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Abstract: In a series of publications, we developed a compact model for nanotransistors in which
quantum transport in a variety of industrial nano-FETs was described quantitatively. The compact
nanotransistor model allows for the extraction of important device parameters as the effective height
of the source-drain barrier, device heating, and the quality of the coupling between conduction
channel and the contacts. Starting from a basic description of quantum transport in a multi-terminal
device in Landauer–Büttiker formalism, we give a detailed derivation of all relevant formulas
necessary to construct our compact nanotransistor model. Here we make extensive use of the the
R-matrix method.
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1. Introduction

Around 2005–2010, the transistors obeying Moore’s law where strained high-k metal gate
MOSFETs with channel lengths between 20–40 nm. At this point a further reduction of the transistor
size in a conventional MOSFET becomes difficult because of short channel effects that reduce the
gate voltage control over the conduction channel. To counteract this loss of control new transistor
architectures were developed. In industrial applications the FinFET and the SOI transistor architecture
hwere applied to continue Moore’s law to presently below 10nm gate length. It is now generally
accepted that in this length-regime quantum transport becomes dominant and Moore’s law thus enters
the domain of quantum electronics.

In a series of papers [1–8], we developed a compact transistor model in which quantum transport in
a variety of industrial nano-FETs could be described quantitatively [6–8]. Our compact transistor model
allows for the extraction of important device parameters as the effective height of the source-drain
barrier of the transistor, device heating, and the overlap between the wave functions in the contacts and
in the electron channel thus describing the quality of the coupling between conduction channel and
contacts. Our starting point is a general description of quantum transport in a multi-terminal device in
Landauer–Büttiker formalism which we formulate in the R-matrix formalism [1,2]. Using the R-matrix
formalism as the essential tool, we give in this paper a systematic and comprehensive derivation of all
relevant formulas necessary to construct our compact transistor model.

The concept of Landauer–Büttiker formalism was pioneered by Frenkel [9], Ehrenberg and
Hönl [10], Landauer [11,12], Tsu and Esaki [13], Fisher and Lee [14], and Büttiker [15–17]. The central
quantities of Landauer–Büttiker formalism are the transmission coefficients of the scattering solutions
of the Schrödinger equation. In recent decades, Landauer–Büttiker formalism has been applied in
fundamental research to numerous mesoscopic systems. Well-known examples include interferometric
measurements in an Aharonov-Bohm ring [15,18], the quenching of the quantum Hall effect in small
junctions [19,20], the quantized conductance in ballistic point contacts [21,22], resonant transport
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through double barrier systems [23], Coulomb blockade oscillations [24,25], spintronic effects [26–28],
and Hanbury Brown and Twiss experiments on current fluctuations [29–32].

For formal developments as well as for numerical- and analytical evaluations of the mentioned
transmission coefficients of the scattering functions we employ the R-matrix method. This method
was introduced by Wigner and Eisenbud and has been widely used in atomic and nuclear physics (for
reviews see Refs. [33,34]). A similar method was developed by Kapur and Peierls [35]. The application
of the R-matrix technique to mesoscopic semiconductor systems was demonstrated by Smrčka [36]
for one-dimensional structures. Since then it has been applied to a variety of other semiconductor
nano-structures as point contacts [37], quantum dots [38,39], resonant tunneling in double barrier
systems [40], four-terminal cross-junctions [41], gate all around and double gate MOSFETs [42,43],
nanowire transistors [44], spin FETs [45], magneto-transport in nanowires [46], ballistic transport in
wrinkled superlattices [47], and spin controlled logic gates [48]. A conceptual advantage of the R-matrix
method is that for the construction of the transmission coefficients only properties of general wave
function solutions of the time-independent Schrödinger equation are necessary (see Equation (21)).
This is in contrast to the often used non-equillibrium Green’s function approach [49] which relies on
the calculation of Green’s functions from which the transmission coefficients have to be calculated
via the Fisher-Lee relation [14]. Moreover, the existence of the discrete representation of the R-matrix
in the eigenbasis of the Wigner–Eisenbud functions (see Equation (22)) allows for the systematic
construction of the one-dimensional effective transistor model used in Refs. [6–8] as will be described in
Sections 5–8.

2. Landauer–Büttiker Formula for Multi-Terminal Devices

Our model for a multi-terminal system was described in Refs. [1,2]. It consists of a central
quantum system located in the scattering volume Ω0 which is in contact with N terminals denoted
with the index s = 1 . . . N (see Figure 1). In the scattering volume the potential acting on charge carriers
can be arbitrary. For each terminal we assume the existence of, first, a reservoir Rs for the charge
carriers in which their chemical potential µs is defined and, second, a contact region Ωs to the scattering
volume in which coherent scattering states Ψs are formed (see Equation (4)). The Ψs are thus outgoing
from this contact and they are coherent in the volume Ω = Ω0 ∪ (∪sΩs). As illustrated in Figure 1 we
define in each Ωs a local coordinate system spanned by a triple or orthonormal basis vectors~ns,~t1

s , and
~t2

s so that we can write
~r = ~Rs + xs~t1

s + ys~t2
s + zs~ns ≡ ~Rs + zs~ns +~r⊥;s, (1)

where ~Rs points to the origin of the local coordinate system. The coordinate zs varies in the longitudinal
direction and xs and ys in the two transverse directions. For the interface Γs between Ωs and Ω0 one
has zs = 0 with zs growing towards the interior of the contact region. Furthermore,~ns is the surface
normal vector to Γs. We require that the potential energy V of the charge carriers (electrons) in
the contact regions takes the form

V(~r ∈ Ωs) = Vs(~r⊥;s)− eUs. (2)

Here we assume that the reservoir R1 is grounded with the chemical potential µ1 = µ. To each of
the other reservoirs s 6= 1 a gate voltage Us is applied where we formally define U1 = 0. Then one has
µs = −eUs + µ. As usual in the Landauer–Büttiker approach, the scattering states Ψs which are formed
in Ωs are occupied according to the Fermi–Dirac distribution function with the chemical potential
µs. Furthermore, in Rs the outgoing parts of the scattering states Ψs′ 6=s arriving in s are absorbed
completely, without any back-reflection.
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Following further the theoretical framework of Landauer and Büttiker we start from the scattering
solutions of the stationary Schrödinger equation[

− h̄2

2m∗
4+V(~r)− E

]
Ψ(~r, E) = 0 (3)

in the coherence region Ω. The relevant wave functions can be taken to vanish outside the coherence
volume leading to the boundary condition Ψ(~r ∈ Γ, E) = 0 where Γ is the surface of Ω excluding
the Γ̄s (see Figure 1). The scattering solutions Ψsn out-going from contact s can be written in each of
the contacts Ωs′ as

Ψsn(~r ∈ Ωs′ , E) = exp (−iksnzs)Φsn(~r⊥;s)δs,s′ + ∑
n′

Ss′n′ ,sn(E) exp (iks′n′zs′)Φs′n′(~r⊥;s′). (4)

Here the transverse mode functions Φsn are the solutions of the eigenvalue problem[
− h̄2

2m∗
∆~r⊥;s

+ Vs(~r⊥;s)− E⊥ν

]
Φν(~r⊥;s) = 0 (5)

defining the index of the transverse mode n, the composite mode index ν = (s, n), and ∆~r⊥;s
=

∂2/∂x2
s + ∂2/∂y2

s . The wave numbers of the harmonic waves in Equation (4) are given by

kν = h̄−1
√

2m∗(E− E⊥ν + eUs). (6)

The first factor on the right hand side of Equation (4) is the in-going part characterizing the scattering
state. The second factor on the r.h.s. contains the out-going components which are determined by
the S-matrix Sν′ν. In Section 3 we construct the S-matrix Sν′ν in the R-matrix approach.

