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Abstract: Object curvature plays an important role in grasping and manipulation. To be more exact,
local curvature is a more useful information for grasping practically. Vision and touch are the
two main methods to extract surface curvature of an object, but vision is often limited since the
complete contact area is invisible during manipulation. In this paper, the authors propose an object
curvature estimation method based on an artificial neural network algorithm through a lab-developed
sparse tactile sensor array. The compliant layer covering on the sensor is indispensable for fitting the
curved surface. Three types (plane, convex sphere, and convex cylinder) of sample and each type of
sample including 30 different radiuses (1 mm to 30 mm) were used in the experiment. The overall
classification accuracy was 93.1%. The average curvature radius estimating error based on an artificial
neural network (ANN) algorithm was 1.87 mm. When the radius of curvature was bigger than 5 mm,
the average relative error was smaller than 20%. As a comparison, the sensor array density we used in
this paper was less than 9/cm2, which was smaller than the density of human SAII receptors, but the
discrimination result was close to the SAII receptors. Comparison with the curvature discrimination
ability of the human body showed that this method has a promising application prospect.

Keywords: sparse tactile sensor array; machine learning; neural network; discrimination of curvature;
compliant contact

1. Introduction

Object curvature is important information that human hands need to acquire when they are
engaged in tactile perception [1] and also plays an important role on the contact state [2]. Likewise,
it provides reference information for an intelligent hand to adjust its grasping strategy during
manipulation. Generally, it is not necessary to know the exact contour of an object going to be
manipulated, so local curvature is more useful information for grasping. Currently, vision and touch
are the two main ways to deal with the extraction of object surface curvature. In many scenarios,
object curvature information can be directly obtained through visual perception [3–5]. However, in the
case of poor light or during grasping, the contact area between the finger and the object is partly or
completely invisible to the vision system. In this case, the local curvature in the contact area can only
be acquired through tactile perception. Furthermore, it is noteworthy that the curvature is changeable
during grasping when the contact area is non-rigid. Therefore, the discrimination of object curvature
must be practically involved along with tactile perception.
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Existing research using only tactile technology to estimate object curvature is limited. In 2011,
N. Wettels et al. [6] classified four objects with different curvatures (plane, radius of curvature 10 mm,
3.6 mm, and 1 mm). S. Salehi et al. [7] classified the curvature of three objects (plane, blade, and radius
of curvature 2.5 mm). However, the above studies on object curvature discrimination were mainly to
classify a limited number of objects with known curvature, and could not provide the specific value
of the curvature. In 1991, R. S. Fearing et al. [8,9] tried to use a stress/strain distribution model of a
flexible skin layer in the contact state to inversely solve the surface curvature based on Hertz contact
theory. In 2017, Y. Kim et al. [10] used the flexible surface of the sensor to fit the object, and used the
Light Emitting Diode (LED) and Complementary Metal Oxide Semiconductor (CMOS) image sensor
to reconstruct the surface contour of the sensor to measure the curvature. There are some based on
other methods such as the 2016 Ran Xu et al. [11] study using fiber Bragg grating (FBG) sensors to
measure the curvature, but was only limited to complete tubular and cylindrical objects.

A more common method of curvature discrimination research is that the manipulator moves
along the contour of the object, and the surface curvature is solved by the spatial trajectory information
of the movement [12–18]. Back in 1996, M. Charlebois et al. [12,13] planned the exploratory movement
of a mechanical tentacle on the surface through contact perception. H. Zhang et al. [14] estimated
the surface curvature based on the least square estimation (LSQ) method through rolling contact
between the tactile sensor and objects. In 2007, J. Tian et al. [16] rebuilt the surface by tracking along
three concurrent curves on the surface to obtain curvature information. In 2017, Ian Abraham et
al. [18] used a low-resolution binary contact sensor for ergodic exploration and successfully obtained
curvature information.

To sum up, research on tactile curvature discrimination has not been systematically and extensively
investigated. The contour tracking method can detect both convex and concave surfaces, but it has a
trivial effect for relatively small objects. Moreover, it takes a lot of time to track the surface contour,
so the curvature information cannot be obtained in real time. Therefore, a universal and real-time
curvature estimation method using only tactile information is indeed necessary.

