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Abstract: The non-centrosymmetricity of III-nitride wurtzite crystals enables metal or nitrogen
polarity with dramatically different surface energies and optical properties. In this work, III-polar
and N-polar nanostructured ultraviolet multiple quantum wells (UV-MQWs) were fabricated by
nanosphere lithography and reactive ion etching. The influence of KOH etching and rapid thermal
annealing treatments on the luminescence behaviors were carefully investigated, showing a maximum
enhancement factor of 2.4 in emission intensity for III-polar nanopillars, but no significant improvement
for N-polar nanopillars. The discrepancy in optical behaviors between III- and N-polar nanopillar
MQWs stems from carrier localization in III-polar surface, as indium compositional inhomogeneity is
discovered by cathodoluminescence mapping, and a defect-insensitive emission property is observed.
Therefore, non-radiative recombination centers such as threading dislocations or point defects are
unlikely to influence the optical property even after post-fabrication surface treatment. This work lays
solid foundation for future study on the effects of surface treatment on III- and N-polar nanostructured
light-emitting-diodes and provides a promising route for the design of nanostructure photonic devices.

Keywords: III-nitride thin film; nanostructures; ultraviolet emitters; surface passivation;
luminescence intensity

1. Introduction

III-nitride based ultraviolet light-emitting-diodes (UV-LEDs) are useful for many applications
including UV curing, photo therapy and UV disinfection, due to the direct bandgap property of
wurtzite phase III-nitride crystals [1–4]. However, the extraction efficiency of UV LEDs is relatively
low due to the strong internal light reflection and strong transverse magnetic (TM) polarization of
the emitted light [5–7]. Challenges in light extraction have encouraged research and development
of small length scale devices for new applications, like nanostructured LEDs, for example [8–10].
The three-dimensional geometry of the nanopillars or nanoholes allows light to be extracted from the
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sidewalls of the nanostructures. This becomes increasingly important as the emission wavelength
of the LEDs moves from visible to ultraviolet wavelength region due to increasing proportion
of TM-polarized light, as well as the growing impact of light absorption in the p-AlGaN contact
layer [11,12]. Additionally, the benefits from strain relaxation in nanostructured LEDs means reduced
influence from quantum confined stark effect (QCSE), which has an adverse impact on the electron
and hole wavefunction overlap [13].

Currently, most of the nanostructured UV-LEDs are fabricated by reactive ion etching (RIE) due
to better control over morphologies and sizes of the nanostructures [14]. However, RIE introduces
surface defect states that will lead to reduced external quantum efficiency (EQE) and degraded output
power of LEDs through Shockley–Read–Hall (SRH) non-radiative recombination [15]. The large
surface areas of GaN nanopillars can lead to dangling bonds during nanopillar formation. However,
the resulting surface defects can be reduced by passivation techniques such as chemical etching or
dielectric deposition [16]. It was reported that, plasma-related damages at the sidewalls of multiple
quantum wells (MQWs) induced by RIE can be readily healed by thermal annealing, reducing the
density of surface traps [17]. Therefore, eliminating the surface defect states is strongly required [18].
Chiu et al. reported that after a photo-enhanced chemical (PEC) wet oxidation process, emission
from InGaN/GaN-based random nanorod LEDs was significantly improved, but also with a 10.5-nm
blueshift with respect to the as-grown LED [19]. Sun et al. also reported a 50% enhancement in the UV
light emission intensity from the KOH treated InGaN nanowires (NWs) due to the removal of surface
dangling bonds [18]. Despite the above promising results, the knowledge regards to surface passivation
of nanostructured LED is still not complete, since the majority of the samples are III-polar for better
crystalline quality and smoother surfaces. However, N-polar LEDs have their unique advantage such
as lower contact resistance, increased current injection efficiency, and an internal polarization field,
which is opposite to the external bias, leading to reduced QCSE and higher radiative recombination
rate [20,21]. Unfortunately, there seldom are comparative investigations on the effects of surface
treatments on the optical properties of both III- and N-polar nanostructured MQWs LEDs, which serve
as building blocks of next-generation high-efficiency UV emitters.