Figure 1. Idealized multi-terminal system: N = 3 terminals denoted with the index s are connected to
the central scattering volume Ω0 (red). Each terminal is associated, first, with a charge carrier reservoir
Rs defining the chemical potential µs (grey) of the carriers. Second, it is associated with a contact region
Ωs (blue) in which coherent scattering states are formed. In green we plot the interfaces Γs between
the Ωs and Ω0 (solid) as well as the interfaces Γ̄s between the Ωs and Rs (dashed). The coherence
volume Ω of the scattering states comprises the set union of Ω0 and all Ωs. Here Γ is the surface of Ω
excluding the Γ̄s (magenta).
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The total electric current Is in terminal s is calculated in Appendix A. We find

Is =
2e
h ∑

s′

∫ ∞

−∞
dE[ f (E− µs)− f (E− µs′ ])Ts′s(E) (7)

with the Fermi–Dirac distribution f (x) = [ex/(kBT) + 1]−1, the elementary charge e, the current
transmission sum

Ts′s(E) = ∑
nn′

Θ(E− E⊥sn + eUs)Θ(E− E⊥s′n′ + eUs′)|S̃s′n′ ,sn(E)|2 = Tss′(E), (8)

and the current S-matrix
S̃ν′ν = k1/2

ν′ Sν′νk−1/2
ν . (9)

3. Construction of the S-matrix with the R-matrix Method

We write the general solution of Equation (3) in each of the Ωs in the form

Ψ(~r ∈ Ωs, E) = ∑
n

Ψin
sn exp (−iksnzs)Φsn(~r⊥;s) + ∑

n
Ψout

sn exp (iksnzs)Φsn(~r⊥;s). (10)

Because of the linearity of the problem the S-matrix in Equation (4) can be defined as the linear mapping
from the Ψin onto the Ψout of the form

Ψout
ν = ∑

ν′
Sνν′Ψ

in
ν′ . (11)

To construct Sνν′ we expand the wave function in the scattering volume Ω0 in the orthonormal and
complete set of Wigner–Eisenbud functions χl(~r),

Ψ(~r, E) =
∞

∑
l=1

al(E)χl(~r) (12)

with
al(E) =

∫
Ω0

d~r χl(~r)Ψ(~r, E) (13)

(see Appendix B). The Wigner–Eisenbud functions χl are the solutions of the Schrödinger equation[
− h̄2

2m∗
∆ + V(~r)− El

]
χl(~r) = 0 (14)

in the domain Ω0. Here one imposes Wigner–Eisenbud boundary conditions, i.e., Neumann boundary
conditions of vanishing normal derivative on the Γs,

∂χl
∂~ns

= 0 for ~r ∈ Γs (15)

and Dirichlet boundary conditions on the remaining surface of Ω0 denoted with ∂Ω0 writing

χl = 0 for ~r ∈ ∂Ω0. (16)

In Appendix B, we show that Wigner–Eisenbud energies El are real and that the Wigner–Eisenbud
functions χl(~r) can be chosen real. The normalization is taken as

∫
Ω0

d~r|χl(~r)|2 = 1. To calculate
the expansion coefficients al we multiply Equation (3) from the left with χl(~r) and Equation (14) from
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the left with Ψ(~r, E). Subtraction of the former equation from the latter and subsequent integration
over the whole domain Ω0 yields with the second Green’s identity

(E− El)
∫

Ω0

d~r χl(~r)Ψ(~r, E) = − h̄2

2m∗

∫
Ω0

d~r [χl(~r)4Ψ(~r, E)−Ψ(~r, E)4 χl(~r)]

= − h̄2

2m∗
N

∑
s=1

∫
Γs

dΓs~ns [χl(~r)∇Ψ(~r, E)−Ψ(~r, E)∇χl(~r)] . (17)

In the area integration of Equation (17) as well as in the remaining area integrations over the Γs we
assume according to Equation (1) the parameterization~r =~r(xs, ys) = ~Rs + xs~t1

s + ys~t2
s of Γs so that

dΓs = dxsdys

∣∣∣∣ ∂~r
∂xs
× ∂~r

∂ys

∣∣∣∣ = dxsdys

∣∣∣~t1
s ×~t2

s

∣∣∣ = dxsdys. (18)

Using in Equation (17) the notation

ΨS(~r ∈ Γs, E) =
1

m∗
~ns∇Ψ(~r ∈ Γs, E) (19)

for the outward surface derivative, applying Equation (13) on the l. h. s., and inserting the boundary
conditions for the Wigner–Eisenbud functions, one obtains

al(E) = − h̄2

2
1

E− El
∑

s

∫
Γs

dΓs χl(~r) ΨS(~r, E). (20)

Returning to Equation (12) it follows that

Ψ(~r, E) = ∑
s

∫
Γ′s

dΓ′s R(~r,~r′; E)ΨS(~r′, E) (21)

with

R(~r,~r′; E) = − h̄2

2

∞

∑
l=1

χl(~r)χl(~r′)
E− El

. (22)

For~r ∈ Γs we write Ψ(~r(xs, ys), E) = Ψ(~r⊥;s, E) and establish the expansion

Ψ(~r⊥;s, E) = ∑
n

ΨsnΦsn(~r⊥;s) (23)

in the complete orthonormal and real function system of the Φsn with

Ψsn =
∫

Γs
dΓs Φsn(~r⊥;s)Ψ(~r⊥;s, E). (24)

An analogous expansion
ΨS(~r⊥;s, E) = ∑

sn
ΨS

snΦsn(~r⊥;s) (25)

holds for the surface derivative. Inserting the expansions Equations (23) and (25) in Equation (21) one
obtains after a projection onto Φν

Ψν = ∑
ν′

Rνν′Ψ
S
ν′ (26)

with the R-matrix

Rνν′ =
∫

Γs
dΓs

∫
Γs′

dΓ′s′ Φν(~r⊥;s)Φν′(~r
′
⊥;s′)R(~r,~r′; E) = − h̄2

2

∞

∑
l=1

χlνχlν′

E− El
, (27)
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where
χlν =

∫
Γs

dΓs Φν(~r⊥;s)χl(~r). (28)

Inserting in Equation (26) Ψν = Ψin
ν + Ψout

ν and (ΨS)ν = −(ikν/m∗)(Ψin
ν −Ψout

ν ) one arrives at

∑
ν′
(δνν′ −

i
m∗

Rνν′kν′)Ψ
out
ν′ = −∑

ν′
(δνν′ +

i
m∗

Rνν′kν′)Ψ
in
ν′ .

Defining further a diagonal k-matrix kνν′ = δνν′kν′ we formally write

S = −
1 + i

m∗ Rk

1− i
m∗ Rk

. (29)

With the symmetrical current R-matrix

Ωνν′ = k1/2
ν Rνν′k

1/2
ν′ (30)

it follows for the current S-matrix in Equation (9) that

S̃ = k1/2Sk−1/2 = −k1/2(1 + iRk)k−1/2k1/2(1− iRk)−1k−1/2 = −(1 + iΩ)(k−1/2)−1(1− iRk)−1(k1/2)−1

= −(1 + iΩ)[k1/2(1− iRk)k−1/2]−1 = −1 + iΩ
1− iΩ

= 1− 2
1− iΩ

. (31)

Here we exploited that for three square matrices one has (ABC)−1 = C−1B−1 A−1. The current
transmission matrix is thus seen to be symmetrical while the S-matrix is not symmetrical.

