalized
with U0 = −εkE2

0a2/4η.

3.4. Dipolophoresis and Travelling-Wave Dipolophoresis of a Metal Cylinder

Our goal in this section is to calculate the dipolophoresis and travelling-wave dipolophoresis of a
metal nanowire by means of the same numerical procedure that we used for the metal spheres. Thus,
we start by assuming that we have a metal cylinder at the origin of coordinates and subjected to an
electric field given by Equation (3). The aspect ratio of the metal cylinder is β = b/a, where b is the
cylinder radius and 2a is the cylinder length. We also assume that the long axis of the metal cylinder
is aligned with the Z-axis. We choose this orientation because it is well known, both experimentally
and theoretically [7,34], that a metal nanowire orients parallel to the electric field for any value of
the applied frequency. With this orientation, the problem is 2D axisymmetric and we use the same
computational domain as for the spheres. Obviously, we use the same boundary condition for the
electric potential on the surface of the metal.

From the solution of the electric potential, the DEP force on the metal nanowire is found from the
integration of the time-averaged Maxwell stress tensor. The DEP velocity of the nanowire is found
by balancing the electrical force with the viscous drag, which can be written as Fviscous = γv, where
γ is the drag coefficient and v is the nanowire velocity. We numerically computed γ for a cylinder
moving in the direction of its axis. To this end, we used the same approach as in the previous section
and solved the Stokes equations in a domain that is only ten times larger than the cylinder length.
The boundary conditions in Equation (28) are imposed far from the cylinder and the constraint in
Equation (29) is evaluated on the cylinder surface. Thus, γ = F if the cylinder velocity is 1. The results
for the DEP velocity are shown in Figure 5 for several values of the cylinder aspect ratio. We include
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β = 0.04 because this is the aspect ratio of silver nanowires in [13,14]. These nanowires are candidates
for experimental verification of our numerical results.
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Figure 5. Dipolophoresis of a metal cylinder as a function of angular frequency of the applied ac
field. Results are shown for four different values of the cylinder aspect ratio β = b/a. The velocity is
non-dimensionalized with U0 = εQE2

0a2/η.

We numerically obtained γ/aη = 4.1045 for a cylinder with aspect ratio β = 0.04. It interesting to
compare this result with the analytical expression in [47] for the viscous friction of slender cylinders,
γ = 4πηa/(δ− Ln(β)), where δ = −0.207 + 0.90β− 0.133β2. The difference between the two values
is around 0.35%.

We also obtained the DEP force from the expression of the time-averaged electrical force on
the induced dipole. For a cylindrical particle, the Z component of this force can be written as
Fz = (1/2)Re[(α̃‖Ẽ‖+ α̃⊥Ẽ⊥) · ∇)Ẽ∗z ], where α̃‖ and Ẽ‖ indicate, respectively, the particle polarizability
and the component of the electric field parallel to the cylinder axis. Likewise, α̃⊥ and Ẽ⊥ are the particle
polarizability and the component of the electric field perpendicular to the cylinder axis. As mentioned
above, we consider that the metal cylinder subjected to the field given by Equation (3) is at the origin
of coordinates and aligned with the Z-axis, α̃‖ = α̃z. Thus, Ẽ⊥ = 0 and the force is:

Fz = (1/2)Re[(α̃zẼz · ∇)Ẽ∗z ] (30)

As in the case of a sphere, the cylinder polarizability can be obtained from the solution of
the electric potential. In this case, the solution when the applied field is homogeneous can be
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written as φ̃1 = −r̄ cos(θ) + ∑∞
l=1 Al Pl [cos(θ)]/r̄l+1, where Pl [x] is the Legendre polynomial of order l.

Identifying A1 = A = α̃z/4πεa3, and using the orthogonality of Legendre polynomials, we numerically
calculated A from the following integration:

A =
3
4

∫
S
(φ̃1 + z̄)P1[cos(θ)]dS (31)

where S is any spherical surface that encloses the particle. We also plot in Figure 5 the predictions for
the cylinder DEP velocity calculated with Equation (7) along with the results obtained obtained from
the integration of Maxwell stresses. Both results are coincident for all aspect ratios, as expected.

