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Abstract: Aluminum alloy (Al6061) is a common material used in the ultraprecision area. It can be
machined with a good surface finish by single-point diamond turning (SPDT). Due to the material
being relatively soft, it is difficult to apply post-processing techniques such as ultraprecision lapping
and ultraprecision polishing, as they may scratch the diamond-turned surface. As a result, a novel
low-pressure lapping method was developed by our team to reduce the surface roughness. In
this study, a finite element model was developed to simulate the mechanism of this novel lapping
technology. The simulation results were compared with the experimental results so as to gain a better
understanding of the lapping mechanism.

Keywords: ultraprecision lapping; Al6061; FEM

1. Introduction

Precision lapping and polishing are difficult for the polishing of softer metals such
as aluminum alloys. As shown in Figure 1, many scratches occur on the aluminum alloy
mirror surface after ultraprecision bonnet polishing. For aluminum and its alloys, single-
point diamond turning (SPDT) is commonly used because of its good machinability. It is
important to develop a method to remove the tool marks that are inevitably generated
during the SPDT process (Figure 2). Hence, we developed a precision low-pressure lapping
method for softer metals [1]. This method uses a brush to drive abrasive particles to roll
and slide on the workpiece and has a very a small material removal rate as compared
with other conventional precision lapping and polishing methods. The traditional lapping
model based on the Preston formula is not suitable for this method. In the general lapping
and polishing process, the common mechanisms are microcutting, delamination, slurry
erosion, chemical mechanical polishing, etc. [2]. In our study, the brush touches the lapped
surface very gently during the lapping process and drives the abrasive particles to move
on the surface. The likely mechanism is that the abrasive particles receive large momentum
during the lapping process. As a result, the abrasive particles impinge the asperities of the
workpiece surface during the sliding and rolling process, causing plastic deformation of
the asperities which are worn away, thereby reducing the surface roughness.

Since the asperities of the surface are removed by the impingement of the abrasive
particles, the finite element method (FEM) can be used to model and simulate the surface
generation in this low-pressure lapping. The simulation results provide a better under-
standing of the surface generation mechanism and can be used to design the lapping
parameters of the actual experiment.

The finite element method (FEM) is an important analytical method for analyzing the
deformation process of materials. Komvopoulus et al. used the finite element software
Abaqus to simulate an area changing from elastic to plastic deformation under load [3]. This
research shows that the material change process depends on strain hardening characteristics
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and accumulated plastic deformation at a specific load but has little to do with the elastic
modulus. Kogut and Etsion studied the deformation process of the contact between a
sphere and a rigid plane by the finite element simulation software ANSYS in 2002 [4].
The von Mises yield criterion was introduced to analyze the deformation process of the
material, from elastic to plastic. The results showed that the elastic model cannot fully
explain the elastic to plastic deformation process.
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The basic contact model proposed by Greenwood and Williamson in 1966 is the
basis of many subsequent microcontact models [5]. In this study, it is assumed that the
contact surface is rough, the asperity heights on the surface follow a Gaussian distribution
with the same curvature, and the asperities do not affect each other when they are under
pressure. Contact in this model makes use of the Hertzian approach to calculate the
pressure distribution during the contact process. The significance of this model is that it
provides a preliminary contact model and makes use of a plasticity index that determines
when the material transforms from elastic deformation to plastic deformation under a
specific load.

Another classic model was established by Chang et al. based on the Chang, Etsion,
and Bogy (CEB) elastic–plastic model by Tabor [6,7] and was the first attempt to determine
the boundary state of a material from elastic to plastic. This model and the Greenwood
and Williamson model provide good simulation for the contact process in a real contact
area at very high or very low plasticity indices [5].
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Using the Greenwood and Williamson model, Jackson and Green calculated the yield
point of the material on the basis of the asperity contact and the von Mises criterion [8].
Kadin et al. found that the yield point of the material was greatly affected by Poisson’s
ratio and strain hardening [9]. Peng et al. simulated the elastic–plastic contact process of
rough surfaces by the finite element method [10]. The simulation model involves asperity
contact with a rigid body. In 2017, Almuramady and Borodich conducted a theoretical and
experimental comparison of the plastic behavior of an actual rough surface [11]. Although
researchers have been continually studying the elastic–plastic contact of rough surfaces by
finite element methods, they are rarely used to simulate the actual lapping process.