Discrimination ability with high spatial resolution like human hands is what people have always
desired. For the human hand, there is a mechanoreceptor density for tactile perception of up to
17,000 units in a hand, and the spatial resolution is up to 1.6 mm [19]. Reducing the size of the sensor
and increasing the density of sensor units are the most traditional methods [20,21], but is still far from
reaching the level of the sensor density of human hands. Moreover, the high-density sensor array is
difficult to integrate, the circuit is tedious, and the signal processing is complicated. Therefore, how to
use a sparse sensor array to realize high spatial resolution detection is particularly important [22].
Utilizing the compliant layer to couple the contact information, it is possible to discriminate the
curvature by means of the tactile sensor array alone [23]. However, the contact process between the
object surface and the compliant layer is non-linear. To this end, we used an artificial neural network
(ANN) mapping algorithm. It is suitable for solving complicated nonlinear problems with large
samples, which has already been widely used in speech recognition, image recognition, and other
fields [24].

In this paper, the authors used a sparse tactile sensor array covered with a continuous compliant
human-like skin layer [25] to acquire haptical information. An ANN-based curvature discrimination
method is put forward. Through the supervised learning of the experimental sample data, a curvature
value estimation model was established to extract the object curvature information by tactile
perception. It is more meaningful to use a sparse tactile sensor array instead of a high-density
sensor array, demonstrating the potential capability of prosthetic applications. Most of the existing
tactile curvature discrimination methods are non-real-time or can only classify a limited number of
objects, whereas the proposed method here was used to estimate the specific curvature value of the
grasped object. Furthermore, the authors extended the discrimination object from a simple spherical
object to a cylindrical object. As the relevant research is relatively rare, the authors evaluated the
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results with the curvature discrimination ability of the human body both in recognizable range and
discrimination accuracy.

The rest of this paper is organized as follows. The tactile sensor device is presented in Section 2,
followed by the introduction of the object curvature discrimination methodology based on ANN in
Section 3. The detailed experiment and experimental results are presented in Section 4. Subsequently,
the results are commented in Section 5. Finally, the conclusion and prospect are discussed in Section 6.

2. Tactile Sensor Device

In many studies, the tactile sensor was intentionally added with a compliant layer similar to the
skin. Youngwoo Kim et al. designed a fluid-type tactile sensor able to measure the size and depth of
heterogeneous substances in elastic bodies that consisted of an image sensor, LED lights, and a touch
pad filled with translucent water [10]. The University of Genoa in Italy developed a tactile sensor using
piezoelectric conductive rubber as a sensitive material, which consists of 8 × 8 arrays of 64 tactile units.
In this research, a thin elastic film was used to cover the sensor as a protective layer [26]. Regarding
the flexible tactile sensor, there is a contradiction between the necessity of compliant skin layers and
their negative effect on the precise detection of contact pressure [27]. On one hand, the compliant skin
layer is indispensable for tactile sensors, which ensures smooth and stable contact with objects and
protects the sensitive element from the direct impact of the touched object. Unfortunately, on the other
hand, the compliant skin layer brings forward an obvious attenuation effect on the contact pressure
signal, deteriorating the effectiveness of contact pressure detection. Furthermore, even if a rigid sensor
array is covered by a compliant protective layer, the fragile sensitive element (silicon-based sensing
element especially) still cannot be fully protected because it is still in contact with the solid medium,
which risks breaking the embedded sensitive silicon diaphragm and weak connecting wires.

In this paper, a lab-developed solid–liquid hybrid sparse tactile sensor array was used [25,28].
The structure of the sensor we used was a compliant layer encapsulating the fluid and the silicon
sensing element inside. The authors used fluid to replace some parts of the traditional single soft
layer. Unlike traditional hydraulic devices, the fluid chamber of this sensor cell contains the soft part,
which also deforms under the fluid pressure. While the compliant layer deforms under external contact
to compress the fluid inside, the induced fluid pressure is also reversely loaded onto the compliant
layer and makes it deform. Thus, there is a coupling effect between the compliant layer deformation
and the encapsulated fluid compression. Therefore, fluid compression can map the deformation state
of the compliant layer and directly correspond to the output of the sensing element. The encapsulated
sensor cell has good sensing performances with sensitivity of 19.9 mV/N, linearity of 0.998, repeatability
error of 3.41%, and hysteresis error of 3.34%. The force sensing range is from 5 mN to 1.6 N.