4. Transistor Model

The application of our model for a general multi-terminal system in Section 2 to a conventional
n-channel nano-MOSFET is discussed in Ref. [1] (see in particular Figure 3 therein) and in Ref. [2].
Neglecting tunneling currents to the gate we here treat the transistor as a two-terminal device including
only the source, s = 1, and the drain, s = 2. The relevant structure elements of a nano-MOSFET
can be taken from Figure 2a depicting the heavily n-doped source- and drain contact, the shallow
junction extensions (SJEs) of the contacts, the conduction channel in the p-substrate, and the overlap
of the conduction channel with the SJE. The semiconductor-insulator interface is located at y = 0.
It is represented by a cut-off of the wave functions. The assignment of the structure elements of
the nano-MOSFET to the structure elements of the general multi-terminal system in Figure 1 is shown
in Figure 2b: The SJEs are assumed to be identical to having the depth D. The SJE of the source is
then associated with the cubic contact region Ω1 with x ≤ 0, 0 ≤ y ≤ D, and 0 ≤ z ≤ W. Here
W is the width of the transistor. The SJE of the drain is associated with the cubic contact region
Ω2 with x ≥ L, 0 ≤ y ≤ D, and 0 ≤ z ≤ W. Here Ω1 and Ω2 are semi-infinite corresponding
to Ls → ∞ (see Figure A1). The cubic scattering region Ω0 with 0 ≤ x ≤ L, 0 ≤ y ≤ D, and
0 ≤ z ≤ W includes the conduction channel of length L and the overlap of the conduction channel
with the SJEs. The interfaces Γs are located at x = 0 for s = 1 and at x = L for s = 2. The basis vectors
of the local coordinate systems in Equation (1) are ~n1 = −~ex and ~n2 = ~ex for the outward normal
vectors. Furthermore, we choose~t1

1 = ~t1
2 = ~ey and~t2

1 = ~t2
1 = ~ez. The local coordinates are z1 = −x,

z2 = x − L, x1 = x2 = y, and y1 = y2 = z. In Equation (2) we assume the simplest case Vs = 0
renaming for U2 = UD. We take the limit D → ∞ as well as W → ∞ so that electron gas in the heavily
doped source and drain in Ω1 and Ω2 can be treated as a three dimensional free Fermi gas with the
chemical potential

µ

kBT
= X1/2

[
4

3
√

π

(
EF

kBT

)3/2
]

(32)
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where Xj is the inverse function the Fermi–Dirac integral

F1/2(u) =
1

Γ(3/2)

∫ ∞

0
dv

v1/2

ev−u + 1
. (33)

The Fermi energy above the bottom of the conduction band is given by

EF =
h̄2

2me
3π2ND

NV

2/3

(34)

with the doping concentration ND in the contacts (full ionization of donors), the valley-degeneracy
NV = 6 and the effective mass taken as me = (m2

1m2)
1/3 = 0.33m0. Here m1 = 0.19m0 and m2 = 0.98

are the effective masses corresponding to the principle axes of the constant energy ellipsoids.

Figure 2. (a) Structure elements of a conventional nano-MOSFET: Source- and drain contact with
shallow junction extensions SJEs, the latter in blue. In red the conduction channel and the overlap
between conduction channel and SJE. The semiconductor-insulator interface is located at y = 0.
(b) Assignment of the above structure elements to the structure elements of the general multi-terminal
system in Figure 1: The SJEs are associated with cubic contact regions Ωs. (c) In red: Transverse
confinement potential VT(y) of the conduction channel in the separable ansatz for the potential in
Equation (35). In brown the lowest subband energy ETy

0 in the channel confinement potential as defined
in Equation (62) (solid) and the corresponding eigenfunction (dotted). (d) Linear drop of the applied
drain voltage leading to a linear longitudinal potential VL(x) in Equation (35).
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For the potential in the scattering area Ω0 we choose a separable form

V(~r ∈ Ω0) = VT(y) + VL(x) (35)

(see Figure 2c,d). Here the transverse potential VT is the confinement potential for the conduction
channel of the transistor. A natural choice for VT is the confinement potential present in a simple
MOS-structure without source- and drain contact as discussed in Refs. [50,51]. Then VT(y) corresponds
to the potential determined in Equation (4) of [50]. As pointed out in Refs. [50,51] in the electron
channel a strong lateral sub-band quantization exists so that only the lowest subband of the channel
confinement potential with a bottom energy of ETy

0 corresponding to E0 in Ref. [50] is occupied (see
Figure 2c and Equation (62)). Here only the two constant energy ellipsoids with the heavy mass m2

perpendicular to the (100)-interface are occupied. This leads to a valley degeneracy of gv = 2 in
the channel and the effective mass entering (3) is the light mass m∗ = m1 [5]. The longitudinal potential
VL arises from the applied drain voltage assumed to fall off linearly so that

VL(x) = − x
L

eUG. (36)

The described transistor model has several special properties which can be used to simplify our general
multi-terminal model described in Section 2:

P1 The transistor is treated as two-terminal system.
P2 Axial contacts: For all Γs the surface normal vectors are aligned so that~ns = ±~n. For our transistor

model~n2 = −~n1 = ~n = ~ex.
P3 Global separability (see Figure 2b): In a system with axial contacts in~n = ~ex-direction the potential

in the scattering area Ω0 is the sum of a longitudinal potential VL(x) varying in~n-direction and
transverse potential VT(y, z) varying in the two transverse directions. In the transistor model this
separation is given in Equation (35).

P4 Abrupt transition (see Figure 2c) : An inspection of Equations (2) and (35) shows that in the general
case the potentials in the contact regions and in the scattering volume come together to form an
abrupt transition.

P5 Planarity: For a planar device one can define one or two global transverse coordinates valid in
all Ωs and in Ω0 on which the potential does not depend. In our transistor model one global
transverse coordinate exists which is the width-coordinate z.

P7 Single mode approximation: One assumes strong transverse quantization in the scattering area.
Then splitting of the transverse quantum levels induced by VT is so strong that only the lowest
transverse level ET

0 has to be taken into account.

As we will demonstrate in the next sections, on account of the listed special properties the R-matrix
approach allows for a systematic reduction of the general theory for a multi-terminal device to
a one-dimensional effective transistor model.