Since the core of the low-pressure lapping method involves abrasive particles contin-
uously impinging on the tool marks, which are deformed and worn away gradually. In
this study, the surface generation mechanism was simulated using current elastic–plastic
contact models.

2. Modeling Processes
2.1. Parameter Setting

The simulation software Abaqus was used in this study. In the simulation, two
different heights of tool marks on the Al6061 surfaces were designed to be 1 µm and 20
nm. In order to reduce the calculation time, only the tip of the tool mark was used, which
means that the intercepted tool mark heights were 1 nm and 0.02 nm, respectively, in this
simulation. Due to the surface with a tool mark height of 20 nm being almost close to the
plane, in this simulation, it could be assumed that each tool mark was independent, and
the movement of the abrasive particles on the surface was not affected by the adjacent
tool mark. In this simulation, the tool mark was a long-ridged shape form; thus, when the
abrasive grains collided from the side, it could be simplified into a 2D tool mark model.
According to the experiment, the diameter of the abrasive particles in this simulation was
20 nm. In order to make the operation converge, a plane surface was added to the starting
side, as shown in Figure 3.
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Nanometer-level thermal expansion was identified to be an issue for some technologies
such as thermal-assisted machining [12], while others take advantage of it for novel tool-
displacement technologies [13]. Since the lapping speed in this research was low and the
fiber gap on the lapping head helped to dissipate heat to some degree, this simulation only
had a mechanical relationship and no variables such as temperature and magnetism were
involved. Accordingly, the only material parameters needed to be set were mass density,
elastic behavior, and plastic behavior. In the Abaqus software, there is no unit system, and it
is necessary to set the unit according to the content of the simulation. To ensure the correct
operation result, the unit setting needs to ensure consistency; otherwise, the results have
no actual physical meaning. In Abaqus, units can be divided into two types: fundamental
units and derived units. A derived unit is a combination of fundamental units. Since this
simulation was in the micrometer range, the common meter-scale units were converted
into micrometer units (Table 1) and were used in the simulation. The workpiece material
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in this simulation was aluminum alloy (Al6061) with a density of 2.7 × 10−15 kg/µm3,
Young’s modulus of 6.89 × 104 MPa, and yield stress of 276 MPa. In the assembly process,
the initial position of the abrasive particle was on the right side of the tool mark, and the
moving direction was from right to the left.

Table 1. Units used in the simulation.

Fundamental Units

Length mm
Force µN
Time s
Mass kg

Derived Units

Pressure MPa
Velocity µm/s
Density kg/µm3

Young’s modulus MPa
Yield stress MPa

In the simulation, Al6061 alloy was considered as an elastic–plastic material according
to the Johnson Cook plasticity model [14]. The model can be expressed as

σ= [A + B( εpl)n][1 + C ln(

.
ε

pl

.
ε0

)](1 − θ̂m), (1)

where σ is the yield, εpl and
.
ε

pl
are the equivalent plastic strain and plastic strain rate, and

A, B, C, n, m, and
.
ε0 are material parameters. When the material temperature is lower than

the transition temperature, the coefficients are as shown in Table 2.

Table 2. Johnson Cook coefficients.

A B C n m
.
ε0 θmelt θtransition

289.6
MPa

203.4
MPa 0.011 0.35 1.34 1.0 s−1 925.37 K 294.26 K

When the abrasive particles slide and roll on the surface of the workpiece, the polishing
time is t, the rotational speed is S, the wool is bent after contact with the workpiece, and
the angle of bending is θ. Since the diameter d of the thickest part of the wool is about
100 µm, one fiber sweeps N times on point P, which can be expressed as follows (Figure 4):

N =
2π(R − tan θ·D)

d
·tS. (2)
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The speed at which the abrasive particle passes through the P point is

v = 2πκ·S·R, (3)

where κ is a constant that represents how much of the fiber speed is transmitted to the
abrasive particles.