The mechanical structure explosion diagram is shown in Figure 1a. Some modifications have been
made on the part of the flexible layer. The flexible layer changes to a continuous planar compliant layer,
as shown in Figure 1b. The sensor array mainly consisted of five parts: rigid base, silicon pressure
sensing die, silicone oil liquid layer, polydimethylsiloxane (PDMS) compliant layer, and stainless steel
clamping plate. The overall size was 14 mm × 14 mm × 8 mm including nine sensor units in a 3 × 3
layout, with the spacing of sensor units of 4.5 mm. The thickness of the PDMS compliant layer was
5 mm. The selected silicon pressure sensing element was a cubic silicon pressure sensing die (Silicon
Microstructures, Inc., SM5108C-060, Milpitas, CA, USA). The silicone oil liquid layer was filled with
50 cSt silicone oil (Dow Corning Inc. pmx-200, Midland, MI, USA). The silicone oil not only acts as a
transferring medium of pressure conduction, it can also effectively protect the silicon-based sensor
unit. The practical diagram of the sensor array is shown in Figure 1c.
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Figure 1. Schematic diagram of the sparse solid–liquid hybrid tactile sensor array structure. (a) 
Explosion diagram of sensor array structure; (b) Cross-section diagram of sensor array with 
continuous planar compliant layer; (c) Real prototype of sensor array. 
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can be made, and these planes are called normal planes. The intersection of any normal plane and 
surface will form a curve passing through the point, and the curve will have a curvature at the point. 
The two curvatures obtained from any two normal planes perpendicular to each other are called 
orthogonal curvatures. When a set of orthogonal curvatures are the maximum and minimum values 
of such kind of curvatures, respectively, the set of orthogonal curvatures is called the principal 
curvature, represented by k1 and k2. The principal curvature is unique for any point on the surface. 
Differentiable surfaces can be divided into six different types, according to the positive and negative 
relationship of principal curvature, as shown in Table 1. The surface of objects often has a variety of 
surface types, and local small areas can be approximately considered as a single type. 

 
Figure 2. Schematic diagram of the normal plane of the principal curvature at a point on the surface. 
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Table 1. Classification of surface types. 

Principal Curvature k1 < 0 k1 = 0 k1 > 0 
k2 < 0 Concave ellipsoid Concave cylinder Hyperboloid 
k2 = 0 Concave cylinder Plane Convex cylinder 
k2 > 0 Hyperboloid Convex cylinder Convex ellipsoid 

This paper focused on the local curvature at the point of contact between the object and the 
finger. Considering the compliant tactile sensor used in this paper with a flat surface skin layer, it 
could not effectively reach unseparated contact with concave ellipsoid, concave cylinder, and 

Figure 1. Schematic diagram of the sparse solid–liquid hybrid tactile sensor array structure.
(a) Explosion diagram of sensor array structure; (b) Cross-section diagram of sensor array with
continuous planar compliant layer; (c) Real prototype of sensor array.

3. Methodology

3.1. Curvature

As shown in Figure 2, for a point on a differentiable surface in three-dimensional Euclidean space,
there exists a unique unit normal vector. Innumerable planes containing the unit normal vector can be
made, and these planes are called normal planes. The intersection of any normal plane and surface
will form a curve passing through the point, and the curve will have a curvature at the point. The two
curvatures obtained from any two normal planes perpendicular to each other are called orthogonal
curvatures. When a set of orthogonal curvatures are the maximum and minimum values of such
kind of curvatures, respectively, the set of orthogonal curvatures is called the principal curvature,
represented by k1 and k2. The principal curvature is unique for any point on the surface. Differentiable
surfaces can be divided into six different types, according to the positive and negative relationship of
principal curvature, as shown in Table 1. The surface of objects often has a variety of surface types,
and local small areas can be approximately considered as a single type.
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Table 1. Classification of surface types.

Principal Curvature k1 < 0 k1 = 0 k1 > 0

k2 < 0 Concave ellipsoid Concave cylinder Hyperboloid
k2 = 0 Concave cylinder Plane Convex cylinder
k2 > 0 Hyperboloid Convex cylinder Convex ellipsoid
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This paper focused on the local curvature at the point of contact between the object and the finger.
Considering the compliant tactile sensor used in this paper with a flat surface skin layer, it could not
effectively reach unseparated contact with concave ellipsoid, concave cylinder, and hyperboloid. Thus,
this paper did not involve the contact of these three types of objects; only plane, convex ellipsoid,
and convex cylinder were chosen for validation of the proposed method. Due to the complexity of
the unequal principal curvature combination for convex ellipsoid contour perception, even humans
can acquire only a simple impression of bending degree from the hand perception instead of having
information from whole different direction curvatures. Therefore, this paper focused on a simplified
situation where the principal curvature was equal, the so called convex sphere, which can be identified
by a unique curvature value.