5. The R-matrix in a Separable Two-Terminal System

We consider a two-terminal system as in Figure 2b which fulfills the global separability condition
P3 in Section 4 (see Figure 3). Inserting the separable potential Equation (35) in Equation (14) makes
possible a product ansatz for the Wigner–Eisenbud functions

χl(~r) = χλ(x)φk(y, z) (37)

with l = (k, λ). Here the transverse functions are defined by[
− h̄2

2m∗

(
d2

dy2 +
d2

dz2

)
+ VT(y, z)− ET

k

]
φk(y, z) = 0 (38)
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with the boundary conditions

φk(0, z) = φk(W, z) = φk(y, 0) = φk(y, D) = 0. (39)

The longitudinal functions are the solutions of[
− h̄2

2m∗
d2

dx2 + VL(x)− E L
λ

]
χλ(x) = 0 (40)

with the one-dimensional Wigner–Eisenbud boundary conditions

χ′λ(0) = χ′λ(L) = 0. (41)

Upon insertion of Equation (37) in Equation (14) one obtains

El = E L
λ + ET

k . (42)

The product ansatz Equation (37) is permissible in the two-terminal system since the
one-dimensional Wigner–Eisenbud boundary condition in Equation (41) is compatible with the general
Wigner–Eisenbud boundary conditions in Equations (15) and (16). To construct the R-matrix with
Equation (37) we write Equation (28) as

χlν =
∫

Γs
dΓs Φν(~r⊥;s)χl(~r) = χλ(xs)cksn (43)

the overlap factor

cksn =
∫ D

0
dy
∫ W

0
dzφk(y, z)Φsn(y, z). (44)

The Equation (27) becomes

Rνν′(E) = − h̄2

2 ∑
λk

cksnχλ(xs)cks′n′χλ(xs′)

E− E L
λ − ET

k
. (45)

Figure 3. The two-terminal system in Figure 2b where the z-direction is omitted for simplicity.
Axial contacts in x-direction: ~n2 points in x-direction,~n1 in minus x-direction.

6. Effective Approximation and One-Dimensional Effective Scattering Problems

In effective approximation Equation (6) is simplified in the form

kν(E) ∼

√
2m∗

h̄2

[
E− E⊥0

s + eUs
]
= ke f

s (E), (46)
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where E⊥0
s is the smallest transverse mode energy, E⊥0

s = minn(E⊥sn). One then finds from Equations
(30) and (45)

Ωsn,s′n′ = k1/2
sn Rsn,s′n′k

1/2
s′n′ = ∑

k
cksncks′n′Ω

k
ss′ (47)

with

Ωk
ss′ = −

h̄2

2m∗
(ke f

s )1/2(ke f
s′ )

1/2 ∑
λ

χλ(xs)χλ(xs′)

E− E L
λ − ET

k
. (48)

The inversion of 1− iΩ in Equation (31) can now be carried out analytically with the result(
1

1− iΩ

)
sns′n′

= ∑
k

cksncks′n′

(
1

1− iΩk

)
ss′

(49)

(see Appendix C). Going back to Equation (31) one finds for s 6= s′

|S̃sn,s′n′ |2 =

∣∣∣∣∣
(

2
1− iΩ

)
sn,s′n′

∣∣∣∣∣
2

= ∑
kk′

ck,snck,s′n′ck′snck′s′n′

(
2

1− iΩk

)
ss′

(
2

1− iΩk′

)∗
ss′

. (50)

With this relation Equation (A4) becomes with ID = I2

ID =
2e
h ∑

kk′

∫ ∞

−∞
dECkk′(E) [ f (E− µ)− f (E− µ + eUD)]

(
2

1− iΩk

)
ss′

(
2

1− iΩk′

)∗
ss′

(51)

with the overlap matrix

Ckk′(E) = ∑
n,n′

cksncks′n′ck′snck′s′n′Θ
[

E− E⊥sn

]
Θ
[

E− E⊥s′n′ + eUD

]
. (52)

In Appendix D, we demonstrate that instead of using Equation (48) to find (1 − iΩk) with
subsequent inversion one can calculate the matrices (1− iΩk)−1 occurring in Equation (51) according to

(
1

1− iΩk

)
21

= −

√
ke f

1 ke f
2

2
te f . (53)

Here the te f are the transmission coefficients resulting in an effective one-dimensional scattering
problem associated with the 1d-Schrödinger equation[

− h̄2

2m∗
d2

dx2 + Ve f (x)− E

]
ψe f (x) = 0 (54)

with effective scattering potential

Ve f (x) =


E⊥0

1 for x < 0
ET

k + VL(x) for 0 ≤ x ≤ L
E⊥0

2 − eUD for x > L.
(55)

Here the asymptotics of the source incident scattering states of the effective scattering problem
associated with Equation (54) are given by

ψe f (x < 0) = eike f
1 xeike f

1 x + re f e−ike f
1 x, (56)

and
ψe f (x ≥ L) = te f eike f

2 (x−L). (57)
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Appendix E contains a simple, stable and fast recursive algorithm which we used to find the effective
transmission coefficients te f . It is seen from Equation (55) that the quantum levels ET

k of the confinement
potential in the conduction channel that arise in Equation (38) act as offsets in the effective potential.

7. Planar Systems and Supply Functions

In planar systems, the potential is taken as translationally invariant in the z-direction so that
Vs = Vs(y) and VT = VT(y). For the interface regions Ωs we insert in Equation (5)

Φsn(y, z) = Φsnynz(y, z) = Φsny(y)

√
2

W
sin
(nzπ

W
z
)

(58)

to find [
− h̄2

2m∗
d2

dy2 + Vs(y)− E⊥y
sny

]
Φsny(y) = 0 (59)

with n = (ny, nz) and

E⊥sn = E⊥y
sny +

h̄2

2m∗
(nzπ

W

)2
. (60)

For the scattering region we insert in Equation (38)

φk(y, z) = φky ,kz(y, z) = ζky(y)

√
2

W
sin
(

kzπ

W
z
)

(61)

to obtain [
− h̄2

2m∗
d2

dy2 + VT(y)− ETy
ky

]
ζky(y) = 0, (62)

with k = (ky, kz) and

ET
k = ETy

ky
+

h̄2

2m∗

(
kzπ

W

)2
. (63)

With Equations (58) and (62) the overlap factor in Equation (44) becomes

cksn = δnzkz

∫ W

0
dyΦsny(y)ζky(y) ≡ δnzkz c̄kysny . (64)

Furthermore from Equation (48) one has

Ωk
ss′ = Ω

ky ,kz
ss′ = − h̄2

2m∗
(k̄e f

s′ )
1/2(k̄e f

s )1/2 ∑
λ

χλ(xs)χλ(xs′)

Exy − E L
λ − ETy

ky

≡ Ω̄
ky
s′s(Exy) (65)

with the conserved energy in the xy-plane

Exy = E− h̄2

2m∗

(
kzπ

W

)2
, (66)

and from Equation (46) ke f
s ∼ [(2m∗/h̄2)(Exy − E⊥y0

s + eUs)]1/2 = k̄e f
s (Exy), where E⊥y0

s =

minny(E⊥y
sny). In Appendix F it is derived that

ID =
2e
h ∑

kyk′y

∫ ∞

−∞
dExyCkyk′y (Exy) [S(Exy − µ)− S(Exy − µ + eUD)]

[
2

1− iΩ̄ky (Exy)

]
ss′

[
2

1− iΩ̄k′y (Exy)

]∗
ss′

(67)
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with wave function overlap

Ckyk′y(Exy) = ∑
nyn′y

c̄kysny c̄kys′n′y c̄k′ysny
c̄k′ys′n′y Θ

[
Exy − E⊥y

sny

]
Θ
[

Exy − E⊥y
s′n′y

+ eUD

]
(68)

and the supply function

S(α) = ∑
nz

f

[
α +

h̄2

2m∗
(nzπ

W

)2
]

. (69)

In the limit W → ∞ we can write with ∆kz = π/W

S(α) =
W
π ∑

nz

∆kz f

(
α +

h̄2

2m∗
k2

z

)
→ W

π

∫ ∞

0
dkz

1

e
1

kBT

(
α+ h̄2

2m∗ (nz∆)2
)
+ 1

. (70)