The wear model for the nodes in this simulation was built based on the Archard model.

q =
kPAη

H
, (4)

where q is the wear rate, k is a dimensionless constant obtained from experimental results
and depends on several parameters such as surface quality and surface hardness process,
P is the normal pressure, η is the interface slip rate, and H is the material hardness. In this
simulation, the surface was expressed by the change of nodes on the surface. Each node
transmitted force to the next node according to the software settings. The wear rate can be
expressed as

q(t) =
k
H

∫
P(x, t)η(x, t)dA, (5)

where x is the node position, and t is the time. Then, as a function of the Eulerian steady-
state transport procedure [15], the model can change to a time-independent expression.

q(t) =
k
H

∫
P(u)η(u)T(u)du, (6)

where u is the position along the edge of the grid, and T(u) is the width of the adjacent
grid at position u. The wear rate can be expressed as a function of local material change.

q(t) =
∫

w(u)T(u)du, (7)

Since the software needs a discrete form expression, Equations (7) and (8) were
combined and discretized as

N

∑
i=1

wi Ai =
k
H

N

∑
i

Piηi Ai, (8)

where w is the node wear velocity, and Ai is the node contact area. The expression for w is

w =
k∑N

i=1 piηi Ai

H∑N
i=1 Ai

. (9)

In this simulation, the momentum of the abrasive particles depended on the weight
and speed of the abrasive particles. Since the individual abrasive particles were very small,
the weight of the individual abrasive particles was about 5 × 10−18 kg according to the
density of the abrasive material (2.65 g/cm3) and its size. From Equation (3), the different
speeds of the abrasive particles when R is 5 mm were determined, as shown in Table 3.

Table 3. Speed of the particle in the simulation.

1 Rotational speed: 200 rpm 6.28 × 106 µm/s
2 Rotational speed: 400 rpm 1.26 × 107 µm/s
3 Rotational speed: 600 rpm 1.88 × 107 µm/s
4 Rotational speed: 800 rpm 2.51 × 107 µm/s
5 Rotational speed: 1000 rpm 3.14 ×107 µm/s



Micromachines 2021, 12, 1510 6 of 16

2.2. Software Setting

In the preprocessing stage, a two-dimensional model was first established in Abaqus,
and the model was meshed (Figure 5). The boundary conditions and contact conditions of
the contact model were then defined, and the abrasive particles were given an initial velocity.
In the process of simulating the elastic–plastic contact between the abrasive particles
and the surface of the workpiece, the contact process of the finite element simulation
was a discontinuous constraint behavior, allowing the forces of the various nodes to be
transmitted to other nodes. The premise of this constraint is that the two surfaces are to
make contact. As a result, when analyzing the contact process, it is necessary to confirm
that the two surfaces have been in contact and produced constraints.
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Figure 5. Two-dimensional model in Abaqus.

Since the simulation was an impact process, the simulation made use of the Dynamic
Explicit module from Abaqus. The software stores the simulation results as a binary file
for the post-processing stage. In the post-processing stage, the simulation process can be
visually displayed by the Abaqus software. At the same time, the basic variables can also
be calibrated using the simulation results, such as displacement, stresses, and forces.

In the simulation, fatigue failure generally began with microcracks in the material.
When the stress sufficiently accumulated in the structures, such as impurities, dislocations,
etc., the material began to yield [16]. Generally, the fatigue crack is divided into three
stages: initiation, propagation, and final fracture [17]. The early fatigue models were
generally based on Hertzian contact to determine the maximum point of force to determine
crack initiation. The recent rolling contact fatigue studies consider a rough surface as an
important parameter [18,19].