3.2. Basic Theory

The intuitive reason why the tactile sensor array can recognize the curvature of the object surface
is that the compliant skin layer above the tactile sensor array can be deformed along with the object
shape during contact pressure evolution. Additionally, the deformation will bring the stress change
inside the compliant layer, which affects the signal outputs of the underlying tactile sensor array.
The surface of the object with different curvature will produce different deformation to the coverage
layer, resulting in different signal outputs of the tactile sensor array. There exists an intrinsic mapping
relationship between curvature and signal outputs. Based on the theory of Hertz contact (no adhesive
contact), this subsection utilizes the contact model between rigid sphere and elastic semi-space to
analyze the relationship between the stress distribution in elastic semi-space and the curvature radius
of the sphere.

As shown in Figure 3, a rigid sphere with radius R comes into Hertz contact with the elastic
semi-space surface. The force applied on the hemisphere is F, the maximum depth of pressing into the
elastic semi-space surface is d, and the radius of the contact area is a.
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Figure 3. Hertz contact model of rigid sphere and elastic semi-space.

The cylindrical coordinate system is established with the initial contact point position as the
origin point O. The relationship between stress, radius of curvature, and depth of pressing is shown in
Equation (1).

σz = −
2E∗

π
·

√
R/d

R/d + (z/d)2 (1)

where E∗ = E/
(
1− v2

)
; E is Young’s modulus of the elastic semi-space material; v is the Poisson’s

ratio of the elastic semi-space material; and z represents the depth in the z direction. According to
Equation (1), as z2/d is generally much larger than d, when the depth of pressing and the depth of the
sensor array are determined, there is a non-linear mapping relationship between z normal stress and
the curvature radius R of the object. In Figure 4, the relationship curve between z normal stress and
curvature radius at the point where the depth is z = 5d is shown.
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3.3. Artificial Neural Network Method

In this paper, a BP (back propagation) neural network was chosen to investigate the curvature
discrimination of objects. When the compliant skin layer of the tactile sensor array is in contact with
the object, it can fuse the surface topography information of the object and transmit signals in a
timely manner through a limited number of tactile sensor arrays. Such information processing is often
non-linear. The BP neural network can effectively analyze the non-linear information and is suitable
for the investigation of object curvature discrimination.

As mentioned in Section 3.1, the curvature discrimination of contact objects in this paper only
considered a plane, convex cylinder, and convex sphere, which also have a significant difference in
contact state characteristics. As shown in Figure 5, the contact surface between the convex cylinder and
the compliant skin layer was axisymmetric, while the contact surface between the plane and the convex
sphere and the compliant skin layer was centrally symmetric. However, the contact surface of the
convex sphere will increase with the increase in the depth of pressing, while the contact surface of the
plane will not change. Therefore, the BP neural network classification model needs to be established
first to classify the surface shape features of unknown objects and determine which surface type it
belongs to. Then, corresponding BP neural network curvature radius prediction models should be
built for the convex cylinder and convex sphere, respectively, to estimate the specific curvature radius
of the contact surface.
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As shown in Figure 6, the surface type classification neural network structure and curvature
radius estimation neural network structure were established, both of which are BP neural networks
with a single hidden layer. The input signal comes from the nine sensing units of the tactile sensor array,
each of which contains two types of signal information: time-domain signal information (sensitivity
variation) and frequency-domain signal information (principal frequency component), so there are
18 input signal information in total. Considering that curvature value estimation is more complex than
classification, the number of units in the hidden layer was set as 30 for surface type classification and
50 for curvature estimation. The output is the code of the three types of surface and a single value of
curvature radius, respectively.

