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Infrared light radiates from almost all the matter on earth and its strategic use will be an important
issue for the enhancement of human life and the sustainable development of modern industry. Since it
has frequency in the same region as phonons or molecular vibrations of materials, measuring its emission
or absorption spectra helps us in characterizing and identifying the materials in a non-destructive
manner. Meanwhile, if we can spectroscopically design the infrared emission by tuning the chemical
composition or artificially controlling the nano- to mesoscale structures, it will have a great impact on
industrial applications, such as in thermophotovoltaics, energy-saving drying furnaces, spectroscopic
infrared light sources, and various types of infrared sensors.

In this Special Issue, recent studies by researchers who are working on MEMS-based infrared
detectors, nanomaterial-based infrared detectors, thermal emitters, or fiber optics, have been contributed.
Important topics of growing interests are the wavelength-selective infrared emitters and detectors
where we can see rapid development in the field of nano-plasmonics and metamaterials, and we also
collected contributions from narrow-band gap semiconductors.

This Special Issue collected 13 research papers, including one featured article. These are categorized
as follows.

(1) Infrared nano/micro devices based on lithographic techniques and MEMS structures.

Dao et al. have demonstrated a compact design for membrane-supported, wavelength-selective
infrared (IR) bolometers [1]. The fabricated devices exhibit a wide resonance tunability in the
mid-wavelength IR atmospheric window by changing the size of the resonator of the devices,
evidencing that the concept of the proposed wavelength-selective IR bolometers is realizable. Dao et al.
also experimentally studied the dark-field scattering spectral mapping of plasmonic resonance from
the free-standing Al bowtie antenna arrays and correlated their strong nearfield enhancement with
the sensing capability by means of surface-enhanced Raman spectroscopy [2]. Doan et al. reported
a quad-wavelength hybrid plasmonic–pyroelectric detector that exhibited spectrally selective infrared
detection at four wavelengths—3.3, 3.7, 4.1, and 4.5 µm [3]. The narrowband detection was achieved
by coupling the incident infrared light to the resonant modes of the four different plasmonic perfect
absorbers based on an Al-disk-array placed on an Al2O3–Al bilayer, exhibiting great possibilities for
miniature multi-wavelength spectroscopic devices. Yoshino et al. developed, a simple process to
mechanically fabricate ordered Au nanodot arrays that respond to nearinfrared light, and also reported
the feasibility of its application to plasmonic sensors [4]. The developed nanoprocess utilizes direct
mechanical cutting of Au film by single-crystal diamond blades and further thermal processing to tune
the Au nanodot shape and their plasmon resonance. Sakurai et al. studied a tungsten-SiO2-based metal
insulator metal-structured metasurface for the thermal emitter of the thermophotovoltaic system [5].
The proposed emitter was fabricated by applying the photolithography method. The fabricated emitter
has high emissivity in the visible to near-infrared region and shows excellent wavelength selectivity.
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(2) Materials for infrared thermal emitters/absorbers and detectors based on compound
semiconductors and their variants.

Ngo et al. reported the synthesis and demonstration of niobium-doped titanium dioxide for the
application in plasmonic antenna and surface-enhanced infrared absorption [6]. The nanopatterns
prepared by electron beam lithography, plasma etching/ashing processes showed well-defined antenna
resonance as well as clear polarization/size dependence, which confirms that these materials are
suitable for infrared plasmonic applications. Li et al. numerically studied the optical properties of
hexagonal ITO nanodisk and nanohole arrays in the mid-infrared [7]. Field enhancement up to 10 times
was observed in the simulated ITO nanostructures, and furthermore, they demonstrated the sensing
of the surface phonon polariton from a 2-nm-thick SiO2 layer under the ITO disk arrays. Chiu et al.
examined the optical properties of alloys with noble metals (Au and Pt). The six different metals (Ir,
Mo, Ni, Pb, Ta, and W) which possess good properties for heat resistance, stability, and magnetism
were mixed with noble metals to improve the properties [8]. The optical properties were calculated
by density functional theory and they were used for further investigations of the optical responses
of alloy nanorods. The results show that the studied alloy nanorods have wavelength-selective
properties and can be useful for infrared devices and systems. Zhai et al. reported a mid-wave infrared
(MWIR) and long-wave infrared (LWIR) dual-band photodetector capable of voltage-controllable
detection band selection [9]. The voltage-tunable dual-band photodetector is based on multiple stacks
of sub-monolayer quantum dots (QDs) and self-assembled QDs. By changing the photodetector bias
voltages, one can set the detection band to be MWIR, or LWIR, or both, with high photodetectivity and
low crosstalk between the bands.

(3) Infrared-sensing applications using fiber and laser technology, and hyperspectral camera.

Inada et al. evaluated the performance of a fluorescent detection system in an extirpated pig
stomach and a freshly resected human stomach and were able to successfully detect NIR fluorescence
emitted from the clip in the stomach through the stomach wall by the irradiation of excitation light
(λ: 808 nm) [10]. The proposed combined NIR light-emitting clip and laparoscopic fluorescent detection
system could be useful in clinical practice for accurately identifying the location of a primary gastric
tumor during laparoscopic surgery. Chen et al. reported a sensor system composed of a quantum
cascade laser (4.65 µm excitation wavelength), and a compact multiple reflection cell with a light path
length of 12 m for sensitively detecting trace CO gas [11]. The sensor adopted the long optical path
differential absorption spectroscopy technique (LOP-DAST) and obtained the minimum detection limit
(MDL) of 108 ppbv by comparing the residual difference between the measured spectrum and the
Voigt theoretical spectrum. Mu et al. studied tunable diode laser absorption spectroscopy (TDLAS)
combined with wavelength modulation spectroscopy (WMS) using an interband cascade laser for
detecting a trace amount of C2H2 [12]. The data show that the minimum detection limit is as low
as 1 ppbv at an integration time of 63 s, and capable of detecting a variety of gases by changing the
wavelength of the laser. Kim et al. reported a novel real-time remote temperature estimation method
by applying a deep-learning-based regression method to midwave infrared hyperspectral images [13].
They proposed a method for real-time remote temperature measurement with high accuracy with the
proposed surface-temperature, deep convolutional neural network and a hyperspectral thermal camera.
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