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Abstract: Customized manufacturing of a miniaturized device with micro and mesoscale features is a
key requirement of mechanical, electrical, electronic and medical devices. Powder-based 3D-printing
processes offer a strong candidate for micromanufacturing due to the wide range of materials,
fast production and high accuracy. This study presents a comprehensive review of the powder-based
three-dimensional (3D)-printing processes and how these processes impact the creation of devices
with micro and mesoscale features. This review also focuses on applications of devices with micro
and mesoscale size features that are created by powder-based 3D-printing technology.

Keywords: 3D printing; 3D-printed devices; powder bed fusion technologies; micro and mesoscale
3D printing; minimum feature size; 3D-printed scaffold

1. Introduction

Additive manufacturing, also termed three-dimensional (3D) printing, is a process that transforms
the computer aided-design model into a true 3D object using various materials. The 3D printing
provides unparalleled flexibility that enables layer-by-layer construction of functional parts with
complex shapes and geometries. The 3D printing emerges as a viable alternative to conventional
industrial production technology [1–3]. Much effort has been made to characterize the durability,
surface finishing and mechanical properties of 3D-printed objects [4–12]. Nevertheless, concerns
are raised for applications that subject 3D-printed parts to repeated stress that may cause fatigue
failure [12–16]. The 3D-printing revolution has been seen by many as one of the technologies that will
form the industrial revolution 4.0. Compared to the conventional subtractive manufacturing methods,
3D printing enables high design complexity and shorter design cycle [17–19].

3D printing is primarily classified into seven categories: (1) binder jetting, (2) powder bed fusion
(PBF), (3) directed energy deposition, (4) material jetting, (5) vat polymerization, (6) material extrusion
and (7) sheet lamination [20,21]. The 3D printing could also be categorized based on the primer materials
into the categories of liquid-, solid- and powder-based processes [22]. The powder-based process is
one of the most significant and popular class of 3D-printing techniques [23–28]. This popularity is
due to the high reusability rate of the powder material, faster production speed, strong functional
parts, lower cost, no or minimum support structures, different fields of application and a large range of
compatible materials [2,3,12,23–27,29–40]. The burgeoning field of 3D printing has changed the way
products are manufactured in many industries by offering a higher degree of freedom in design and
fabrication with a wide range of materials [41–45].
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Several industrial sectors including biomedical, industrial, chemical, aerospace, electronics,
communications and energy, have the need to miniaturize their products for various purposes.
The conventional micromachining techniques are unable to achieve true 3D structures and face
challenges in manufacturing complex shapes [46,47]. Significant effort has been put into developing
micro 3D printing processes based on stereolithography (SLA), material/binder jetting, micro selective
laser melting/sintering processes and micro cladding [48–60]. Although micro 3D printing can print
true 3D microfeatures, its throughput is too low for industrial scale manufacturing [48–53] and most of
these techniques are still under development phase. In comparison to other 3D-printing processes,
industrial powder-based 3D-printing processes have significantly higher throughput, but limited
resolution [17,50,52,61,62]. To achieve both high-resolution and high-throughput manufacturing,
a multiscale and multi-print speed 3D-printing process is desired to print microscale features
with a high-resolution and the rest of the part at a high speed. Powder-based 3D printing is
well-suited for industrial scale manufacturing due to its high throughout, high scalability, post-printing
processability and wide material selection [7,24,29,48,63–67]. However, industrial powder-based
3D-printers are often limited by the lack of transparent material and relatively low printer resolution
and accuracy [17,41,44,62,68]. Based on the smallest feature of a 3D-printed component, we categorize
powder-based 3D printing into nanoscale (<100 nm), microscale (100 nm to 100 µm), mesoscale (100 µm
to one millimeter) and macroscale (>one millimeter). In this review, we will examine the capability of
various powder-based 3D-printing processes in resolving micro and mesoscale features with a size
ranging from 10 µm to 1 mm in size (with several examples slightly larger than one millimeter) and
evaluate their suitability for various applications. At present, it is impractical to fabricate nanoscale
features with powder-based 3D-printing processes [48,50,69,70], and the advances in macroscale
powder-based 3D printing have already been extensively reviewed [4,12,27,28,37,39,63–65,68,71–79].
Therefore, these two areas are beyond the scope of this review. Although the 3D-printed components
discussed in this review may have a large overall size, they are categorized according to the size of
their smallest feature.

2. Powder-Based 3D-Printing Modalities and Their Resolution

Powder-based 3D-printing processes are very common in polymer 3D printing as well as in metal
3D printing [23,24,26]. Figure 1 shows the schematic diagram for the classification of powder-based
3D-printing processes. Out of the seven 3D-printing categories, powder-based 3D-printing processes
cover only three categories; binder jetting, PBF and directed energy deposition. Both powder injection
(or blown powder) and powder bed feedstock mechanisms are used for metal powder-based 3D-printing
process. Till now, only powder bed feedstock mechanism is used for polymer powder-based 3D-printing
process. Powder injection-based 3D printing, such as powder directed energy deposition (PDED),
utilizes an energy source to melt the blown powder deposited by a nozzle. In this scenario, the PDED
process is typically used with metal powders only. PDED is popular for part repair or modification [80].
However, PDED is also capable of manufacturing metal alloy-based near net-shape parts [81].
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As shown in Figure 1, powder bed 3D-printing processes can be subdivided into a powder bed
binder jetting (PBBJ) and PBF. PBBJ utilizes a liquid binding agent to glue the powders in selected regions
of a powder bed. Generally, post-printing sintering is required to improve mechanical properties of the
PBBJ-printed objects [63,66,78,82–84]. On the other hand, PBF technology, first introduced by Deckard
and Beaman [85], utilizes energy source (thermal, laser, electron beam or infrared source) to melt or
sinter powders in selected regions on the powder bed [23,86]. Various kinds of materials, such as sand,
calcium carbonate, polymer powder, metal powder, ceramic powder and composite powder, can be
used in the powder bed 3D-printing process. Support structures are generally not required in the
powder bed 3D-printing process as the un-fused or un-glued powders function as the supporting
structure. After the object is created, the un-fused or un-glued powder is removed and, in some cases,
reused. Various techniques are used to remove the un-fused powder such as mechanical brushing,
ultrasonication, shot-peening, compressed air and bead blasting [23,27,82,86]. The minimum feature
size recommended as per standard manufacturing guidelines for the polymer PBF process and metal
PBBJ is around 0.5 mm and 1–2 mm, respectively [87].

Figure 2 shows the basic working principle of main established industrial powder-based
3D-printing processes. The main powder-based 3D-printing processes are explained as follows:
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Figure 2. Schematic diagram of the various powder-based 3D-printing processes. (a) Powder bed
binder jetting (PBBJ): jetting of chemical binder; (b) multi jet fusion (MJF): jetting of fusing and
detailing agent. Infrared heat absorbing polymer fusion method; (c) selective laser sintering (SLS): laser
powered sintering method; (d) selective laser melting (SLM): laser powered localized material melting
method, (e) electron beam melting (EBM): electron beam powered localized metal melting method;
(f) powder directed energy deposition (PDED) or direct laser metal deposition (DLMD): laser powered
injected-material melting method.