In this work, large-scale, highly periodic nanopillar UV MQWs with III- and N-polarities
were fabricated by nanosphere lithography and RIE patterning. Chemical treatment and thermal
annealing are acknowledged as promising methods to enhance the luminescence property of III-polar
nanostructured MQWs by 2.4 times at most, but was demonstrated to show little effect on N-polar
nanostructures. The underlying reason for this discrepancy was thoroughly discuss, which can be
mainly attributed to intrinsic indium localization and herein defect-insensitive emissions from the
N-polar nanostructures. A comprehensive investigation on the surface passivation mechanism on
both III- and N-polar nanostructure emitters were provided, benefiting future development of novel
nanostructured light emitters.

2. Materials and Methods

InGaN/GaN based UV-MQW was grown on 2-inch c-plane sapphire substrate via a low-pressure,
high-temperature metalorganic chemical vapor deposition (MOCVD) system. Trimethylindium (TMIn),
triethylgallium (TEGa) and ammonia (NH3) were used as precursors of In, Ga and N, respectively.
Hydrogen (H2) was used as the carrier gas. To investigate the polarity influence on the luminescence
property of nanopillars, both III- and N-polar planar MQWs were firstly grown. The III-nitride
polarity of the MQWs was controlled by the modulation of low-temperature (LT) AlN nucleation layer
(NL) prior to high-temperature (HT) epitaxial growth. Generally, III-nitride thin film is III-polarity
if it is grown on LT AlN-NL. In contrast, when grown on bare sapphire substrate with proper H2

annealing and NH3 nitridation condition, the thin film is N-polarity. UV-MQW consists of a 3.5 µm
GaN epitaxial layer, eight pairs of In0.03Ga0.97N/GaN MQWs followed by a 10 nm GaN cap layer.
To fabricate nanostructured UV-MQWs, III-polar and N-polar epitaxial thin films are uniformly coated
with polystyrene (PS) spheres of 2 µm diameter via a large-area micro-propulsive injection method.
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The colloidal solution was injected into the water to form a Langmuir–Blodgett film in a hexagonal
configuration at the air/water interface. By draining away the water, the monolayer of closely packed
PS spheres is transferred onto the MQW thin film. Nanopillar arrays were then achieved by RIE
using Cl2/BCl3 gases to pattern transfer the PS spheres to the underlying MQWs. The remaining
PS spheres were removed by sonication in acetone solution. After fabrication of the nanopillar
arrays, chemical and thermal treatments were applied to the MQW samples in order to heal the
plasma-related damages. For chemical treatment, samples were dipped into KOH aqueous solution
with a concentration of 10 wt%. The treatment was performed under room temperature (RT) or 45 ◦C
for 40 s. For thermal treatment, rapid thermal annealing (RTA) was performed at 800 ◦C or 900 ◦C for
15 min under N2 atmosphere. Surface morphologies of the nanostructures were characterized in the
Hitachi S-4800 field-emission (FE) SEM (Hitachi, Tokyo, Japan). Dislocation densities of both samples
were characterized using a point-focused high-resolution X-ray (Cu Kα1) diffractometer (HRXRD,
Bruker D8 Discover, Germany) equipped with a four-bounce symmetric Ge (220) monochromator.
The surface morphology of the MQW structure was characterized by atomic force microscopy (AFM)
(Veeco Dimension 3100 V, Plainview, NY, USA). High-angle annular dark field scanning transmission
electron microscopy (HAADF-STEM) was performed and weak beam dark field images were acquired
under two beam conditions at an acceleration voltage of 300 kV (FEI Titan ST microscope, Hillsboro,
OR, USA). Specimens were prepared by focus ion beam (FIB) using an FEI Helios SEM system with a
Ga ion source. RT photoluminescence (PL) was performed by using an Ar-F (193 nm) excimer laser
(Coherent Inc., Santa Clara, CA, USA) as an excitation pumping source, and the spectra were collected
by a Horiba iHR550 spectrometer (Horiba, Kyoto, Japan). Cathodoluminescence (CL) investigations
were undertaken using a Horiba MP 325 CL characterization system (Horiba, Kyoto, Japan) with
voltage of 5 kV and current level of 188 µA. Strain conditions of the nanopillar MQWs were investigated
by a Renishaw inVia Reflex spectrometer system (Renishaw, New Mills, UK) with a 532 nm Nd-YAG
laser as the excitation source. The surface stoichiometry of the samples was further studied by Kratos
Axis Ultra DLD X-ray photoelectron spectrometer (XPS; Kratos, Manchester, UK).