After the establishment of the neural network topology structure, the above two neural networks
were trained according to the experimental sample data. The samples were randomly divided into
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70%, 15%, and 15% for neural network training, verification, and testing, respectively. The validity of
the established neural network is analyzed in next section, according to the test results.
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4. Experiment

4.1. Experiment Platform

The experimental loading platform for object curvature discrimination is shown in Figure 7.
The three-axis motion stage adopted the M460P of Newport, USA. The maximum stroke in the three
directions was 25 mm, and the displacement precision could reach 0.01 mm. Experimental samples
with different shapes and curvature radius are shown in Figure 8. In order to ensure the smooth contact
process between the object and the tactile sensor array, the loading depth was set as 1 mm (starting
from the contact surface), and the loading speed was selected as a constant 0.2 mm/s. The samples
were made by 3D printing technology using photosensitive resin, which can be considered as nearly
rigid compared with the compliant skin layer of the tactile sensor array. The shape of the samples
included three types: plane, convex sphere, and convex cylinder. There were 30 samples with different
curvature radius values on the convex sphere and convex cylinder, respectively. The curvature radius
range was 1–30 mm, and the difference of curvature radius between adjacent samples was 1 mm.
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Figure 8. Experimental samples for object curvature discrimination: (a) samples of convex sphere and
plane objects; (b) samples of convex cylindrical objects.

4.2. Experiment Detail

The discrete distribution of sensor elements, the boundary constraint of sensor array, and the
limitation of manufacturing process will surely cause the non-uniformity of the sensor array
performance, thus the contact position will surely affect the signal combination of the tactile sensor
array. For this reason, contact loading at different positions on the surface of the compliant skin layer
of the tactile sensor array was carried out, and the acquired sample data at different contact positions
was used for neural network training. Obviously, the axis direction of the convex cylinder will also
affect the signal output of the sensor array. In order to simplify the analysis, but not lose the generality
of validation of the model, the direction parallel to the two axes is applied during convex cylinder
experiment. The loading position distribution of the plane and convex sphere for the automatic contact
experiment is shown in Figure 9a, and the loading position distribution of convex cylinder is shown in
Figure 9b. In order to ensure complete and effective contact between each sample and the compliant
skin layer, and considering the surface size of the compliant skin layer, the loading points for the planar
or convex spherical samples were set as a 5 × 5 lattice evenly distributed around the center point of the
surface origin, with the spacing of the loading points being 1 mm, with 25 different loading positions
in total. The loading position for the convex cylindrical sample was set as a 1 × 5 linear array with
respect to the X-axis or Y-axis symmetry position, and the loading position interval was 1 mm, with a
total of 10 different loading positions.
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The raw output data of the sensor array is shown in Figure 10, and sensors 1–9 represent the
nine sensing elements in Figure 1. The sample used in Figure 10a is a sphere with a curvature radius
of 5 mm, and the loading position is shown in the lower right corner in Figure 9a; the sample used
in Figure 10b is a sphere with a curvature radius of 15 mm, and the loading position is the center of
Figure 9a. Two kinds of data, named as time-domain data and frequency-domain data, were used
as the sample data of the neural network, which were extracted from the signals acquired from the
automatic contact experiment. Time-domain data are the measure of the tactile sensor array response
sensitivity in a process of stable contact. Since the object loading process is uniform loading at a
constant speed, the variation of the output amplitude of the sensor array signal in the same interval
is extracted as the steady-state output indicators. Frequency-domain data are the measure of how
fast the sensor array responds to the stress change of contact interface, which can be reflected by the
change of the principal frequency in the frequency domain. Therefore, fast Fourier transform (FFT)
was carried out on the output response signal of the sensor array in the whole contact process to
find the corresponding principal frequency as the dynamic response indicators. The sensor array
output signal loaded at each position of each experimental sample was recorded, and the data of the
above two aspects were also extracted and normalized. The experiments were carried out for the
different shapes and different curvature samples shown in Figure 8, and a number of sample data
could be extracted for each. Each set of data for the specific sample contained 18 input data (nine
time-domain characteristics and nine frequency-domain characteristics of the data) and two output
data (object surface type code and radius of curvature, while the surface is plane so only one type of
code is needed). Thereby, the corresponding sample database was established for the training and
testing of the neural network. During the training, the Levenberg–Marquardt training function was
used to adjust the connection weights and threshold of the neural network, and mean square deviation
was used to evaluate the output error of the network.
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Figure 10. Output data of the sensor array using a sphere sample: (a) the curvature radius is 5 mm
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loading position is in the center of Figure 9a.