2.1. Powder Bed Binder Jetting

Early work on PBBJ came from a research group at Massachusetts Institute of Technology [88]
(Figure 2a). The PBBJ process makes use of liquid binding agent to join adjacent powder particles in each
layer, after which the printing bed is lowered to allow the deposition of another powder layer as shown
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in Figures 2a and 3a. This method can 3D-print a green part with a range of different materials, including
polymer, metals, sand, ceramics, chalk powder, mixed materials and composites [61,63,76,83,89–91].
However, the post-processing (e.g., debinding) of green parts could be time-consuming, and the green
parts often are not suitable for designed applications. Generally, sintering is required to reduce porosity
and improve mechanical preformation of the 3D-printed green part, and infiltration is sometimes
required (Figure 3a) [82,91–96]. After fabrication, hot isostatic pressing could be used to increase
the density of the green parts [63,66,82,83,93]. PBBJ allows the printing of large objects. Typical
feature size for ceramic PBBJ is reported around 22–500 µm [97,98], and the typical feature size of
metal and polymer PBBJ is 100 µm [99] depending on the size of the powder used for printing [98].
This 3D-printing process is ideal for the production of porous ceramic components [71]. The strength
and the surface roughness of the green part is directly dependent on the powder size and binder
spreading. The 3D-printed mesh structure (Figure 3b) using finer powders (<20 µm) shows a better
surface roughness and higher green strength. However, it is also reported that the over spreading of
the binder may reduce dimensional accuracy of 3D-printed parts. As shown in Figure 3b, the printed
dimension appears bigger than the designed dimension (650–770 µm vs. 400 µm) as a result of binder
over spreading [100]. Figure 3c shows that components 3D-printed by PBBJ using Ni–Mn–Ga magnetic
shape-memory alloys powder [101] have complex shapes and different porosities.
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permission from [92]; (b) PBBJ 3D-printed mesh structures with powder size < 20 µm. The designed
width is 400 µm, and the measured width ranges from 650–770 µm. Reproduced with permission
from [100]; (c) example of PBBJ 3D-printed components with complex shapes. Reproduced with
permission from [101].

2.2. Multi Jet Fusion

HP, Inc; (HP) introduced the multi jet fusion (MJF) 3D-printing process, a special type of PBF
process [20,102,103]. This technique is like PBBJ and an inkjet system in terms of the material
feedstock [66]. However, the fusing mechanism of MJF is entirely different from PBBJ and SLS because
it fuses the material with the help of infrared heating and a chemical fusing agent [67,103,104]. Figure 4
provides a schematic diagram of MJF 3D-printing process and various examples of PBF 3D-printed
parts. Figures 2b and 4a show the detailed working principle of MJF 3D-printing process. In this
process, a thin layer of powder is first spread from the powder bed feedstock to the print bed that is
pre-heated to a uniform temperature. Then, as per print requirement, the fusing agent and detailing
agent are dispensed onto selected regions of the powder bed using HP thermal inkjet system (print
head). After this, the print bed is exposed to an infrared source that allows the final fusing of the
powder in selected regions (Figure 4a). The fusing agent is basically a radiation absorbing material
infused into the powder bed [23,32,103,105]. Hence, the regions on the powder bed with infused
fusing agent absorb more heat, resulting in melting and fusing the polymer powders. The detailing
agent (non-absorbing material) is dispensed along the fused boundary to counteract the effect of the
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fusing agent. It cools down the temperature of the powder bed. Detailing agent also reduces the
thermal distortion in 3D-printed parts and improves the accuracy and detail of prints close to the
fused boundary [106,107]. The extended melt and fusing time results in better fusing. The current
powder materials available for MJF are polyamide (PA) 11, PA 12 and thermoplastic polyurethane
(TPU). This emerging 3D-printing modality is suitable for low volume production of parts with
exceptional mechanical strength, high reusability rate of the powder material, faster production
speed as an alternative to injection molding [23,67,103,104]. MJF is capable of printing functional
mechanical parts/devices, biomedical lattices structures, medical orthotics and prosthetics, mechanical
tools and fluid-tight devices [34,67,103,106,108–111]. Figure 4b shows exemplary high-performance
lattice structures 3D-printed by MJF 4200 with cell units ranging from 1.134 to 2.246 mm [106]. The
recommended minimum feature size with standard print quality is around 0.5 mm [87]. However,
the typical feature size can be further optimized down to 250 µm (Figure 4c). Figure 4c shows MJF
3D-printed microchannel of 300-µm width and 250-µm depth.

High speed sintering (HSS) is another similar 3D-printing process like MJF. The HSS 3D-printing
process also jets an infrared absorbing ink that polymerizes the powder under infrared heat [112–119].
However, HSS 3D-printing process does not use detailing agent or transforming agent to improve
accuracy, print detail, color and change material property [107,120].
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2.3. Selective Laser Sintering 

Selective laser sintering (SLS) is the most common polymer PBF process. This technique utilizes 
high-energy laser beam to scan over a layer of powder as shown in Figure 2c. Layers of sintered 
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is a) lowering of the printing bed equivalent to layer thickness, b) deposition of powder on the 
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Figure 4. Concept of MJF 3D printing and example of PBF 3D-printed parts. (a) Schematic presentation
of MJF 3D-printing process. Reproduced with permission from [106]; (b) MJF 4200 3D-printed lattice
structure, HP PA12 material. Reproduced with permission from [106]; (c) MJF 4200 3D-printed
microchannel, HP PA12 material, channel size: 300-µm width, 250-µm depth, channel; (d) typical
flow field design 3D-printed by SLS with channel size, width of 1.5 mm, depth of 1.5 mm and the
land width of 1.0 mm. Reproduced with permission from [121]; (e) fine-walled 3D-printed by SLM
3D-printing process, wall thickness 140 µm. Reproduced with permission from [122]; (f) micro square
channels 3D-printed by SLM 3D-printing process, channel size is 150 µm × 150 µm, the wall thickness
is 120 µm. Reproduced with permission from [122]; (g) thin lattice structure 3D-printed by SLM
3D-printing process of glass. Reproduced with permission from [123]; (h) microfeatures manufactured
by micro-SLM 3D-printing process. Reproduced with permission from [48]; (i) EBM 3D-printed
Ti–6Al–4V gyroid scaffolds. Reproduced with permission from [124].

2.3. Selective Laser Sintering

Selective laser sintering (SLS) is the most common polymer PBF process. This technique utilizes
high-energy laser beam to scan over a layer of powder as shown in Figure 2c. Layers of sintered
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material are fused together, forming complex 3D structures. The basic repetitive building sequence
is (a) lowering of the printing bed equivalent to layer thickness, (b) deposition of powder on the
printing bed and (c) scanning of a laser beam selectively on the printing bed [39]. The printing bed
is pre-heated to sufficient temperature with the filling of inert gas to form a nonoxidative chamber.
The building material can be polymer, glass, ceramic and polymer composite [23]. As reported,
SLS 3D-printing process can produce a typical feature size around 200 µm [125]. SLS 3D-printing
process can produce typical feature size around 40–100 µm [50,58,126]. The SLS 3D-printing process is
suitable for processing a range of materials, such as nylon, polycarbonate, composite of nylon-glass,
ceramics, polymer-metal powders, hydroxyapatite, etc. [127]. Figure 4d shows an example of SLS
3D-printed conventional flow field design of bipolar plates with minimum feature size of 1 mm [121].
A similar process is also followed in metal 3D printing, which is generally categorized as direct metal
laser sintering (DMLS), direct selective laser sintering and laserCUSING [39,128]. Using standard
settings, DMLS can produce a minimum feature size of around 500 µm. However, the minimum
feature size reported in other studies has reached 380 µm and 153 µm, respectively, for standard DMLS
and high-resolution DMLS [52].