3. Results and Discussion

Before detailed investigations on optical properties of nanopillar samples, the structural and surface
morphology information of planar III-polar and N-polar MQW samples are investigated. Figure 1 shows
the HRXRD rocking curve (RC) scans of both III- and N-polar samples. The full-width-half-maximum
(FWHM) values of RC scans were used to evaluate the crystalline quality of III-nitride thin films.
From the fitting, the FWHM of (002) and (102) peaks of III-polar sample are 265 and 275 arcsec,
respectively, which are lower than those of N-polar samples (586 and 578 arcsec for (002) and (102)
peaks). The dislocation density can herein be estimated. Screw and edge type dislocation densities are
1.53 × 108 cm−2 and 4.59 × 108 cm−2 for III-polar samples, which are approximately 5 times lower than
those of N-polar ones, whose values are 7.48 × 108 cm−2 and 1.8 × 109 cm−2. This result suggests that
III-polar samples exhibit superior crystalline quality than N-polar samples.

Surface morphologies of both samples were analyzed by AFM and illustrated in Figure 2. Clear
bi-layer steps are illustrated in the III-polar sample, demonstrating a typical step-flow growth mode
of III-polar III-nitride thin film [22]. On the other hand, N-polar sample is covered with hillocks of
a few micrometers lateral size, suggesting a three-dimensional growth mode because of its much
smaller surface energy and thus larger nucleation density [23]. Root-mean-square roughness for III-
and N-polar samples are 0.37 and 11.0 nm, respectively. The drastic difference of surface roughness
of these two polarities are also correlated with their crystalline quality. Indium content of planar
MQW samples can usually be identified from symmetric and asymmetricω-2θ scans from HRXRD.
Symmetricω-2θ scan of planar III- and N-polar samples was performed and shown in supplementary
Figure S1. The most prominent peak can be identified as GaN template. Different peak positions
originate from various strain states inside epitaxial thin films as a consequence of growth mode
difference between III- and N-polar domains [21]. Usually, 0st order InGaN MQW peak can be found
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on the low-angle side of the spectrum, but can hardly be found in our study. This could possibly due
to the extremely low in content of only 3% in the MQW region and thus MQW peak merges with the
GaN template peak.
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Figure 2. AFM surface morphology of planar III-polar (a) and N-polar (b) MQW samples.

RIE followed by nanosphere lithography was utilized to fabricate the nanopillar UV-MQW
samples. The lattice constant of the nanopillar array is expected to match the 2 µm diameter of the
PS spheres used in the nanosphere lithography. Due to ion bombardment, amorphous layers are
generated on the sidewall surfaces of the nanopillars during RIE patterning, but which are expected to
be removed by the KOH treatment. The SEM images in Figure 3 show the surface morphology of the
uniformly distributed nanopillar hexagonal array on the as-fabricated III- and N-polar UV-MQWs after
subjecting to the different treatments. It can be seen that the diameter of the nanopillars remained the
same after RTA but reduced slightly to 1.98 µm after KOH treatment. Thermal annealing does not alter
the surface morphologies of the nanopillars due to a lacking of energy for thin film re-crystallization or
surface reconstruction. It is known that the dangling bond density for N-polar planes is higher than
that of (0001) planes, leading to a much higher etch rate under KOH treatment. Therefore, elongated
time of KOH etching could damage the nanopillars as shown in Figure 3e where the flat top mesa of
the nanopillars is covered with small hillocks. The 60◦ tilted view SEM images of the as-fabricated
nanopillars are shown in the inset of Figure 3a,d. After RIE process, the depths of the III and N-polar
nanopillars are 0.744 and 0.748 µm, respectively, suggesting almost same RIE etching rate between
these two polarities.
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Figure 3. SEM images of III-polar (a–c) and N-polar (d–f) nanopillar multiple quantum wells (MQWs)
before and after the KOH or rapid thermal annealing (RTA) treatment. Tilted-view SEM images of
as-fabricated nanopillars are shown in the inset of (a,d).