Since we already know the flow field generated by a cylinder moving in a direction parallel to its
axis, the ICEP velocity is calculated from Equation (9), as in the case of the sphere. Figure 5 also shows
UICEP as a function of frequency for several values of the cylinder aspect ratio.

Using the imaginary part of the cylinder polarizability, we evaluate Equation (24) to obtain the
travelling-wave DEP force and, from this, the travelling-wave DEP velocity. Figure 6 shows UtwDEP

as a function of frequency for several cylinder aspect ratios. We also calculated the electrical force
from the expression of the Maxwell stress tensor and plot the corresponding predictions for UtwDEP in
Figure 6. Both methods show perfect agreement, as expected.
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Figure 6. Travelling-wave dipolophoresis of a metal cylinder as a function of angular frequency of the
applied ac field. Results are shown for four different values of the cylinder aspect ratio β = b/a. The
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0a2/4η.
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Finally, the travelling-wave ICEP motion of a metal cylinder was calculated from Equation (9)
and using the solution of the flow field for a moving cylinder. Figure 6 shows the results for UtwICEP as
a function of angular frequency for several aspect ratios.

4. Conclusions

The dipolophoretic motion of metal particles subjected to ac fields is described as the combination
of two distinct contributions: dielectrophoresis and induced-charge electrophoresis. The former
arises from the time-averaged electrical force on the particle, while the latter is a consequence of
the induced-charge electroosmotic slip velocity on the particle surface. Analytical results for the
dipolophoresis of metal spheres show that they experience negative DEP at low frequencies, but it
is compensated by the ICEP motion and, thus, the net dipolophoretic velocity vanishes. This is in
contrast with experiments with metal spheres that demonstrate that negative DEP of metal spheres
dominates at low frequencies [4]. It is well-known that ICEO flows (and the consequent ICEP motion)
in experiments are generally smaller than predicted by the standard theory [48], and sometimes are
about one order of magnitude smaller [27]. As frequency increases, the ICEP velocity vanishes and the
particle motion is only driven by DEP forces, which are positive for metal particles and in accordance
with experimental data. The travelling-wave dipolophoresis of metal spheres is dominated by the
twDEP contribution, which predicts particle motion in a direction opposite to the propagation of the
travelling-wave field and with a maximum velocity for frequencies around the typical RC-time for
charging the sphere EDL. The twICEP contribution predicts a particle velocity in the same direction of
propagation of the travelling field and much smaller than the twDEP velocity.

We also used numerical methods to calculate the dipolophoresis of metal spheres and the results
are in perfect agreement with the analytical expressions. Subsequently, we used the same numerical
approach for the study of the dipolophoresis of metal cylinders. For low frequencies, the calculations
predict negative DEP of metal cylinders. However, the ICEP contribution is positive and much larger
than the DEP. Thus, positive dipolophoresis of metal cylinders is expected at low frequencies. On the
other hand, the ICEP term vanishes for high frequencies and the dipolophoresis is only determined by
the DEP, which is positive for metal cylinders. In conclusion, positive dipolophoresis is predicted for
all frequencies.

Finally, numerical calculations show that the twDIP of metal cylinders is completely dominated
by twDEP, which predicts particle transport in a direction opposite to the propagation of the
travelling-wave field and with a maximum velocity for frequencies around the typical RC-time
for charging the sphere EDL, as in the case of metal spheres. The twICEP of metal cylinders is in
the same direction of propagation of the travelling field, but much smaller than twDEP. With respect
to a possible comparison with experimental data, it is important to keep in mind that electrokinetic
manipulation of microparticles are usually made with microelectrode arrays fabricated on a glass
substrate. Metal microparticles are heavier than water and precipitate. Thus, the particles rest on the
glass substrate and the interaction with the wall must be accounted for.
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