2.4. Selective Laser Melting

Selective laser melting (SLM) 3D-printing process and SLS 3D-printing process look very
similar, as both 3D-printing processes use powder bed feedstock and laser energy source. However,
in SLM powder particles are fully melted during the fusing process due to significantly higher laser
powder [80,129]. This process is also commonly mentioned as direct metal laser melting or laser
powder bed fusion (LPBF). Figure 2d shows a representation of the basic working principle of the
SLM 3D-printing process. This process is more suitable for creating dense metal parts. The surface
roughness of the specimen made by SLM is higher than that of the specimen made by SLS. The bonding
strength of SLM 3D-printed part is higher than that of SLS 3D-printed part [27,65,130]. Generally,
commercial SLM 3D-printing process employs 20–50 µm metal powder particles to print 20–100 µm
thick metal layers [48]. It is difficult to further reduce the size of metal particles due to safety concerns
and technical challenges such as poor spreadability [131,132]. The minimum feature size reported
for SLM is in the range of 40–200 µm [29,133]. Figure 4e,f shows an example of SLM 3D-printed
stainless steel microchannels with a square cross-section and a wall thickness of 120 µm [122]. It is also
possible to print glass-like materials using SLM, which could achieve a minimum channel size of 1.1
mm (Figure 4g) [123]. Recently, micro-SLM 3D-printing process has been developed [48]. Micro-SLM
3D printing is capable of printing microscale features as small as 60 µm with a minimum surface
roughness (Ra) of 1.3 µm (Figure 4h) [48].

2.5. Electron Beam Melting

The 3D-printing process of electron beam melting (EBM) employs an electron beam as the heat
source to fully melt the powder in a vacuum environment as depicted in Figure 2e. EBM 3D printing
can only be used to construct metal 3D parts. The metal powder is pre-heated before being fused by
an electron beam. EBM does not require support structures during printing. This technique is often
utilized to fabricate biomedical implants and aeronautic parts made of materials such as titanium
alloy [134]. The spot size of the electron beam is slightly wider than the laser beam [135]. The EBM
3D-printing process can produce a typical feature size around 100–200 µm [33,136]. EBM 3D-printing
process is a viable substitute for SLM 3D-printing process. Because EBM 3D-printing process uses a
high-density energy source, it is possible to produce void-free components. Figure 4i shows three sets
of EBM 3D-printed gyroid scaffolds consisting of various unit cells with a minimum feature size of
0.5 mm [124].
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2.6. Powder Directed Energy Deposition

PDED system consists of a robotic arm (4–5 axis), a powder injection feedstock and a focused
laser as the heat source. As the laser is mainly used as the thermal energy source in this technology,
PDED is also known as direct laser metal deposition (DLMD) [81]. However, electron beam, plasma
and electrical arc are also alternative thermal energy source used in this technology [137]. Figure 2f
shows the working principle of PDED/DLMD process. Lateral or off-axis, continuous coaxial and
discontinuous coaxial powder injection are the three possible powder injection feedstock mechanisms
used in the PDED/DLMD 3D-printing process [80]. The injected powders are immediately melted by
the heat source when they enter the focused heating zone, and the fused material is deposited on top
of the targeted surface. The deposited material gradually solidifies and metallurgically bonded with
the parent substrate material [64,81]. The robotic arm empowers large-space printing, printing on
curved or complex surface and repairing/cladding of existing parts [64]. According to the powder
injection feedstock process, heat source and motion-control method, different PDED/DLMD systems
have been developed such as laser engineered net shaping (LENS), laser metal deposition, direct laser
deposition, direct light fabrication, laser deposition welding and powder fusion welding (PFW) [64,81].
The minimum feature sizes are reported between 500 µm to 3 mm for PDED/DLMD powder-fed
process [52]. PDED/DLMD is a highly flexible 3D-printing process which can be applied to various
applications for medical device manufacturing to medium and large-scale repair [138]. The thickness
of PDED/DLMD 3D-printed layer can be controlled by tuning the laser power and mass flow rate
of the blown powder. The minimum feature achieved by PDED/DLMD is 0.5 mm (Figure 5a) [139].
Figure 5b shows an example of LENS 3D-printed cellular honeycomb structures with a wall thickness
of 0.7 mm [140]. The micro-PDED/DLMD process (µ-PDED/DLMD) has achieved minimum feature
size of 0.5 mm [141–144]. Figure 5c shows a NiTi single track printed by µ-PDED/DLMD with a width
20 µm.
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Table 1 summarizes the applications and process capabilities of different powder-based 3D-printing
processes. The applications of these 3D-printed micro and mesoscale features are discussed in Section 3
in detail.
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Table 1. Different powder-based 3D-printing process capabilities and applications.

3D-Printing Process Layer Thickness (µm) Minimum Feature (µm) Main Applications References

Powder bed binder jetting (PBBJ)–ceramic,
composites 2–300 22–500

Mold manufacturing, microporous bioceramic implants,
bioresorbable devices, Surgical templates, drug delivery system,

Implant with various medicines, highly porous tablet, orodispersible
dosage forms, extended-release tablet

[71,91,99,145–149]

PBBJ–polymer and metal 20–100 100–500 Lattice structures, mold manufacturing, prototyping, implants [91,99,145–147,150]

Multijet fusion (MJF) 80–100 250–500
Lattice structures, prosthetics, functional part, dental aligners,

orthotics, robotic arm/grip, motorbike manifold, fluid
management systems

[87,106,108,109,151]

Selective laser sintering (SLS) 76–100 40–100

Various types of non-porous and porous structures, scaffolds,
biodegradable scaffolds, biomedical fabrication, dental components,

craniofacial and joint implants, modified-release and
immediate-release tablets, orally dissolving tablet

[99,126,146–150,152–155]

Selective laser melting (SLM) 20–100 40–200
Electronics, aerospace, scaffolds, biodegradable scaffolds, biomedical

fabrication, cervical, vertebral body replacement, porous dental
implants, heat exchanger, cryogenic switch, heat sinks

[3,33,146,152,156]

Electron beam melting (EBM) 50–200 100–200 Various types of non-porous and porous structures, scaffolds, turbine
blade manufacturing and repair [3,33,152]

Powder directed energy deposition (PDED) 200–800 500–3000 Repair of bespoke parts, biomedical fabrication, knee and hip
implants, turbine blade manufacturing and repair [3,33,152]
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3. Powder-Based 3D Printing for Fabricating Devices with Micro and Mesoscale Features

Powder-based 3D-printing covers a broad range of applications in industry and academia [35].
In this section, devices that are fabricated by powder-based 3D printing and have micro and mesoscale
features that are crucial for intended applications will be discussed in detail. All devices will be
compared and summarized in Table 2 in terms of the powder-based 3D-printing process, smallest
feature size and material.

3.1. Biomedical, Chemical, and Pharmaceutical Applications

Powder-based 3D printing demonstrates important applications in biomedical, chemical and
pharmaceutical devices. In, general, powder-based 3D-printing process are capable of fabricating
device with minimum feature sizes around 50 µm (Table 1) [29,33,99,133,136]. Powder-based 3D
printing allows the manufacturing of various complex non-porous and porous structures. In the
context of biomedical applications, 3D-printed lattice structures help the bone ingrowth that eventually
leads to improved implant durability. Manufacturing of medical implants are the one area that benefits
most from powder-based 3D-printing technology [27,152,157–161]. The 3D printing medical implants
enables customized implant design and modification, allows fast design iteration, reduces the cost for
low-quantify production and leads to better clinical outcomes. To date, applications of powder-based
3D printing in the biomedical field is still limited to parts with meso and macroscale feature size,
such as customized microwell plates to house membranes of different sizes [162]. The 3D-printed
devices fabricated by powder-based 3D-printing processes have been applied to biomedical, chemical,
healthcare industry [163–166].

Powder-based 3D-printing processes can create various types of pore architecture with
microporosity (40–100 µm) or macroporosity (>100 µm). Pore architecture and pore size are the critical
parameters for cell migration into the scaffolds [126,144,152,167–170]. Generally, the minimum designed
pore size is the minimum feature size of the 3D-printed scaffolds, whereas the naturally occurring
micropores as a result of the material properties are not considered the minimal feature of the 3D-printing
process. Figure 6 shows some examples of the powder-based 3D-printed scaffolds. Figure 6a,b shows
the PBBJ-printed scaffolds with a minimum feature size ranging from 330 µm to 1 mm [161,171].
Polycaprolactone scaffold manufactured by SLS 3D-printing process was reported with minimum
micropores size 40–400 µm (Figure 6c), which was found effective for cell attachments [126,172].
Pores can be designed with a size down to 0.5–1.2 µm for ceramic-based scaffold, and it has been
3D-printed by SLS 3D-printing process successfully [173,174].