Upon introducing

y =
1

kBT
h̄2

2m∗
k2

z ⇒ kz =

√
2m∗kBT

h̄2 y1/2 ⇒ dkz =

√
2m∗kBT

h̄2
1
2

y−1/2dy (71)

it results that

S(α) =
W√

π

√
m∗kBT

2h̄2 F−1/2

(
− α

kBT

)
. (72)

Here the Fermi–Dirac-Integral is given by

Fj(x) =
1

Γ(j + 1)

∫ ∞

0
dyyj 1

1 + ey−x (73)

with Γ(1/2) =
√

π.
In Appendix D, we show that one can calculate the matrices (1− iΩ̄ky)−1 in Equation (67) from

the transmission coefficients resulting in a modified effective one-dimensional scattering problem.
Here Equations (53)–(77) are substituted by[

− h̄2

2m∗
d2

dx2 + V̄e f (x)− Exy

]
ψ̄e f (x) = 0, (74)

for D → 0

V̄e f (x) =


0 for x < 0
ETy

ky
+ VL(x) for 0 ≤ x ≤ L

−eUD for x > L,

(75)

ψ̄e f (x < 0) = eik̄e f
1 x + re f e−ik̄e f

1 x, (76)

ψ̄e f (x ≥ L) = t̄e f eik̄e f
2 (x−L), (77)

and √
k̄e f

1 k̄e f
2 t̄

ky
1 = −

(
2

1− iΩ̄ky

)
21

. (78)
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8. Single-Mode Approximation and One-Dimensional Effective Model

As pointed out in Section 4, for a conventional nanotransistor only the lowest subband of
the channel confinement potential with a bottom energy of ETy

0 resulting at ky = 1 is occupied
(see Figure 2c and Equation (62)). Taking into account only ky = 1-terms Equation (67) becomes

ID =
2Nch

v e
h

C
∫ ∞

0
dExy [S(Exy − µ)− S(Exy − µ + eUD)] T e f (Exy) (79)

with

T e f (Exy) =

[
2

1− iΩ̄1(Exy)

]
ss′

[
2

1− iΩ̄1(Exy)

]∗
ss′

= k1k2|te f |2 (80)

(compare with Equation (1) of Ref. [8]). Here we neglected in the wave function overlap the energy
dependence, C11(Exy) → CΘ(Exy) and introduced the valley degeneracy of Nch

v = 2 in the n-type
conduction channel.

As described in Section 7 the effective transmission coefficient t̄e f is calculated from
the source-incident scattering states of the 1d-Schrödinger Equation (74) with the effective scattering
potential given by

V̄e f (x) =


0 for x < 0
V0 − eUD

x
L for 0 ≤ x ≤ L

−eUD for x > L,
(81)

where set in Equation (75) VL(x) = −eUDx/L (linear decrease of the drain voltage) and ETy
1 = V0.

The parameter V0 is interpretable as the effective height of the source-drain barrier. The parameters V0

and C as well as T are adjusted to experiments in Refs. [6–8].

9. Summary

Starting from a basic description of quantum transport in a multi-terminal device in
Landauer–Büttiker formalism in Refs. [1,2] we give a detailed derivation of all relevant formulas
necessary to construct a one-dimensional effective model for a nanotransistor described in Refs. [6–8].
In this model, quantum transport in nano-FETs can be described quantitatively. Important device
parameters can be extracted as the effective height of the source-drain barrier of the transistor, device
heating, and the quality of the coupling between conduction channel and contacts.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Derivation of the Formula for the Current

We calculate the total current Is in contact s starting from the decomposition

Is = Iin
s −

N

∑
s′=1

Iout
s′→s (A1)

(see Figure A1). Here Iin
s is the absolute value of the current in contact s created by the in-going parts

of all scattering states
Ψsn(~r, k) ≡ Ψsn (~r, E = Esn(k)) (A2)
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where Esn(k) = (h̄2/2m∗)k2 + E⊥sn − eUs. Furthermore, Iout
s′→s is the absolute value of the current

in contact s created by the out-going parts of all scattering states Ψs′n′(~r, k′) where s′, n′ and k′ are
arbitrary, thus including the case s′ = s also. From current conservation one has

N

∑
s′=1

Iout
s→s′ = Iin

s . (A3)

From Equations (A1) and (A3) it results that

Is =
N

∑
s′=1

(Iout
s→s′ − Iout

s′→s) =
N,s′ 6=s

∑
s′

(Iout
s′→s − Iout

s→s′). (A4)

In Figure A1 the direction of the current contributions is given by the arrows for positive charge
carriers. For n-type conduction the arrows have to be reversed.

Figure A1. The formulation of Equation (A1) for contact s = 1 in a N = 3-terminal device at Γ̄1 (see
also Figure 1). The current component directed in −~n1-direction is Iin

1 . The three current components
in~n1-direction are Iout

1→1, Iout
1→2, and Iout

1→3. Because there are no scattering processes in Ω1 it holds that
Iout
1→2 and Iout

1→3 are the same in Γ1 and Γ̄1 (see dashed horizontal lines).

Appendix A.1. Current Contribution of a Single Scattering State

We decompose
Iout
s→s′ = ∑

nk
Iout,n
s→s′ (k) (A5)

where Iout,n
s→s′ (k) is the absolute value of the current in contact s′ created by the out-going part of

the scattering state Ψsn(~r, k) given by

Iout,n
s→s′ (k) = fFD(Esn(k)− µs)

∫
Γs′

dΓs′ j
out(~r). (A6)

Here for~r ∈ Ωs′

jout(~r) = ~ns′~j(~r) (A7)

with
~j(~r) =

eh̄
2m∗i

|N |2 [Ψsn(~r, k)∗∇Ψsn(~r, k)−Ψsn(~r, k)∇Ψsn(~r, k)∗] (A8)
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since from Equation (A4) the case s = s′ can be excluded. In Equation (A8) N is the continuum
normalization constant to be constructed in Equation (A17). The issue of the k-summation in
Equation (A5) is addressed in Section A.2. From Equation (4) we have for~r ∈ Ωs′

Ψsn(~r, k) = ∑
n′

Ss′n′ ,sn exp (iks′n′zs′)Φs′n′(xs′ , ys′) (A9)

and
~ns′∇Ψsn(~r, k) =

∂

∂zs′
Ψsn(~r, k) = ∑

n′
Ss′n′ ,sniks′n′ exp (iks′n′zs′)Φs′n′(xs′ , ys′) (A10)

where
ks′n′ = h̄−1

√
2m∗(Esn(k)− E⊥s′n′ + eUs′). (A11)

The area integration in Equation (A6) leads to

Iout,n
s→s′ (k) =

eh̄
m∗
|N |2 fFD(Esn(k)− µs)

prop

∑
n′

ks′n′ |Ss′n′ ,sn|2 (A12)

where the index prop restricts the summation to propagating waves with real, positive ks′n′ .