RT photoluminescence (PL) measurements were carried out to determine the luminescence
efficiency of the nanopillar MQWs before and after KOH or RTA treatment. First of all, PL intensities of
III- and N-polar nanostructured samples are compared. III-polar nanopillars show stronger intensity
than that of N-polar samples. This could because of two reasons: firstly, a strong carrier localization
effect is observed in N-polar nanopillar sample as will be demonstrated later. This could originate from
rough surface morphology of N-polar planar sample to begin with, and MQW thickness fluctuations
as demonstrated in our previous work [20]. Even though carrier localization can greatly enhance
internal quantum efficiency in LEDs, but excessive phase separation can also lead to a greatly reduced
active area of the MQWs at the same time, which is detrimental to the optical property as observed
in this work. Secondly, N-polar sample exhibits higher dislocations than that of III-polar samples.
This greatly deteriorate the luminescence intensity of N-polar nanostructured samples. PL spectra
of planar III- and N-polar MQW samples are shown in supplementary Figure S2 for comparison
purpose. No obvious variation in peak position is observed between planar and nanostructured
sample. However, an enhanced luminescence intensity is identified for the nanostructured sample due
to enhanced light scattering effect [14].

PL spectra subject to different surface treatments were further investigated. Figure 4a,b shows the
PL spectra of III- and N-polar nanopillar MQWs after the respective treatments. PL intensities
dramatically increased for III-polar compared to N-polar nanopillar MQWs. The highest PL
enhancement reached 2.4 times for RTA of 900 ◦C. This can be well explained by the passivation of
surface traps and the healing of surface-related defects [14]. However, the luminescence spectra were
dramatically different for N-polar nanopillar MQWs. For the N-polar nanopillar MQW, a peak and a
broad shoulder were identified in the PL spectra where the left peak was located at approximately
386 nm, and the right shoulder was located at 420 nm. The left peak intensity remained roughly the
same after KOH or RTA treatment, while the longer wavelength shoulder reduced, suggesting that
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polarity played a critical role in the influence of surface treatment on luminescence. The integrated
PL intensities of the III- and N-polar nanopillars are shown in Figure 4c, indicating that the effect of
surface treatment was marginal on the N-polar MQWs compared to that of the III-polar samples.
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Figure 4. Room temperature (RT) photoluminescence (PL) spectra of III-polar (a) and N-polar (b)
nanopillar MQWs, and integrated PL intensity of III-polar and N-polar MQW nanopillar MQWs at the
specific peak wavelengths (c), before and after KOH treatment or rapid thermal annealing (RTA).