SLM 3D printing is also a good candidate for the fabrication of customized bionic implant
with Young’s modulus and yield strength comparable to human bones to facilitate bone tissue
regeneration [175]. The minimum feature size of SLM 3D-printed bionic implant was approximately
0.26 mm. The pore size of the hexagonal mesh within the implant was customizable between 60 µm
and 265 µm. Structural implants with multilayer hexagonal mesh structure were important to reduce
stress shielding and enable bodily fluid to transport through the implant to promote tissue regeneration.
Another similar example of SLM 3D-printed porous implants for the lower jaw restoration was
demonstrated to have a minimum feature size of approximately 1 mm. By varying the porosity,
the 3D-printed implant was able to sustain compressive pressures ranging from 20–350 MPa [176].
Figure 6d shows an example of bone implant 3D-printed with porous Ti–6Al–4V using DMLS
3D-printing process. The average pore size of the implant is 723 µm [177]. Complex Zn implant
structures with a strut diameter of 200 µm was successful demonstrated using SLM 3D-printing
process [178] (Figure 6e,f).
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Figure 6. Examples of various powder-based 3D-printed scaffolds. (a) PBBJ 3D-printed specimens
of various sizes, shapes and lattice structure designs. Reproduced with permission from [171];
(b) PBBJ 3D-printed grid structure with wall thickness of 330 µm. Reproduced with permission
from [161]; (c) SLS 3D-printed polycaprolactone scaffold with pore size 40–400 µm. Reproduced
with permission from [126]; (d) Ti–6Al–4V implant prototypes manufactured by direct metal laser
sintering (DMLS). Reproduced with permission from [177]; (e) cardiovascular stents 3D-printed by
SLM 3D-printing process. Reproduced with permission from [178]; (f) scanning electron microscope
(SEM) image of cardiovascular stents. Reproduced with permission from [178]; (g) EBM 3D-printed
porous acetabular cup implant. Reproduced with permission from [27]; (h) EBM 3D-printed mesh
structures for intercellular cell communication and osteoincorporation. Reproduced with permission
from [179]; (i) microcomputed tomography image of the Ti–6Al–4V dental implant 3D-printed by EBM
3D-printing process. Reproduced with permission from [180]; (j) sintered partial denture framework
3D-printed by PBBJ 3D-printing process. Reproduced with permission from [181].

Customized implants with mesoscale features of approximately 0.3 mm have been fabricated
using EBM 3D-printing process. Such structures could not be achieved using conventional machining
or molding techniques. Each implant is customized by modeling with individual’s anatomic data
obtained from medical imaging (Figure 6g) [27]. In the field of bioreactors, EBM 3D printing helped to
create Ti–6Al–4V discs with a thickness of 2 mm for mouse fibroblast cell culture [182]. The orientation
of the part during 3D printing was tested to investigate how it would affect the proliferation and the
attachment of cells. The results showed that the chamber printed at 90◦ and 55◦ orientation enabled
the cells to spread to a wider area compared to the horizontal orientation. An EBM 3D-printed mesh
structure was used to investigate cell-to-cell communication, including proliferation, synthesis of
extracellular and intracellular proteins and mineralization (Figure 6h) [179]. The minimum feature size
of the mesh was approximately 0.5 mm. A layer of bioactive titania with a pore size of 1–3 µm was
applied on the surface of the 3D-printed complex porous structures. This structure would facilitate
oxygen and nutrient transfer to the cells. Plasma electrolytic oxidation applied on the surface was
an important step to improve the bioactivity of the mesh structures. A similar anodized 3D-printed
Ti–6Al–4V mesh structure fabricated by EBM 3D printing was used for mouse pre-osteoblast cell
culture [183]. The surface of the alloy was modified to incorporate titania nanotubes with an average
pore size of 80 nm to promote the expression of proteins. The bioactive oxide layer with nanoscale pores
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residing within the interconnected 3D-printed mesh created a natural bone-like environment for bone
formation. EBM 3D printing was also used to form interconnected foamed structure with ligaments
for cell culture [184]. The foamed structure was favorable for cell migration, communication and
mineralization of osteoblasts. The minimum average pore size within the foam structure was 0.7 mm.
A step further to use EBM 3D-printed implants in preliminary human clinical trial was demonstrated
successfully [185]. Different porosity within the mesh and foam structures with variable stiffness
and elastic modulus were designed into the 3D-printed implant to match both soft and hard bones.
By seeding osteoblast and endothelial cell in Matrigel embedded in the implant and inducing hypoxia,
the entire 3D-printed porous structure was fully colonized by cells. Figure 6i shows an example of
EBM 3D-printed rough and porous Ti–6Al–4V dental implants with mesoscale features (thread width)
around 500 µm [180]. The rough and porous surface of the Ti–6Al–4V dental implants facilities bone
ingrowth and strengthens bone bonding. PBBJ 3D-printing process is also capable of manufacturing
patient-specific dental implants. Patient-specific complex metal partial denture framework (Figure 6j)
was fabricated by PBBJ 3D-printing process. In these dental applications, it was found that a wall
thickness of 0.5 mm is a practical lower limit [181]. Patient-specific ankle-foot orthoses (AFO) for stroke
patients was fabricated using MJF 3D-printing process. The 3D-printed AFO significantly improved
the speed and stride length of the stroke patients. The minimum feature (thickness) size of the PA12
AFO was around 1.2 mm [108].

Drug delivery systems have also been fabricated by powder-based 3D printing [186–190]. A drug
delivery system with internal compartments was fabricated using a customized binder jet 3D-printing
process (Figure 7a–c) [186]. The exterior of the drug delivery system was a cylindrical tablet made of
fused powder. Walls made of fused powder partition the interior of tablet into several compartments
that are filled with loose drug powder. The smallest feature in the lateral dimension of tablet was
estimated to be around 1 mm. This 3D-printed drug tablet showed acceptable pharmaceutical
properties with an average disintegration time of about 23 s and an average wetting time of 68 s.
It showed a rapid burst release and delivered more than 98% of its drug load in 2 min. This is an
important area of research where powder-based 3D-printing process could play a major role. Powder
bed 3D-printing process enables the fabrication of drug delivery systems with arbitrary composition,
geometries and shapes that could be tuned to control the drug release profile [187–190]. An interesting
cell encapsulation device was fabricated using SLS 3D printing [191]. A patterned macrocapsule with
smallest feature ranging from 0.5 mm to 1 mm was 3D-printed by SLS to encapsulate cell-containing
microcapsules for cell-based therapy. The porosity, which was controlled by the sintering conditions,
was used to adjust the oxygen and nutrient exchange as well as the vascularization process. The 3D
printing also helped to achieve rapid prototyping of different biocompatible materials. Similarly,
SLS 3D printing can also be used to create an orally disintegrating tablet with a thickness of 2 mm [192].
Different drug release profile can be achieved by varying the SLS 3D-printing parameters. The tablet
only needs 4 s to fully dissolve in water due to the reduced density and increased porosity