Appendix A.2. Summation Over Scattering States

To calculate Iout
s→s′ according to Equation (A5) one sums Equation (A12) over all scattering states, i.

e. over all n and k, according to their occupation in the form

Iout
s→s′ = ∑

n
∑

j
Dk∆kIout,n

s→s′ (k)→ Dk ∑
n

∫ ∞

0
dkIout,n

s→s′ (k), (A13)

with the discretization
k→ k j = j∆k > 0 for j ∈ N0. (A14)

Here the constant Dk is the density of scattering states in k-space which we will address in
Equation (A16). The width of the k-intervals ∆k is assumed to be small so that the k-integration
can be replaced by a Riemann sum. As usual, one determines Dk and N by assigning to each
normalized propagating solution of the Schrödinger equation in Ωs of the form

N eikzΦsn(y, z) (A15)

the normalized scattering state NΨsn(~r, k) which has the in-going part in Equation (A15). As is
well-known, this corresponds to the expectation that each in-coming particle is represented by
a wave-package. When the particle is located deeply in the interior of Ωs it does not ’feel’ the quantum
system and it can be equivalently represented by a superposition of the plane waves in Equation (A15)
or the in-going part of the normalized scattering states NΨsn(~r, k). The plane waves solutions
Equation (A15) can now be counted and normalized introducing artificial boundary conditions in Ωs

in the interval 0 ≤ zs < Ls (see Figure A1) so that

k j = j
2π

Ls
⇒ Dk =

2
2π/Ls

(A16)

where in the last step we included a simple spin-degeneracy factor of two. The normalization then
follows from

1 = |N |2
∫ Ls

0
dz|eikz|2 ⇒ N =

1√
Ls

(A17)
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Upon insertion in Equation (A13) one finds with |N |2Dk = 1/π

Iout
s→s′ =

eh̄
m∗

1
π

prop

∑
nn′

∫ ∞

0
dk f [Esn(k)− µs]ks′n′(k)|Ss′n′ ,sn(Esn(k))|2. (A18)

Substituting further
E = Esn(k) = (h̄2/2m∗)k2 + E⊥sn − eUs (A19)

so that

k =

√
2m∗

h̄2

(
Esn(k)− E⊥sn + eUs

)1/2
⇒ dk

dE
=

√
m∗

2h̄2

(
Esn(k)− E⊥sn + eUs

)−1/2
=

m∗

h̄2 k(E)−1. (A20)

With dk→ (dk/dE)dE one obtains from Equation (A18)

Iout
s→s′ =

1
π

eh̄
m∗

m∗

h̄2

prop

∑
n

∫ ∞

En
⊥−eUs

dE
prop

∑
n′

f (E− µs)ks′n′(E)|Ss′n′ ,sn(E)|2ksn(E)−1

=
2e
h ∑

n

∫ ∞

−∞
dEΘ(E− E⊥sn + eUs)∑

n′
f (E− µs)ks′n′(E)|Ss′n′ ,sn(E)|2ksn(E)−1Θ(E− E⊥s′n′ + eUs′)

=
2e
h

∫ ∞

−∞
dE f (E− µs)∑

nn′
Θ(E− E⊥sn + eUs)Θ(E− E⊥s′n′ + eUs′)ks′n′(E)|Ss′n′ ,sn(E)|2ksn(E)−1

=
2e
h

∫ ∞

−∞
dE f (E− µs)Ts′s(E) (A21)

with the current transmission sum

Ts′s(E) = ∑
nn′

Θ(E− E⊥sn + eUs)Θ(E− E⊥s′n′ + eUs′)ks′n′(E)|Ss′n′ ,sn(E)|2ksn(E)−1

= ∑
nn′

Θ(E− E⊥sn + eUs)Θ(E− E⊥s′n′ + eUs′)|S̃s′n′ ,sn(E)|2 = Tss′(E). (A22)

The symmetry relation S̃s′n′ ,sn = S̃sn,s′n′ is shown in Equation (31). Because Ts′s = Tss′ one finds from
Equation (A21) from

Is = (Iout
s→s′ − Iout

s′→s) =
2e
h

∫ ∞

−∞
dE[ f (E− µs)− f (E− µ′s])Ts′s(E). (A23)

Appendix B. Properties of the Wigner–Eisenbud Problem

(1) Hermiticity:
We take two functions ψ1(~r) and ψ2(~r) obeying the Wigner–Eisenbud boundary conditions
Equations (15) and (16), i. e., with the Neumann boundary conditions [∂ψ/∂~ns](~r ∈ Γs) = 0
and Dirichlet boundary condition ψ(~r ∈ ∂Ω0) = 0. From second Green’s theorem it follows
directly that ∫

Ω0

dv (ψ∗1 ∆ψ2 − ψ2∆ψ∗1 ) = ∑
s

∫
Γs

dΓs~ns (ψ
∗
1∇ψ2 − ψ2∇ψ∗1 ) = 0. (A24)

As desired, one immediately obtains the hermicity condition

∫
Ω0

dv [ψ∗1 (Hψ2)− ψ2(Hψ1)
∗] = − h̄2

2m

∫
Ω0

dv (ψ∗1 ∆ψ2 − ψ2∆ψ∗1 ) = 0. (A25)
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(2) The Wigner–Eisenbud energies are real:
The Wigner–Eisenbud functions are the eigenfunctions of H,

[H − El ]χl = 0 (A26)

obeying Wigner–Eisenbud conditions. Setting in Equation (A25) ψ1 = ψ2 = χl it follows that

0 =
∫

Ω0

dvχ∗l Hχl −
∫

Ω0

dvχl [Hχl ]
∗ = [El − E∗l ]

∫
Ω0

dvχ∗l χl︸ ︷︷ ︸
∈R+

. (A27)

(3) The Wigner–Eisenbud functions can be chosen real:
Since the El are real the complex conjugate of Equation (A26) is given by

[H − El ]χ
∗
l = 0. (A28)

From the sum of Equations (A26) and (A28) one obtains

[H − El ](χl + χ∗l ) = 0⇒ [H − El ]Re(χl) = 0 (A29)

and from the difference

[H − El ](χl − χ∗l ) = 0⇒ [H − El ]Im(χl) = 0. (A30)

Therefore, if a complex function χl is a solution of Equation (A26) then χ∗l is a solution too and
one can choose instead of χl two real solutions Re(χl) and Im(χl).

(4) The Wigner–Eisenbud functions are orthogonal:
For two Wigner–Eisenbud functions with different energies El 6= El′ we write

[H − El′ ]χl′ = 0. (A31)

Setting in Equation (A25) ψ∗1 = ψ1 = χl′ and ψ∗2 = ψ2 = χl

0 =
∫

Ω0

dv [χl′(Hχl)− χl(Hχl′)
∗] = (El − El′)︸ ︷︷ ︸

6=0

∫
Ω0

dvχl′χl . (A32)

For degenerate Wigner–Eisenbud functions El = El′ two orthogonal linear combinations can be
constructed with standard methods.