Fatigue life is usually defined as a series of cycles or times that cause fatigue damage
and cause a final failure [20]. In this simulation, the fatigue life was the stage at which the
tool mark began to plastically deform after the abrasive grains repeatedly impacted on the
tool mark.

3. Results and Discussion

Tables 4 and 5 show the stress maps of the two different tool mark height models
impacted by particles at different speeds. It can be seen from the two sets of simulation
results that, when the abrasive grains were rolling and sliding at high speed on the surface
of the workpiece, a greater speed led to a greater impact force on the surface. When an
abrasive grain hit the tool mark fast enough, it bounced after the impact and was then
pressed back by the fiber, repeatedly following the hit–bounce process. It can be seen from
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(d) and (e) in Table 4 and (d) and (e) in Table 5 that, as the momentum of the abrasive
particles increased, the stress on the contact surface increased, and the distance between
the two high stress areas became wider. This result indicates that a high rotational speed of
the lapping pad does not mean a good lapping result for the actual lapping experiment.
When the speed of the particle was high enough, the surface started to show pits and
scratches because the particle impact on the surface was not even. Some particles may hit
the surface to generate pits. Scratches may also be generated due to plowing by particles
with large momentum. The experimental results also showed this phenomenon. We used a
brush to lap the surface, and the diameter of the particles in the slurry was 15 nm [1]. As
shown in Figure 6, after 5 min of lapping, the original surface (Figure 6a) had almost no
change (Figure 6b) at a rotational speed of 500 rpm. However, there were pits and scratches
generated on the lapped surface (Figure 6d) when the rotational speed was 1500 rpm
(lapping time 20 min).

Table 4. The 1000 nm high tool mark workpiece surface under particle impact at different speeds.

Tool Mark Height Rotational Speed Results

(a)
1000 nm 200 rpm
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Table 4. Cont.

Tool Mark Height Rotational Speed Results

(c)
1000 nm 600 rpm
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Table 5. The 20 nm high tool mark workpiece surface under particle impact at different speeds.

Tool Mark Height Rotational Speed Results

(a)
20 nm 200 rpm
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Table 5. Cont.

Tool Mark Height Rotational Speed Results

(d)
20 nm 800 rpm
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Figures 7 and 8 show the stress map of the tool marks under different impact speeds
of the particles. Since the yield strength of the workpiece in this simulation was 276 MPa,
it can be seen from Figures 7 and 8 that, when the rotational speed was above 800 rpm,
the stress of the abrasive grains in the simulation reached the material yield limit, and the
contact area began to change from elastic deformation to plastic deformation. It can seen
from Figures 9 and 10 that, when the rotational speed reached 1000 rpm, plastic strain
began to occur on the surface of the workpiece.

In the mechanical lapping process, the contact process between the particles and the
workpiece determines the surface generation mechanism. Rubbing or plowing are widely
accepted as the lapping material removal mechanism [21].

In this research, the diameter of the wool fiber was around 100 nm, and the diameter
of the abrasive particle was 15 nm. Studies have shown that SiO2 particles are generally
circular in the slurry [22]. As a result, the possible modes of interaction between a particle
and the workpiece surface can be generalized into three categories:

Mode 1: The abrasive particles roll freely on the surface of the workpiece. The
efficiency of material removal would be small, close to zero.

Mode 2: The abrasive particles plow a groove on the surface of the workpiece, and
the material in the groove is extruded to the front and sides of the groove. In this case,
the material removal rate is also close to zero, but the material stacked on the edge of the
groove may be taken away by the subsequent abrasive particles.

Mode 3: The abrasive particle cuts a groove while a long strip of chip is removed from
the groove. Ideally, the material is completely removed from the groove, and the material
removal rate is close to 100%.
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Mode 1 is usually called three-body abrasion, and the other two are generally known
as two-body abrasion. Since the metal surface is soft, the abrasive particles move at a high
speed under the action of the fiber and may be embedded in the workpiece surface, thereby
changing from mode 1 to mode 2 or mode 3. However, since the material removal rate of
this lapping method is very low, mode 1 plays the main role.