SLS 3D printing was employed to print graphite composite with mesoscale features down to 1 mm
for fuel cell application [193]. The ability of 3D printing to create sophisticated 3D architectures allowed
further improvement on the performance of fuel cells. The sophisticated 3D structures within the
fuel cell, including channels with multiple outlets or inlets, micro-ridges and flow-through electrodes,
accelerated the mass transfer in the depletion layers. The fuel cell improved its performance by
implementing these designs to tackle reactant depletion and crossover issues. Powder bed 3D printing
showed great promises for the fabrication of the next-generation fuel cells by offering on-demand and
flexible manufacturing. SLM 3D printing was used to advance the development of reverse-phase liquid
chromatography [194,195]. A titanium (Ti–6Al–4V) alloys complex chromatographic column with
an internal monolithic phase was created using SLM 3D printing (Figure 8a). The minimum feature
size of the complex internal channel was 0.9 mm [195]. The channel was filled with porous polymer
monolith to separate intact proteins and peptides from mixtures. In addition, SLM 3D-printing process
was capable of producing glass (soda lime silica)-based closed mesofluidic channels with minimum
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internal diameter of 1.1 mm (Figure 8b). These highly porous glass-based 3D-printed structures could
be used as scaffolds or catalysts structured (Figures 4g and 8b) [123]. Figures 4d and 8c–e show a
few examples of 3D-printed flow field plates for micro fuel cell [121,196,197]. The minimum feature
(channel) size of the graphite composite-based bipolar plates fabricated by SLS 3D-printing process is
down to 1 mm [121,197]. In comparison, the minimum feature (channel) size of stainless steel flow
field plates goes down to 500 µm [196].
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Figure 8. Example of various powder-based 3D-printed fluidic applications. (a) SLM 3D-printed
capillary liquid chromatography, (0.9 mm inner diameter. × 60 cm length). Reproduced with permission
from [195]; (b) thin glass tubing 3D-printed by SLM 3D-printing process. Reproduced with permission
from [123]; (c) SLS 3D-printed graphite composite-based bipolar plates, channel width—1.5 mm and
depth—1.5 mm. Reproduced with permission from [197]; (d) bio-inspired flow field designs 3D-printed
by SLS 3D-prining process, land width of 1.0 mm. Reproduced with permission from [121]; (e) stainless
steel flow field plates 3D-printed by SLM 3D-printing process, channel size 500 µm. Reproduced with
permission from [196].

SLS 3D-printing process was used to fabricate filters using porous material with a pore size of
approximately 20µm. The filter thickness is 1.5 mm. Materials with high porosity, such as metal–organic
complex copper (II) benzene-1,3,5-tricarboxylate, was used as the primer powder for SLS 3D printing.
The X-ray analysis pointed out that the inherent structure of metal–organic-framework (MOF) is intact.
When using PA 12 as the supporting matrix to hold the MOF materials, the 3D-printed structure could
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be used as filters catered for various applications [198]. SLS 3D-printing technology also helped to
create filters that could withstand harsh environment with high pressure, temperature, corrosive wear
and tribomechanics [199]. The filter could remove harmful gases during crude oil extracting. The pores
within the filter were controllable by adjusting sintering conditions and properties of the polymer
powder. The low oil permeability of the SLS 3D-printed filter was suitable for hydro seal.

3.2. Electrical and Electronic Application

Fabricating components that support electronic or sensing applications is another area where the
powder-based 3D-printing technology plays a part [200].

Metal PBBJ was used to create fractal monopole antennas [201]. These complex structures,
which could only be fabricated by 3D printing, reduced the material cost and improved the antenna
performance with different matching and radiation patterns. The smallest feature on the antenna
structure is approximately 2 mm. The 3D-printed antennas were used for 2G Hz Bluetooth and
wireless local area network (WLAN) band. Another improved version using inverse fractal shape also
supported 5.5 GHz WLAN frequency. The antenna consisted of various complex mesoscale structures.
The complex 3D antenna design resulted in an improved antenna matching for a higher frequency
region within the bandwidths compared to the conventional Sierpiński tetrahedron structure and a
reduction in volume by 75% which was significant for material cost saving. To fabricate more precise
features for integrated electronics, there was a need to develop powder-based 3D-printing techniques
with high-resolution and better surface finishing [201]. An SLM 3D-printed Cu-15Sn waveguide was
used in millimeter-wave and terahertz applications. The cross-section of the waveguide has a dimension
of 3.03 × 1.55 mm at E-band, 1.73 × 1.55 mm at D-band and 0.88 × 0.45 mm at H-band. The attenuation
of the waveguide was comparable to commercial nonmetallic waveguide at E-band [202].

Figure 9 shows some examples of 3D-printed electrical and electronic devices. Figure 9a shows an
example of PBBJ 3D-printed SS 316L monolithic multi-emitter corona ionizer array with a minimum
feature (tip diameter) size of 300 µm [52,203]. Another example of PBBJ 3D-printed device is shown
in Figure 9b,c. This device is a complex collimator made of B4C–Al composites with a minimum
mesh size of 1.5 mm [96]. PBBJ 3D-printing technique was used to create a ceramic-based device
that showed piezoelectric response [204]. The minimum feature size of the device was approximately
1–2 mm. The dielectric constant of sample tested in the direction normal to the printing layers was
higher than the that tested in the direction parallel to the printing layers. The device achieved 80% of
the theoretical piezoelectric properties using ceramic BaTiO3 with only 36.77% density of conventional
devices. This device showed potential for efficient and cost-effective sensing and energy harvesting.

Figure 9d shows various piezoelectric polymer/nanocomposite (PA11/BaTiO3)-based complex
micro and mesoscale structures fabricated by SLS 3D-printing process [205]. SLS 3D-printing technique
helped to create flexible and electrically conductive TPU/graphene (TPU–GE) cellular structures [206].
The smallest 3D-printed feature in the specimen was approximately 2 mm. The SLS 3D printing was
especially useful for creating complex periodic structures. The 3D-printed specimen demonstrated
the ability to conduct electricity due to the graphene nanoplatelets assembled on the surface of
the TPU powder. The 3D-printed porous structures showed excellent strain sensitivity in negative
piezoresistive behavior. The TPU–GE porous structures showed potential applications in wearable
sensors, soft implants and dielectric elastomer actuators. SLS 3D printing also proved itself to be a
suitable candidate for creating 3D-molded interconnect devices (MID) [207,208]. SLS 3D printing could
selectively metallize the surface of PA12 catered for rapid prototyping and small-scale production
of 3D-MIDs. The metallization of the PA12 surface increased the mechanical properties and heat
conductivity of the 3D-printed PA12 components. This was achieved via coating the SLS-polymer with
special paint containing additives for laser direct structuring followed by copper deposition in selected
regions. The smallest feature of the interconnects demonstrated was approximate 1–2 mm.

Multiscale supercapacitor based on Fe–Ni alloy has been fabricated using SLM 3D-printing
process [209]. This multiscale supercapacitor has well-arranged porous structure of a minimum feature
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(pore) size of 150–200 µm (Figure 9e,f). These porous structures increase the specific surface area of
the 3D-printed multiscale supercapacitor, which leads to a high specific capacitance of the 3D-printed
device. Micro-actuators have been fabricated using SLM 3D-printing process with a minimum feature
(width) of around 50 µm without compromising the properties of shape-memory alloys (Ni-Ti) [210].
Figure 9g shows the Ni–Ti micro actuator phase transformation under elevated temperature.
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Figure 9. Example of various powder-based 3D-printed electrical and electronic application devices.
(a) SS 316L monolithic corona ionizer arrays, diameter tip 300 µm. Reproduced with permission
from [203]; (b,c) PBBJ 3D-printed B4C–Al composites complex collimator, minimum mesh size 1.5 mm.
Reproduced with permission from [96]; (d) SLS 3D-printed PA11/BaTiO3 nanocomposite various
complex structures. Reproduced with permission from [205]; (e,f) SEM image of SLM 3D-printed
multiscale supercapacitor, pore size 150–200 µm. Reproduced with permission from [209]; (g) SLM
3D-printed shape-memory micro-actuators, thickness 55 µm. Reproduced with permission from [210].