(5) Completeness:
As described in (1) the operator H is hermitic, it is second order in the derivatives and linear.
Then the set of its eigenfunctions χl , the Wigner–Eisenbud functions, is complete. Thus, with (3)
and (4) the χl can be chosen as a complete, real, orthonormal function system.
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Appendix C. Verification of Equation (49)

We verify this equation explicitly:[
(1− iΩ)

(
1

1− iΩ

)]
sns′n′

= ∑
s′′n′′

(1− iΩ)sn,s′′n′′

(
1

1− iΩ

)
s′′n′′ ,s′n′

= ∑
s′′n′′k′

(δsn,s′′n′′ − iΩsn,s′′n′′)ck′s′′n′′ck′s′n′

(
1

1− iΩk′

)
s′′s′

= ∑
s′′n′′kk′

(cksncksn′′δs,s′′ − icksncks′′n′′Ω
k
ss′′)ck′ ,s′′n′′ck′ ,s′n′

(
1

1− iΩk′

)
s′′s′

= ∑
s′′n′′kk′

cksn cks′′n′′ck′s′′n′′︸ ︷︷ ︸
δkk′

ck′ ,s′n′(δs,s′′ − iΩk
ss′′)

(
1

1− iΩk′

)
s′′s′

= ∑
s′′kk′

cksnδkk′ck′s′n′(1− iΩk)ss′′

(
1

1− iΩk′

)
s′′s′

= ∑
s′′k

cksncks′n′(1− iΩk)ss′′

(
1

1− iΩk

)
s′′s′

= δss′ ∑
k

cksncksn′︸ ︷︷ ︸
δnn′

= δss′δnn′ . (A33)

Here we applied the relations in under-braces

∑
n

cksnck′sn = δkk′ and ∑
k

cksncksn′ = δnn′ . (A34)

To derive the first relation we formulate the completeness of the Φsn and the φk writing

∑
n

Φsn(y, z)Φsn(y′, z′) = δ(x− x′)δ(y− y′) = ∑
k

φk(y, z)φk(y′, z′). (A35)

Projection onto φk′′(y, z) and φk′(y′, z′) yields immediately

∑
n

ck′′snck′sn = δk′′ ,k′ . (A36)

The second relation in Equation (A34) is derived by inserting in the orthogonality relation

∫ D

0
dy
∫ W

0
dzΦsn(y, z)Φsn′(y, z) = δnn′ (A37)

the expansion Φsn(y, z) = ∑k cksnφk(y, z). It is seen that

δnn′ = ∑
kk′

cksnck′sn′

∫ D

0
dy
∫ W

0
dzφk(y, z)φk′(y, z) = ∑

kk′
cksnck′sn′δkk′ = ∑

k
cksncksn′ . (A38)

Appendix D. R-matrix Theory in One Dimension

We define the Wigner–Eisenbud functions in one dimension as the solutions of the hermitic
eigenvalue problem [

− h̄2

2m∗
d2

dx2 + Ve f (x)− E e f
λ

]
χλ(x) = 0 (A39)

with the effective 1d-scattering potential given in Equation (55) and von-Neumann
boundary conditions

χ′λ(0) = χ′λ(L) = 0. (A40)
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A comparison with Equation (40) yields identical eigenfunctions χλ and eigenenergies shifted by ET
k ,

E e f
λ = E L

λ + ET
k . (A41)

The χλ constitute a complete orthonormal system in which the scattering states ψe f in Equation (54)
can be expanded in the domain x ∈ [0, L]. One has

ψe f (x) ≡ ψ(x) =
∞

∑
λ=1

aλχλ(x), (A42)

where

aλ =
∫ L

0
ψ(x)χλ(x)dx. (A43)

The left-multiplication of Equation (54) with χλ(x) and left-multiplication of Equation (A39) with ψ(x)
leads after integration to

− h̄2

2m

∫ L

0
dx
[

χλ(x)
d2

dx2 ψ(x)− ψ(x)
d2

dx2 χλ(x)
]
=
(

E− E L
λ − ET

k

) ∫ L

0
dx ψ(x)χl(x)︸ ︷︷ ︸

aλ

.

Partial integration on the left side and application of the von-Neumann boundary conditions
Equation (A40) leads to

− h̄2

2m

[
χλ(L)

dψ

dx
(L)− χλ(0)

dψ

dx
(0)
]
=
(

E− E L
λ − ET

k

)
aλ. (A44)

Following Equation (19) we introduce the outward directed normal derivatives

ψS(0) = − 1
m∗

dψ

dx

∣∣∣
x=0

as well as ψS(L) =
1

m∗
dψ

dx

∣∣∣
L

(A45)

and obtain

− h̄2

2
χλ(0)ψS(0) + χλ(L)ψS(L)

E− E L
λ − ET

k
= aλ. (A46)

Upon multiplication with χλ(x) and summation λ one finds

ψ(x) =
∞

∑
λ=1

aλ(E)χλ(x) = Rk(x, 0)ψS(0) + Rk(x, L)ψS(L), (A47)

with

Rk(x, x′) = − h̄2

2

∞

∑
λ=1

χλ(x)χλ(x′)
E− E L

λ − ET
k

. (A48)

From evaluation of this equation for x1 = 0 and x2 = L one finds in correspondence to Equation (26)

ψ(xs) = ∑
s′

Rk
ss′ψ

S(xs)⇒ ~ψ = Rk~ψS, (A49)

where we define the 2× 2 R-matrix

Rk
ss′ = −

h̄2

2m∗
∞

∑
λ=1

χλ(xs)χλ(xs′)

E− E L
λ − ET

k
(A50)



Micromachines 2020, 11, 359 20 of 25

and the two-component vectors

(~ψ)s = ψ(xs) and (~ψS)s = ψS(xs). (A51)

A comparison of Equation (A50) with Equation (48) yields

Ωk
ss′ = (ke f

s )1/2(ke f
s′ )

1/2Rk
ss′ . (A52)

We now proceed as in Equation (10) and decompose the general solution of the wave function in
the contacts in an in-going part and an out-going part, ψ(x) = ψin(x) + ψout(x), where

ψin(x) =


ψin

1 eike f
1 x for x < 0

ψin
2 e−ike f

2 (x−L) for x > L

(A53)

and

ψout(x) =


ψout

1 e−ike f
1 x for x < 0

ψout
2 eike f

2 (x−L) for x > L.

(A54)

As in Equation (11), the S-matrix is the linear mapping of the in-going part onto the out-going part

~ψout = Sk~ψin (A55)

with the two-component vector

(~ψin)s = ψin
s and (~ψout)s = ψout

s . (A56)

The source-incident scattering states are associated with ψin
1 = 1 and ψin

2 = 0, ψout
1 = Sk

11 = rk
1

and ψout
2 = Sk

21 = tk
1. The drain-incident scattering states are associated with ψin

1 = 0 and ψin
2 = 1,

ψout
1 = Sk

12 = tk
2 and ψout

2 = Sk
22 = rk

2. One finds the relation between S-matrix and the transmission-
and reflection coefficients (

Sk
11 Sk

12
Sk

21 Sk
22

)
=

(
rk

1 tk
2

tk
1 rk

2

)
. (A57)

Using Equations (A53) and (A54) it results for x ≤ 0

dψin(x)
dx

= ike f
1 ψin(x) and

dψout(x)
dx

= −ike f
1 ψout(x), (A58)

and for x ≥ L

dψin(x)
dx

= −ike f
2 ψein(x) and

dψout(x)
dx

= ike f
2 ψout(x). (A59)

It follows that
~ψS = ike f ~ψout − ike f ~ψin, (A60)

with the diagonal wave number matrix (ke f )ss′ = δss′k
e f
s . From Equation (A49), ~ψ = ~ψin + ~ψout, and

Equation (A60) it follows that (
iRkke f − 1

)
~ψout =

(
iRkke f + 1

)
~ψin. (A61)
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A comparison with Equation (A55) leads to

Sk = −1 + iRkke f

1− iRkke f . (A62)

For the current matrix we find with Equation (A52)

S̃k = (ke f )1/2Sk(ke f )−1/2 =
1 + i(ke f )1/2Rk(ke f )1/2

1− i(ke f )1/2Rk(ke f )1/2
− 1 + iΩk

1− iΩk =
−2 + 1− iΩk

1− iΩk = 1− 2
1− iΩk .