The strong variation of PL peak position from III- and N-polar samples is originated from either
higher indium composition or thickness variation or a combination of both. An average indium content
changing from 1.3% to 5.2% in the MQW is expected when composition is considered as the only
factor. For the 420 nm shoulder peak in N-polar MQW sample, a further increase of indium content
to 12.6% is obtained. The optical transition in the QWs was further analyzed by solving the Poisson
equations and carrier transport equations. During calculation, 3/11 nm In0.03Ga0.97N QW and GaN QB
thicknesses are utilized. As shown in the calculation result illustrated in supplementary Figure S3,
a broad emission peak with position located at 365 nm is identified, which is slightly shorter than
the 370 nm emission peak observed in PL spectra. The internal electric field inside QW is less than
1 × 105 V/cm, which is relatively low compared to AlGaN or InGaN system reported elsewhere [24,25].
The discrepancy between the simulated electroluminescence (EL) spectrum and experimental PL
spectrum can be explained by a variety of factors including different interaction volumes between
injected current in EL and excited photons in PL, deviation of indium composition from target and QW
thickness fluctuation. But we can safely conclude that the uniform emission peak from III-polar sample
is a consequence of efficient radiative recombination inside the abrupt QWs as shown from STEM
image of III-polar MQW sample observed in supplementary Figure S4, while non-uniform emission in
N-polar sample is a result of carrier localization.
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Finally, in order to correlate PL spectra with the influence of QW thickness variation, emission
spectra are simulated based on an LED with 3 pairs of MQWs. The indium content in QW is fixed at
3%, while QW thickness was varied from 3 nm to 6 nm. The thickness of quantum barrier remains
constant at 11 nm. From the simulation results shown in supplementary Figure S5, two emission
peaks can be identified. This occurrence of two peaks can be explained by the shallow QW and thus
weak carrier confinement. The high-energy emission peak approximately locates at 364 nm, and does
not change with QW thickness. On the other hand, the low-energy peak red shifts as increasing
QW thickness, in good agreement with the reduced quantum confinement and thus lower emission
energy [26]. However, the red shift is only less than 7 nm, which is far less than that observed in the
experiment. The coherence with a 420-nm emission cannot be simulated by only changing the QW
thickness, which further demonstrates that composition inhomogeneity must play an important role in
the light emission.

To further understand the PL enhancement mechanism of III-polar nanopillar MQWs, PL efficiency
(PLeff) as a function of excited power density of the III and N-polar MQW samples is illustrated in
Figure 5. PLeff is defined as the ratio of PL intensity to excited power density, and its slope is an
indication of radiative recombination mechanism [10]. The negative slope of the PLeff versus excited
power density for planar MQWs suggests the existence of exciton-related emission together with large
amount of non-radiative centers. In contrast, for III-polar nanopillar samples, the PLeff increased
when the pumping power density increased, which is a signature of radiative carrier recombination
through free carriers. The PLeff increased for KOH treatment at a higher temperature. Higher PLeff was
obtained after thermal annealing. The slightly larger slope of PLeff vs. pumping power density after
thermal annealing shows an enhanced radiative recombination rate, which might indicate annihilation
of trap defects. For N-polar nanopillar MQWs, since the emission spectra had two peaks locating at
386 nm and 420 nm, thus two PLeff curves are illustrated. For a 386 nm emission in N-polar MQW,
PLeff also increased with pumping power density similar to that of III-polar nanopillars. However,
a negative slope was observed for N-polar nanopillars with 420 nm emission, again suggesting the
exciton-related emission mechanism, which was a signature of carrier localization effect as will be
discussed in details later in Figures 6 and 7.