Another area where powder-based 3D printing could contribute is the manufacturing of electrodes.
The aim is to fabricate pure copper electrodes with the highest possible density for lowest possible
electrical resistivity using minimal laser power [211]. The minimum feature size of a thin electrode
was approximately 200 µm. Heat treatment reduced the porosity of the 3D-printed copper electrode.
Consequently, a pure copper electrode achieved a lower electrical resistivity compared to an electrode
made of other 3D-printing material such as aluminum alloy. Although 3D-printed electrodes have
not yet achieved the resistivity of the conventional copper electrodes, it is low enough to meet the
requirements of certain applications. The advantages of 3D-printed electrode include flexibility for
custom design and higher slot fill factor with high power density, which could reduce the size and
weight of the electrical motor. Electrode with larger slot fill factor increases the optimum power that the
electrode can transfer. There was also some effort in using SLM to 3D-print electrode with a complex
shape design that required long process time for conventional method [212]. The 3D-printed electrode
functioned well as pseudo capacitor, catalytic setup for making oxygen and pH sensor. The performance
of the 3D-printed electrode is similar to commercial electrode. The overall dimension of the electrode
was in the range of centimeters with mesoscale circular structure as narrow as approximately 0.4
mm. PBBJ 3D-printing process was used to make 1 mm thick graphene-based electrode on top of
the porous graphene surface to provide a large surface area [213]. The fabricated graphene electrode
was used in a supercapacitor. A similar technique was used to fabricate graphene hydroxyapatite
nanocomposite structures. The graphene improved the flowability of the nanocomposite material for
better powder spreadability during printing. The compressive strength of the 3D-printed cylindrical
parts with 4 mm diameter was excellent, and those parts were suitable for load-bearing bio-applications.
The nanoparticles in agglomerated graphene oxide sheet enhanced the mechanical strength of the
3D-printed cylinder [214]. Powder bed 3D printing offers a flexible technique for the fabrication of
personalized electronics. One of the smallest functional devices contained steel electrodes 3D printed
using SLM. The overall dimension of the electrode was a rectangle of 6 × 9 centimeters with a smallest
feature size of 0.1–0.2 mm in the vertical direction which had reached the limit of powder-based 3D
printing because each powder layer was approx. 100 µm [215].
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3.3. Industrial, Mechanical and Aerospace Applications

Powder-based 3D printing helps to tackle other challenges by creating multilayer 3D
structures. The automotive, mechanical and aerospace industries are promising fields where
powder-based 3D printing is readily adopted [37,79,120,138,216–218]. There are numerous examples
of powder-based 3D-printed micro and mesoscale components or devices that have been used in
these industries, including functional parts, functional prototypes, tooling, lightweight components,
repair of part, heat transfer devices, mechanical and thermal switches and fuel nozzles among
others [37,79,128,137,139,217–224].

Figure 10a shows MJF 3D-printed functional parts. This 3D-printed fan has a small feature size of
2 mm [128]. SLS 3D-printing technique was used to create honeycomb and reentrant core structures for
motorsport and aerospace applications [224]. The materials used to make these structures were carbon
fiber, aluminum alloy and PA 12. Honeycomb structures with features of 0.42 mm was 3D-printed and
tested for its strength and stiffness. The 3D-printed reentrant cores exhibited greater stiffness to weight
ratio by taking advantage of 3D printing to reduce the cell wall thickness. The SLM 3D-printing process
can print mesoscale glass structures with different features of approximately 0.5 mm. This is a leap
forward from conventional glass forming method by offer a higher degree of flexibility in designing
complex 3D structures [123]. In the area of acoustic sound damping, SLS 3D printing was used to create
multilayer micro-perforated panels (MPPs) for sound absorption with a tunable wideband [225]. The
SLS 3D printing was able to produce different air gap distances, inter-layer distances and geometries
which resulted in a wider frequency bandwidth with a higher overall absorption coefficient and tunable
adsorption peaks at different frequencies compared to the traditional single layer MPPs. The smallest
feature within the panel was 0.9 mm.
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Figure 10. Example of various powder-based 3D-printed mechanical and aerospace application devices
(a) MJF 3D-printed functional part, feature size 2 mm. Reproduced with permission from [109]; (b)
SLM 3D-printed ion optics grids. Reproduced with permission from [226]; (c) repair of compressor
blade by PDMD 3D-prining process, minimum feature size 0.6409 mm to 1.2218 mm. Reproduced with
permission from [222].

3D printing has been used to manufacture aerospace parts with high-performance and
long-service-life ion engine grid [226]. The engine grids with the smallest feature of about 1 mm was
3D-printed by SLM accurately with titanium and molybdenum with an excellent surface finish, which
outperformed conventional optics (Figure 10b). This optical component was used as accelerator ion
optics in the Helicon ion thruster system [226]. Functionally graded materials (FGM) with a gradual
transition from one material to another were realized with SLM 3D printing [227]. This was achieved
by incorporating multiple selective powder delivery arrays into a SLM system. This system allowed a
maximum of six different materials to be deposited point-by-point onto the powder bed. The turbine
disk fabricated by the 3D FGM had a thickness of approximately 1 mm in the blade. The flexibility of
multiple material deposition methods in SLM empowers the creation of FGM components. Figure 10c
shows an example of a compressor blade repairing via PDMD 3D-printing process with a minimum
feature (leading edge) size of 0.6409 mm.
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Table 2. Summary of all powder-based devices with miniaturized features.

Powder-Based Miniaturized Device Smallest Feature Size 3D-Printing Technique Material Short Description References

Near zero-order release dosage forms
(biomedical application) 2.8 mm PBBJ Kollidon SR and

hydroxypropylmethyl cellulose

PBBJ 3D-printed water-soluble compound
enabled a controlled drug released rate

based on different ratio of the two polymers
[189]

Calcium phosphate powder-binder system
for patient-specific implants (biomedical

application)
1 mm PBBJ

Tetracalcium phosphate,
β-tricalcium phosphate and

calcium sulfate dihydrate

Ceramic bone substitute and scaffold for
bone tissue engineering are tested with

in vitro cytocompatibility testing
[157]

Drug delivery devices (biomedical
application) 1 mm Customized PBBJ

Paracetamol, lactose, PVP K30,
mannitol and colloidal silicon

dioxide

Oval fast-disintegrating tablet for drug
release is 3D-printed with accelerated drug

releasing profile
[186]

3D-printed fast-disintegrating tablet
(biomedical application) 1.4 mm Customized PBBJ

Acetaminophen, methylene blue,
colloidal silicon dioxide and

polyvinylpyrrolidone

A fast-disintegrating tablet achieved fast
dissolving properties [190]

3D-printed scaffolds with minimum
(biomedical application) 330 µm–1 mm PBBJ Stainless steel 316

Various sizes, shapes and lattice structure
designs are 3D-printed, evaluated process
parameters, dimensional and mechanical

properties

[171]

3D-printed patient-specific dental implants.
(biomedical application) 0.5 mm PBBJ Nickel-based alloy 625 Patient-specific complex metal partial

denture framework [181]

3D-printed complex collimator device
(electrical and electronic application) 1.5 mm PBBJ B4C–Al composites This highly dense complex collimator is

found to be good for neutron scattering [96]

Thick graphene-based electrodes (electrical
and electronic application) ~1 mm PBBJ Exfoliated graphene oxide powder Porous graphene-based high-performance

supercapacitor is 3D-printed with PBBJ [213]

Graphene hydroxyapatite nanocomposite
structures (electrical and electronic

application)
4 mm PBBJ Graphene oxide, hydroxyapatite

nanocomposite

Graphene/HAP nanocomposite 3D-printed
cylinder with 125 µm layer thickness proved

to have excellent compressive strength
[214]

3D electronic applications (electrical and
electronic application) ~1 mm PBBJ Gold, silver and copper

Conductive paths and other electronic
components are 3D-printed for seamless

integration with other electrical and
electronic functionality

[200]

3D printing of fractal antennas (electrical
and electronic application) ~2 mm Metal PBBJ Stainless steel

The complex inverse Sierpiński tetrahedron
fractal antenna proved functional at two

WLAN bands with 23% less material used
[201]

3D-printed monolithic multi-emitter corona
ionizer (electrical and electronic application) 300 µm PBBJ SS 316L

Demonstrated the design, manufacture and
characterization methods for 3D-printed

corona ionizer
[52,203]

3D-printed induced orthotropic functional
ceramic (electrical and electronic application) ~1–2 mm PBBJ Barium titanate Ceramic-based device for generating

piezoelectric response [204]
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Table 2. Cont.