(A63)
It is now decisive that with the definition of the Rk in Equation (A50) it results that

(Ωk)ss′ = (ke f
s )1/2Rk

ss′(k
e f
s′ )

1/2 = − h̄2

2m∗
(ke f

s )1/2(ke f
s′ )

1/2
∞

∑
λ=1

χλ(xs)χλ(xs′)

E− E L
λ − ET

k
(A64)

identical with Equation (48). From Equation (A57) one has

S̃k
21 =

√
ke f

1 ke f
2 tk

1 = −
(

2
1− iΩk

)
21

. (A65)

In Section 6, we identified ψe f with the source-incident scattering state characterized through
the asymptotic in Equations (76) and (77). Therefore we identify tk

1 = te f and Equation (A70) becomes
Equation (53).

In Equation (65) we define for the planar system in Section 7

Ω̄
ky
s′s(Exy) = − h̄2

2m∗
(k̄e f

s′ )
1/2(k̄e f

s )1/2 ∑
λ

χλ(xs)χλ(xs′)

Exy − E L
λ − ETy

ky

≡ Ω̄
ky
s′s(Exy) (A66)

with the conserved energy in the xy-plane

Exy = E− h̄2

2m∗

(
kzπ

W

)2
(A67)

and ksn(E) = k̄e f
s (Exy). Comparing Equation (A66) with Equation (A64) one can adopt the result

Equation (A70) for the planar system if one identifies k ↔ ky E ↔ Exy, ke f
s (E) ↔ k̄e f

s (Exy),

and ET
k ↔ ETy

ky
. This way an effective one-dimensional scattering problem associated with

the 1d-Schrödinger equation [
− h̄2

2m∗
d2

dx2 + Ve f (x)− Exy

]
ψe f (x) = 0 (A68)

results with the effective scattering potential in the limit W → 0 given by

Ve f (x) =


0 for x < 0
ETy

ky
+ VL(x) for 0 ≤ x ≤ L

−eUD for x > L.

(A69)

The transmission coefficients t̄
ky
1 of the source-incident scattering functions of Equation (A68) yield

t̄
ky
1 = S̃

ky
21 =

√
ke f

1 ke f
2 t̄

ky
1 = −

(
2

1− iΩ̄ky

)
21

. (A70)
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Appendix E. Numerical Evaluation of the Transmission Coefficients in One Dimension

In the finite difference method, the one-dimensional Schrödinger equation[
− h̄2

2m
d2

dx2 + V(x)− E

]
ψ(x, E) = 0 (A71)

becomes

ψn+1 + ψn−1 − 2ψn +
2m∆2

h̄2 (E−Vn)ψn = 0. (A72)

Here we discretize the real axis in the form x → xn = n∆ with ∆ → 0. Requiring L = N∆ one has
N + 1 grid points in the scattering area 0 ≤ x ≤ L. Furthermore, we introduce V(x)→ V(xn) ≡ Vn,
ψ(x, E) → ψ(xn, E) ≡ ψn, and d2/(dx2) → (ψn+1 + ψn−1 − 2ψn)/∆2. In view of Equation (81) we
assume the asymptotics Vn<0 = 0 (source) and Vn>N = −eUD (drain). The source-incident scattering
states then follow the asymptotic

ψn =


r exp (−ik1n∆) + exp (ik1n∆) for n < 0

t exp (ik2(n− N)∆) for n > N
(A73)

with ks =
√

2m(E−Vs)/h̄2 with V1 = 0 and V2 = −eUD. To construct the source-incident scattering
states we transform Equation (A72) for φn = ψn/t into a downward recursion

φn−1 = −φn+1 +

[
2 +

2m∆2

h̄2 (Vn − E)
]

φn. (A74)

For φn one has

φn =


r
t exp (−ik1Ln/N) + 1

t exp (ik1Ln/N) for n < 0

exp (ik2L(n− N)/N) for n > N.
(A75)

with the known asymptotic on the drain side

φn>N = exp (ik2L(n− N)/N). (A76)

The the downward recursion Equation (A74) is started with, for example,

φN+2 = exp (2ik2L/N) and φN+3 = exp (3ik2L/N) (A77)

to construct φn in the entire range. Especially one obtains

φ−2 =
1
t

exp (−2ik1L/N) +
r
t

exp (2ik1L/N) (A78)

and
φ−3 =

1
t

exp (−3ik1L/N) +
r
t

exp (3ik1L/N). (A79)

The Equations (A78) and (A79) represent two linear equations for the two unknown t and r. One finds

t =
exp (−3ik1L/N)− exp (−ik1L/N)

φ−3 − exp (ik1L/N)φ−2
. (A80)



Micromachines 2020, 11, 359 23 of 25

Appendix F. Derivation of the Supply Function

Starting from Equation (51) it follows that

ID =
2e
h ∑

nn′kk′

∫ ∞

−∞
dE [ f (E− µ)− f (E− µ + eUD)] cksncks′n′ ck′snck′s′n′

×
(

2
1− iΩk

)
ss′

(
2

1− iΩk′

)∗
ss′

Θ
[

E− E⊥sn

]
Θ
[

E− E⊥s′n′ + eUD

]
=

2e
h ∑

nynzn′yn′zkykzk′yk′z

∫ ∞

−∞
dE [ f (E− µ)− f (E− µ + eUD)] c̄kysny δnzkz c̄kys′n′y δnzk′z c̄k′ysny δn′zkz c̄k′ys′n′y δn′zk′z

×
(

2
1− iΩkykz

)
ss′

(
2

1− iΩk′yk′z

)∗
ss′

Θ
[

E− E⊥snynz

]
Θ
[

E− E⊥s′n′yn′z
+ eUD

]
=

2e
h ∑

nynzn′ykyk′y

∫ ∞

−∞
dE [ f (E− µ)− f (E− µ + eUD)] c̄kysny c̄kys′n′y c̄k′ysny c̄k′ys′n′y

×
(

2
1− iΩkynz

)
ss′

(
2

1− iΩk′ynz

)∗
ss′

Θ
[

E− E⊥snynz

]
Θ
[

E− E⊥s′n′ynz
+ eUD

]
(A81)

=
2e
h ∑

nznyn′ykyk′y

∫ ∞

−∞
dExy

[
f

(
Exy +

h̄2

2m∗
( nzπ

W

)2
− µ

)
− f

(
Exy +

h̄2

2m∗
( nzπ

W

)2
− µ + eUD

)]
c̄kysny c̄kys′n′y c̄k′ysny c̄k′ys′n′y

×
[

2
1− iΩ̄ky (Exy)

]
ss′

[
2

1− iΩ̄k′y (Exy)

]∗
ss′

Θ
[

Exy − E⊥y
sny

]
Θ
[

Exy − E⊥y
s′n′y

+ eUD

]
(A82)

=
2e
h ∑

kyk′y

∫ ∞

−∞
dExyC̄kyk′y (Exy) [S(Exy − µ)− S(Exy − µ + eUD)]

[
2

1− iΩ̄ky (Exy)

]
ss′

[
2

1− iΩ̄k′y (Exy)

]∗
ss′

(A83)

with
Ckyk′y(Exy) = ∑

nyn′y

c̄kysny c̄kys′n′y c̄k′ysny
c̄k′ys′n′y Θ

[
Exy − E⊥y

sny

]
Θ
[

Exy − E⊥y
s′n′y

+ eUD

]
(A84)

and

S(α) = ∑
nz

f

[
α +

h̄2

2m∗
(nzπ

W

)2
]

. (A85)

Going over from Equation (A81) to Equation (A82) we made use of Equation (65) with kz = nz.
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