4.3. Experimental Results

First, the surface types of the samples were classified, and 70% sample data were randomly
selected from the sample database for neural network training. That is, the total amount of data in the
sample database was 16,010, of which 11,206 random sample data were used for training. The sample
data included surface types, different loading positions, and different curvatures. The confusion matrix
results of training, verification, and testing of the neural network for surface type classification are
shown in Figure 11, where codes 1, 2 and 3 represent plane, convex sphere, and convex cylinder,
respectively. The target group represents the real surface type code, and the output group represents
the predicted surface type code. The green box in the figure represents the number and proportion of
samples whose predicted code was consistent with the actual code, while the pink box represents the
number and proportion of samples whose actual code was incorrectly predicted to be another code.
The green number in the light gray box at the bottom indicates the correct prediction proportion in
the sample with the actual code, while the red number indicates the wrong prediction proportion.
The green number in the light gray box on the right indicates the correct prediction proportion in
the sample with corresponding prediction output code, while the red number represents the wrong
prediction proportion. The green number in the dark grey box at the bottom right represents the
proportion of all correctly predicted samples in the total sample, while the red number represents the
proportion of incorrectly predicted samples.

The experimental results show that the classification accuracy rate of training process was 93.3%,
the accuracy of validation process was 91.8%, and the accuracy of testing process was 93.3%. The overall
accuracy was 93.1%, considering the different loading positions and rich curvature radius values.
The accuracy of this method is similar to that in the existing research, but the existing research does not
include any experiments on load position variation, and had less different curvature values used in its
experiment [6].

After the object surface type classification, we needed to estimate the curvature radius of the
object. Two neural network models, A and B, were built for training according to the sample database
of the convex sphere and convex cylinder, respectively. The architecture of model A and model B is
shown in Figure 6b. At the same time, a synthetic neural network model C was also established to
estimate curvature radius for the hybrid sample database of the convex sphere and convex cylinder in
the case of unknown surface types in advance. The synthetic model C is actually a combination of the
classification model, model A and model B. The curvature type of the sample is first classified by the
classification model, and then the specific curvature value is estimated by the corresponding model A
or B. The output of the synthetic model C includes the type of curvature and the specific curvature
value. If the type is the plane, then it is output directly.
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Figure 11. Object surface type classification results.

The experimental results are shown in Figures 12 and 13. Figure 12 shows the distribution of
the average curvature radius estimating error. The error of model A for the convex sphere curvature
estimating was 1.18 mm, and the estimating error of 90.4% samples was less than 3 mm. The average
curvature radius estimating error of model B for the convex cylinder curvature estimating was 2.75 mm,
and the estimating error of 69.7% samples was less than 3 mm. The average curvature radius estimating
error of synthetic model C for the mixed convex sphere and cylinder curvature estimating was 1.87 mm
and the estimating error of 81.8% samples in total was less than 3 mm. Figure 13 shows the distribution
of the mean relative error at different curvature radius. Figure 13a is the curvature radius estimation
results of model A for the sphere. When the curvature radius was larger than 5 mm, the relative error
was less than 17%. The relative error increased to 60% when the curvature radius was 1 mm (i.e.,
the mean error was 0.6 mm). Figure 13b is the curvature radius estimated by model B for the cylinder.
When the radius of curvature was larger than 5 mm, the relative error was less than 40%, and when
the radius of curvature was larger than 7 mm, the relative error was less than 24%. The relative error
increased sharply when the curvature radius was close to 1 mm, reaching 300% (i.e., the mean error
was 3 mm). Figure 13c is the estimation results of the curvature radius of all types by the synthetic
model C. When the curvature radius was larger than 5 mm, the relative error was less than 20%.
The relative error increased to 200% when the curvature radius was 1 mm, (i.e., the mean error was
2 mm). Therefore, the established neural network curvature radius estimating model could estimate
the surface curvature radius of convex sphere and convex cylinder, respectively, and the synthetic
model C could successfully estimate the object curvature radius without the prior information of
surface types.
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The model training time was about 10 min with a workstation Intel Xeon E5-2687W v3. The average
estimation time was 72 µs for the trained neural network, and the algorithm ran on a PC with an Intel
Core i5-4200M processor, 8GB of RAM, and a 64-bit Windows 7 Ultimate operating system.