Due to phase separation between In and Ga, compositional inhomogeneities in InGaN alloys lead
to non-uniform optical properties of UV-LEDs, especially for N-polar surfaces where rough surface
morphology promotes phase separation. Therefore, deeper understanding on the spatially resolved
luminescence properties of III- and N-polar nanopillar MQWs is critically important. Panchromatic
CL intensity mapping is shown in Figure 6. Figure 6a–d illustrates the CL distribution in III-polar
nanopillar MQWs and Figure 6e–h illustrates the CL distribution in N-polar nanopillar MQWs.
Under low magnification, bright stripes along the substrate offcut direction were clearly observed on
the surface of the III-polar nanopillar MQW (Figure 6a), which could be attributed to intrinsic indium
localization in the MQWs. The strong luminescence comes from the In-rich clusters along the step edges
of the epitaxial thin films. Since white stripes are shown in both planar and nanostructured MQWs,
nanopillar fabrication did not have an influence on the distribution of luminescence centers. A closer
look at the spatially resolved CL intensity distribution of III-polar MQWs in Figure 6b–d gives us clear
information that luminescence only coming from the nanopillars where MQWs were not etched away
by RIE. Additionally, the emission intensity increased dramatically after thermal annealing of 900 ◦C,
which agreed perfectly with the enhanced PL intensity as shown before in Figure 4. Different from
that of III-polar samples, strong localization of luminescence centers is shown for all N-polar samples.
The dot-like bright features have lateral size of 20–200 nm. White dots represent quantum-dot-like
luminescence centers, which were uniformly distributed on the sample, possibly due to the rough
surface morphology of N-polar MQWs and thus non-uniform light emission. Note that carrier
localization is also observed in planar samples. This has been thoroughly discussed in our previous
work [27,28]. Carrier localization was observed in N-polar domain of planar sample due to thickness
and composition fluctuation. However, carrier localization is not observed in III-polar MQW sample.
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This is due to the fact that the indium composition is too low for spinodal decomposition. In fact, carrier
localization was widely reported in InGaN with high indium content above 15% [29], but seldom been
reported in UV-LEDs with InGaN MQWs of indium content less than 5% as studied here.
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Additionally, the black dots were identified throughout the surface in the panchromatic CL
intensity mapping shown in Figure 6b–d, representing non-radiative recombination centers like
threading dislocations or point defects. The densities were 2.35 × 108 cm2, 2.29 × 108 cm2 and
2.38 × 108 cm2 respectively for as-fabricated nanopillars, nanopillars subject to KOH treatment and
thermal annealing, respectively. No obvious change in the defect density after thermal or KOH
treatment was identified, suggesting that luminescence enhancement as shown in Figure 4 is mainly
related to passivation of surface states, rather than defects in the bulk.

Figure 7a shows the CL spectrum of the as-fabricated N-polar nanopillars with two peaks located
at 386 and 420 nm. The monochromatic CL mapping at 386 nm and 420 nm are shown in Figure 7b,c,
respectively. Interestingly, the CL emission at 386 nm was uniformly distributed on the surface of
the nanopillars, whereas 420 nm-emission originated from In-rich clusters, which are represented by
the white dots. The red shift of CL spectra for N-polar nanopillars compared to that of the III-polar
sample can be well explained by the in-phase separation in the MQWs leading to quantum dot-like
luminescence centers at those In-rich clusters. Additionally, the carrier diffusion length decreased
drastically due to indium phase separation, and the influence of point defects and threading dislocations
were mostly screened by these potential minima, imposing no effect on the luminescence intensity.
Therefore, even though surface trap defects were passivated by thermal and chemical treatments the
luminescence intensities still remained the same for N-polar nanopillar MQWs because of carrier
localization effects.

Optical properties of MQWs were also correlated to strain conditions. Therefore, Raman
spectroscopy investigations were performed. Figure 8 shows the Raman spectra recorded for III-
and N-polar nanopillars before and after RTA or KOH treatment. The peak position of the E2 (high)
phonon mode of III-nitride crystal is sensitive to bi-axial strains [30]. For fully relaxed GaN, the E2

(high) peak was at 567.6 cm−1, and a smaller Raman wavenumber suggests tensile strain while a larger
Raman wavenumber suggests the compressive strain. In this work, since the epitaxial thin film was
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mainly composed of GaN or AlGaN with low Al composition, E2 (high) peak located around 567 cm−1