Powder-Based Miniaturized Device Smallest Feature Size 3D-Printing Technique Material Short Description References

3D-printed patient-specific ankle-foot
orthoses (AFO) (biomedical application) 1.2 mm MJF PA12

The 3D-printed AFO significantly improved
the speed and stride length of the stroke

patients
[108]

3D-printed functional part. (industrial,
mechanical applications) 2 mm MJF PA12 Demonstrated the capability of MJF, to

printed functional parts with high accuracy [128]

3D-printed scaffold (biomedical application) 40–400 µm SLS Polycaprolactone Effective for cell attachments [126,172]
3D-printed porous Ti–6Al–4V scaffold

(biomedical application) 723 µm DMLS Ti–6Al–4V Bone defect repair example of porous
Ti–6Al–4V scaffold [177]

3D-printed scaffold (biomedical application 0.5–1.2 µm SLS Ceramic-based material, Bioactivity improvement, better properties [173,174].

3D-printed orally disintegrating printlets
(biomedical application) 2 mm SLS

Hydroxypropyl methylcellulose
and vinylpyrrolidonevinyl acetate

copolymer powders

Orally disintegrating tablet with tunable
drug release profile [192]

3D-printed macrocapsule for cell-based
therapies (biomedical application) 0.5 mm–1 mm SLS Alginate-poly-L-lysine Microcapsule which can produce therapeutic

proteins [191]

3D-printed electronic circuit carriers
(electrical and electronic application) ~1 mm SLS Copper powder Selectively metallize PA12 surface to form

electrical interconnects [207,208]

3D-printed thermoplastic
polyurethane/graphene cellular structure

(electrical and electronic application)
~2 mm SLS Graphene and thermoplastic

polyurethane
Porous structure which is both electrically

conductive and flexible [206]

3D-printed filter (chemical industry
applications) 1.5 mm SLS MOF copper (II)

benzene-1,3,5-tricarboxylate
SLS 3D-printed filters that can filter out

precious metal from liquid [198]

3D-printed sandwich material for
motorsport applications (aerospace devices) ~1 mm SLS PA12

SLS 3D-printed core structures rival the
performance of common aluminum

honeycomb sandwich material in term of
strength and stiffness

[224]

SLS 3D-printed filter for gas separation
(chemical industry applications) ~2 mm SLS

Brass and polycarbonate/nickel and
polyamide/brass, solder and
colophony/nickel, solder and

colophony

SLS 3D-printed filter for separation of
concomitant gases [199]

Multi-perforated panels (industrial, and
mechanical application) 0.9 mm SLS Polyamide 12 SLS 3D-printed panel for sound damping [225].

AM assisted manufacturing of bipolar plate
in fuel cells (electrical and electronic

application)
1 mm SLS, SLM Fusion of titanium and gold,

stainless steel

3D-printed metal flow field plate gives
comparable performance in mass transport

compared to conventional machining
process

[193]

3D-printed complex implant structures
(biomedical application) 200 µm SLM Zn 3D-printed, biodegradable Zn based metals

cardiovascular stents [178]



Micromachines 2020, 11, 658 18 of 32

Table 2. Cont.

Powder-Based Miniaturized Device Smallest Feature Size 3D-Printing Technique Material Short Description References

3D-printed implant (biomedical application) ~0.26 mm SLM Ti–6Al–4V Biocompatible implant with porous structure
for tissue regeneration [175]

3D-printed implant for lower jaw
(biomedical application) ~1 mm SLM Titanium Customized implant [176]

3D-printed micro-bore columns for
reversed-phase liquid chromatography

(biomedical application)
0.9 mm SLM Ti–6Al–4V powder 3D-printed chromatographic column for

separation of proteins and peptides [194]

Rectangular waveguide for millimeter-wave
application (electrical and electronic

application)
0.43 mm SLM Cu-15Sn

A mechanically robust waveguide for D, E
and F band without post electroplating and

assembling
[202]

Metal electrodes for electrochemical devices
(electrical and electronic application) ~1 mm SLM Stainless steel (316L) 3D-printed electrodes as pseudo capacitor,

oxygen evolution catalyst and pH sensor [215]

3D-printed metal electrodes (electrical and
electronic application) ~0.4 mm SLM Stainless steel Helical stainless steel electrodes had been

coated with IrO2 for pH sensor application [212]

3D-printed multiscale supercapacitor
(electrical and electronic application) 150–200 µm SLM Fe–Ni alloy

Well-arranged porous structure increases the
specific surface area, which leads to a high

specific capacitance of device
[209]

3D-printed pure copper made for
electromagnetic applications (electrical and

electronic application)
200 µm LPBF Copper

Electrical coil with various shapes and
hollow centers is made and testing shows its

potential to be used in electric motors,
antenna and electromagnetic applications

[211]

Ion optics for electric propulsion (aerospace
devices) ~1 mm SLM Molybdenum, combinations of

molybdenum and titanium

3D-printed grids with sputtering erosion
patterns are made and tested as electric

propulsion parts
[226]

3D-printed FGM turbine disk (aerospace
devices) ~1 mm SLM Spherical 316L stainless steel and

Cu10Sn copper alloy
SLM fabricated 316L/Cu10Sn turbine that has
higher hardness than conventional processes [227]

SLM 3D-printed heat transfer devices
(devices for other applications) ~0.5 mm SLM

Stainless steel, aluminum,
Ti–6Al–4V, steel–nickel, Titanium,

etc.

Customized 3D-printed heat transfer device
for cooling applications [228]

3D-printed various lattice heat sinks device
(aerospace devices) 0.53 mm SLM Aluminum 6061 3D-printing process improved the efficiency

of the heat sink. [229]

3D-printed various fin structures (aerospace
devices) 300 µm–1260 µm SLM Aluminum alloy (AlSi10Mg) These 3D-printed fin structures are can be

utilized in devices for efficient cooling [230]

3D-printer mesoscale flow reactors
(aerospace devices) 1 mm–2 mm SLM Stainless steel Internal flow channel was demonstrated. [231]

3D-printed compact heat switch (aerospace
devices) 200 µm–500 µm SLM Ti–6Al–4V Mesoscale hollow internal structures,

operates at cryogenic temperature [232]

3D-printed high-temperature aerospace
resistojet heat exchanger (aerospace devices) 200 µm–800 µm SLM Stainless steel

Design, manufacture and characterization of
a high-temperature resistojet for all-electric

spacecraft
[233]
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Powder-Based Miniaturized Device Smallest Feature Size 3D-Printing Technique Material Short Description References

Manufacturing of glass with various shapes
with micro/macro scale resolution

(Biomedical, chemical, industrial, and
mechanical applications)

~0.5 mm LPBF Soda lime silica glass

High level of complexity of small-scale glass
structures is 3D-printed opening possibilities
for applications in chemistry, biomedical and

decorative glass industries

[123]