5. Discussion

In this section, we evaluate the performance of the curvature discrimination algorithm based on
the sparse sensor array, and compare the results with existing research and the curvature discrimination
ability of human fingers. First, the authors discussed the curvature type classification performance
of the algorithm. In the existing research on classification of curvature type using tactile technology,
N. Wettels et al. [6] classified four samples with an accuracy of 94.7% and S. Salehi et al. [7] classified
three samples with an accuracy of 97.5%. In this paper, the authors tested three types of samples and
each type included 30 different radius samples (except for the plane). This is equivalent to classifying
61 different samples into three types with an accuracy of 93.1%. Under a more systematic experiment,
the accuracy remained at the same level, showing the good performance of the sensor we designed as
well as the algorithm.

More strikingly, the authors estimated the curvature value of the sample. As the relevant
research is relatively superficial, we evaluated the results with the curvature discrimination ability
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of the human body. In 1991, A.W. Goodwin et al. [29] pointed out that fingers can distinguish the
difference in curvature between 6.95 mm and 6.33 mm, and the difference was 3.48 mm and 3.13 mm,
respectively. About 10% of the curvature difference could be discriminated. A few months later, another
experiment [30] showed that when the contact area was constant, a human finger could identify a 13%
difference in curvature at 3.50 mm and 18% difference in curvature at 6.49 mm. In 2014, Gregory J.
Gerling et al. [31] came to a conclusion similar to Goodwin’s through modeling and simulation. It is
worth noting that the aforementioned human finger’s discrimination of curvature does not identify the
specific value of curvature, but only determines whether the two curvatures of the given samples are
identical. There is still a gap between this and judging the curvature value directly. Our curvature
discrimination results showed that when the radius of curvature was bigger than 5 mm, the average
relative error was less than 20%. When the radius of the curvature increased, the average relative error
decreased. When the radius of curvature was small, the error was indeed large, and the error increased
sharply when the radius of curvature was 1 mm. The discrimination effect needs to be improved when
the radius of curvature is small, and it may work to improve the discrimination accuracy through
separate modeling training.

In more detail, the density of the sensing elements can be evaluated with human hand
mechanoreceptor density. There are four types of functional classes of tactile afferents [32]: slowly
adapting type I (SAIs); slowly adapting type II (SAIIs); fast-adapting type I (FAIs); and fast-adapting
type II (FAIIs). The response of SAIs increased from the curvature radius of 1.92 mm to the plane;
the response of SAIIs increased when the curvature radius from 5.81 mm to 12.4 mm, but did not
change significantly in other ranges. The other two types (FAIs and FAIIs) had no obvious response
to curvature. SAI was mainly distributed at the fingertips, with a density of 70/cm2. SAII, on the
other hand, was more evenly distributed in the palm, with a density of about 20/cm2 [33]. In 2011,
Isabelle I. et al. indicated through a validated computational model [34] that a population must have
at least 20 sensors/cm2 to maintain response resolution in daily living [35], which is close to the density
of SAII receptors. As a comparison, the sensor array density we used in this paper was less than
9/cm2, which is smaller than the density of human SAII receptors. The discrimination result was
close to that of the SAII receptors, and the sensing range was slightly larger than that of the SAII
receptors. Although the discrimination effect was slightly weaker than the performance of the finger
tips, it is similar to the discrimination performance of other parts of the human hand, which has a very
promising application prospect.

6. Conclusions and Outlook

In this paper, a previously published sparse tactile sensor array from our laboratory was used to
systematically investigate the performance of tactile sensors in curvature response through an artificial
neural network including classification and estimation of the curvature value. Abundant, plentiful
samples were used in our experiment including plane, spheres, and cylinders and the curvature radius
ranged from 1 mm (pen tip, electrical wire) to 30 mm (apple, door handle, water bottle), covering
most everyday items and guiding practical applications. The results showed that the classification
performance of curvature type by this method was effective, and the classification accuracy reached
93.1%. Regarding the estimation of the curvature radius value, the results showed that the relative
error was less than 20% when the radius of curvature was larger than 5 mm. We consider this to be an
acceptable result when compared with a human finger experiment, which shows that the lab-developed
sensor has very promising application prospects.

In future works, the following aspects can be improved and expanded based on the work of
this paper: explore the method of non-convex object surface curvature discrimination, consider the
actual contact situation after integrating the sensor array into an artificial hand, and extend the object
curvature discrimination method to an arbitrary contact state.
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