was regarded as fully-relaxed, and was utilized for strain analysis. The peak positions for all the
III-polar nanopillar MQW samples were close to each other with a value of 569 cm−1 indicating slightly
compressive strains of 0.6 Gpa regardless of chemical or thermal treatment. Note that the E2 (high)
position of the as-fabricated planar MQW was located at a much high wavenumber of 572.1 cm−1 as
observed in our recent study. Therefore, most of the strains were actually relaxed after nanopillar
fabrication. Compared to the III-polar nanopillar samples, the compressive strain in as-fabricated
N-polar nanopillar samples was found to be much smaller as the E2 (high) position of the GaN-like
Raman peak was only 1 cm−1 higher at maximum compared to the fully relaxed position. This could
be explained by the 3D growth mode of N-polar thin film, higher dislocation density and thus more
strain relaxation inside N-polar crystals. RTA treatment at 900 ◦C fully relaxes the compressive strain
inside the as-fabricated N-polar nanopillars, even though no significant improvement in emission
intensity was found.Micromachines 2019, 10, x FOR PEER REVIEW  11 of 14 
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Finally, to further correlate surface stoichiometry to the enhanced UV emission of III-polar
nanopillar MQWs, XPS measurements were carried out before and after RTA or KOH treatment.
The de-convoluted Ga 3d peaks of the as-fabricated nanopillars, nanopillars after KOH treatment and
900 ◦C annealing are shown in Figure 9a. As indicated in the figure, the major Ga 3d core level peak
consisted of two components at 21.0 ± 0.1 eV and 19.3 ± 0.1 eV corresponding to the binding energy of
Ga–O and Ga–N, respectively. After KOH etching, the Ga 3d peak slightly shifted to higher binding
energy, where the relative Ga–O component was increased, indicating that Ga cations were attacked by
OH–, leading to the breakage of Ga–N bond and consequently formation of Ga–O bond. Furthermore,
after RTA surface treatment, the Ga 3d peak shifts to even higher binding energy, but the total intensity
was dramatically reduced. This indicates that chemical stoichiometry between Ga and N atom was
deviating from 1:1 after thermal annealing. Figure 9b shows the O 1s core level peaks de-convoluted
into three components with binding energies of 530.3 eV, 531.7 eV and 532.8 eV, corresponding to O2−,
OH− and H2O species, respectively. It is clearly shown that after KOH etching, the overall intensity of
the O 1s peak decreased, in agreement with the removal of naturally formed surface oxide under KOH
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etching. After thermal annealing, there existed a strong shift of O 1s peak towards higher binding
energy, indicating a transformation from the Ga–O bond to Ga–O–H bond.
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4. Conclusions

In this work, the influences of KOH or RTA treatments on the optical properties of III and
N-polar nanopillar UV MQWs were carefully examined. The UV emission intensity increased
significantly after post-fabrication treatment and by as much as 2.4 times after RTA annealing for
III-polar nanopillars, whereas almost no effect on the luminescence spectra was seen for N-polar
samples. CL intensity maps indicate carrier localization effects due to In-rich clusters in the N-polar
nanopillars, which dominated the light output mechanism because of the reduced carrier diffusion
length scales. This led to reduced probability of carrier recombination with threading dislocations or
point defects, meaning that despite the fact that surface treatment passivation methods might reduce
the trap defects, they did not contribute to the PL efficiency. Slight compressive strain effects could
be found in as-fabricated III-polar nanopillars, but which did not change significantly after KOH or
RTA treatment. As-fabricated N-polar nanopillar samples were almost strain-free due to 3D growth
mode and strain relaxation mechanism. XPS results further suggest the removal of surface oxides after
KOH etching and transformation from Ga–O to Ga–O–H bond after thermal annealing for III-polar
nanopillar samples. The experimental results obtained here present a deeper understanding on the
different optical behaviors of nanostructured UV emitters with opposite polarities, and provide an
important strategy to enhance the luminescence intensity of nanopillar LEDs, paving the way for
future development of novel nanostructure-based electronic or photonic devices.
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Figure S1: HRXRD symmetricω-2θ scans of III- and N-polar MQW samples; Figure S2: RT PL spectra of planar
III-polar and N-polar MQW samples. Peak positions and shapes are almost identical to those of nanostructured
samples; Figure S3: Simulated electroluminescence spectrum of UVA-LED with 3/11 nm In0.03Ga0.97N/GaN MQW;
Figure S4: HAADF-STEM image of planar III-polar MQW samples with low magnification (a) and zoom-in
view (b) of the individual QW and QB; Figure S5: Simulated electroluminescence spectra of UVA-LED with
In0.03Ga0.97N/GaN MQWs of varying QW thicknesses. A small red shift of less than 7 nm is observed when
doubling the QW thickness.
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