Metallic implants based on laser and electron
beam powder-based AM (biomedical

application)
~0.3 mm SLM, EBM

316L stainless steel,
titanium-6aluminum–4vanadium

and cobalt–chromium

EBM and SLM 3D printing enable mass
customized implant at lower cost compared

to conventional molding technique
[27]

Marine species tracking tag (biomedical
application) 1 mm EBM Titanium

A sharp tag with textured surface for easy
penetration of marine species‘ skin for

tracking purpose
[166]

3D-printed disc biocompatibility test
(biomedical application) 2 mm EBM Ti–6Al–4V powder Biocompatible disc for fibroblast cell culture [182]

3D-printed mesh for intercellular cell
communication and osteoincorporation

(biomedical application)
~1 mm EBM Ti–6Al–4V powder Biocompatible mesh for growth of mouse

preosteoblast MC3T3-E1 subclone 4 cell line [179]

3D-printed anodized mesh structure
(biomedical application) ~0.5 mm EBM Ti–6Al–4V powder Biocompatible mesh for growth of mouse

preosteoblast MC3T3-E1 subclone 4 cell line [183]

3D-printed scaffold for cell culture
(biomedical application) 0.7 mm EBM Ti–6Al–4V powder

Biocompatible foamed structure for growth
of mouse preosteoblast MC3T3-E1 subclone

4 cell line
[184]

3D-printed scaffold for titanium implant
(biomedical application) 0.7 mm EBM Ti–6Al–4V powder Biocompatible scaffold for osseointegration

and angiogenesis testing [185]

3D-printed rough and porous dental
implants (biomedical application) 500 µm EBM Ti–6Al–4V Dental implants facilities bone ingrowth and

strengthens bone bonding [180]

Repair of compressor blade
(aerospace devices) 0.6409 PDMD Inconel 718 Compressor blade repairing using PDMD

3D-printing process [222]
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The heat transfer device was another area SLM 3D printing could improve. SLM 3D printing
is able to create any arbitrary shapes with heat transfer capabilities better than the ones fabricated
by conventional machining methods [228]. SLM 3D printing enables innovative design of complex
shapes, internal cooling channels and porous structures, which makes it an excellent choice for making
heat transfer devices. The smallest feature 3D-printed on these devices was approximately 0.5 mm.
Five types of heat sink structures were designed, including cylindrical, rectangular, rounded corned
rectangular fin array, elliptical array and lattice [229]. SLM 3D printing successfully manufactured all
five types of heat sinks. This study showed that SLM 3D-printing process improved the efficiency of
the heat sink. Figure 11a shows an example of SLM 3D-printed lattice heat sinks with a minimum
feature size of 0.53 mm [229]. Similarly, the cooling performance of heat fins of various shapes
was evaluated [230]. In this study, the minimum feature size of the 3D-printed fin structure varied
from 300 µm to 1260 µm. Effective cooling was achieved by using these improved structures with
high-thermal flux. The capability of the SLM 3D-printer to produce flow reactor with internal flow
channel was demonstrated. The diameter of the internal channels was in the range of 1 mm to 2 mm
(Figure 11b) [231]. The residual powders were successfully removed from all channels, indicating
that SLM had the capacity to produce mesoscale hollow internal structures. The 3D-printed compact
heat switch that operated at cryogenic temperature was successfully manufactured [232]. This SLM
3D-printed switch was a compact flat-panel gas–gap heat type with a minimum feature size of
200 µm–500 µm (Figure 11c). Figure 11d is another example of SLM 3D-printed high-temperature
aerospace resistojet heat exchanger with varying wall thickness ranging from 660 µm to 800 µm.
However, the minimum wall thickness of supporting structures was measured to be 100 µm [233].
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mesoscale flow reactors. Reproduced with permission from [231]; (c) SLM 3D-printed compact
heat switch. Reproduced with permission from [121]; (d) high-temperature aerospace resistojet heat
exchanger 3D-printed by SLM 3D-printing process. Reproduced with permission from [233].

4. Future Development of Powder-Based 3D Printing

Demand for powder-based 3D-printing technologies will escalate in the future due to their many
advantages including the capability to make customized microscale and mesoscale devices that can be
tailored for specific applications.
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High surface roughness and porosity due to limited printing resolution represent one of the
constraints to use powder-based 3D-printed parts as microfluidic devices. Despite the limited
3D-printing resolution, many applications that are not sensitive to 3D-printing resolution can be
realized. Powder-based 3D printing is inherently more porous and rougher compared to liquid
resin-based 3D printing. Although newer powder-based processes, such as MJF, could produce
parts with low porosity, they still heavily rely on post-printing processing to reduce the surface
roughness. Powder-based 3D printing is prone to subsurface depletion zone and pores which may
cause unevenness on the surface. The unevenness and high surface roughness can cause fluid leakage
in 3D-printed fluidic devices, such as microfluidic chips, due to the weak bonding between the
microfluidic chip and substrate for sealing. However, some of these shortcomings can be addressed
with mechanical polishing or surface coating. Optical transparency is a desired feature of 3D-printed
microfluidic chips. It allows user to observe the behaviors and fluids and objects through the chip.
Non-powder-based 3D-printing technology using photopolymerization is comparatively more suitable
for microfluidic devices as it can print material with excellent optical transparency. With this capability,
SLA has been used to develop microfluidic or biosensing applications with transparent windows or
channels to observe the physical phenomenon within the microchannel [164,234]. The SLA 3D-printing
technique suffers from slow production time, limited build size and problems associated with the
high viscosity of the resin, but it is capable of printing transparent chip with a resolution higher than
powder-based 3D-printing techniques [235]. Furthermore, SLA 3D printing is able to directly pattern
cells, cell matrix and other functional molecules such as growth factors for potential fabrication of
tissue and organ construct [236–238]. The powder-based 3D printing avoids shortcomings of SLA and
other 3D-printing techniques based on photopolymerization, but it suffers from limited resolution and
undesired optical properties (e.g., non-transparent). Fortunately, a new-generation of powder-based
3D-printer attempts to address some of these challenges [48,51,58–60,123,239]. Once these barriers are
lifted, powder-based 3D printing will be more widely applicable.

MJF is a candidate to produce high-resolution microfluidic channel down to 250 µm. A range
of biocompatible materials are available for MJF. Currently MJF does not offer transparent base
materials. However, there are other ways to create transparent lids for microfluidic chips printed by
MJF, such as bonding a glass coverslip to the device. In addition, a voxel transforming agent is under
way. The transforming agent could change the color, surface properties, elasticity, strength, electrical
conductivity and translucency of each building block of MJF parts. This development can address
some of the limitations in the future. In addition, the voxel transforming agent will offer additional
flexibility in creating customizable complex functional parts within a single print job.

In combination with artificial intelligent and other industry 4.0 technologies, powder-based
3D-printing technology will enable a new-generation of personalized products that are customizable
on-demand. By designing and printing parts according to customer’s requirements on-demand,
powder-based 3D printing reduces the need for businesses to hold large inventories by offering rapid
production with a high flexibility and a high degree of customization.

5. Conclusions

The capability of powder-based 3D-printers to print micro and mesoscale features has empowered
a broad range of applications with significant improvements compared to conventional manufacturing
methods. These improvements include the flexibility in designing complex structure, usage of
different materials within a single design, reduced material cost for manufacturing and on-demand
manufacturing of customized products. Despite all the advances in powder-based technology,
there are still major gaps in this field, including higher material cost, longer printing time, laborious
post-processing, thermal distortion that leads to warping and limited material selection. Nevertheless,
with continuous improvements on the dimensional accuracy, printing resolution and production speed,
when combined with all the advantages of powder-based 3D printing, powder-based 3D printing will
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overcome these limitations and propel its wide adoption for industrial scale production of microscale
and mesoscale features in the future.
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