It can be seen from the SEM image that some mottled surfaces were formed on the
lapped surface (Figure 11), and some platelet-like materials were taken away during the
lapping process (Figure 12). Some researchers believe that, when the abrasive particles are
small, to a certain extent, such as less than 0.5 µm, the main mechanism in the lapping
process is platelet delamination. However, it is still hard to explain why there was a wide
range of scratch-free areas on the lapped surface.
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For a single abrasive particle, it can microcut or plow the workpiece surface during
the lapping process. However, as can be seen from the SEM image in Figure 13, a groove
was rarely produced on the surface during the lapping process. In addition, the abra-
sive particles themselves were relatively round. As a result, the single-particle erosion
mechanism only occupied a small proportion of the material removal in the low-pressure
lapping process.

For the mechanism in which the abrasive particles are embedded on the fiber to form
a cantilever system to establish a removal rate, the surface of the workpiece should have
many shallow, long scratches. Although this method makes it is easier to lap a mirror
surface, it can be seen from Figure 13 that only one shallow and long scratch existed. As a
result, this mechanism is not suitable for this lapping method.

In the metal cutting process, there is a unique type of material removal known as
extrusion cutting where there is a physical constraint ahead of the tool or particle [23,24]
which may also have been involved in our lapping process. During the lapping process,
many abrasive particles pass through the tool marks surface. When two abrasive particles
pass through asperities, the front abrasive particles may provide a physical constraint,
while the rear abrasive particles do the microcutting. In this scenario, the ductile mode
cutting energy dominates [25], and plastic deformation occurs on the asperities, which is a
mechanism worthy of further verification by experimentation.
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Micromachining by abrasives contained in a carrier paste is a mechanism which has
no microcutting behavior. This mechanism requires the lapping pad to be softer than the
workpiece and the abrasive particles to be sufficiently small. At the same time, the abrasive
particles should be easily embedded on the fiber. In this low-pressure lapping process,
the fiber of the brush is far softer than the surface of the workpiece, while the abrasive
grain is much smaller than the fiber; moreover, because the fiber has a good friction, the
abrasive grain should be easily embedded on the fiber or driven by the fiber for high-
speed motion. As a result, this mechanism is more suitable for the low-pressure lapping
process. The high-speed movement of the abrasive particles means that there is sufficient
momentum to laterally impact on the surface. When the momentum is accumulated to a
certain level, the asperities on the surface of the workpiece are worn away, thereby reducing
the surface roughness.

Through the above discussion, a possible mechanism for the low-pressure lapping
method is that the fiber containing the carrier paste is worn away by the tiny asperities
from the workpiece as the simulation illustrated in this paper. Although the simulation
assumes that the speed of the abrasive particles is equal to the speed of the fiber on the
lapping pad, the surface formation mechanism of the polishing method can be successfully
verified from the simulation results. That is, the tool marks or asperities on the surface of
the workpiece were deformed by the continuous impact of the abrasive grains and finally
removed. The number of impacts was calculated according to Equation (3). When lapped
for 10 min, the surface was impacted 3 × 106 times. This is far more than the 105 times of
impact required for high cycle fatigue of typical materials. This cyclic stress is large enough
to cause fatigue. As a result, it can be regarded as microscale high-cycle fatigue and can
also be seen as impact fatigue for tool marks or asperities. These asperities and tool marks
are worn away, and the worn surface continues to be impacted by the abrasive particles,
which leads to the small-scale material removal rate.

According to our previous research results, there is almost no change in the lapped
surface when the rotational speed is 500 rpm [1]. By finite element simulation, it was found
that the rotational speed is the most important lapping parameter in this polishing method.
When the rotational speed is lower than a certain level, it is difficult to achieve material
removal. This also explains why the asperities on the tool mark surface were removed first,
followed by the tool mark itself (Figure 14).
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4. Conclusions

This research described the modeling and simulation of the surface generation mecha-
nism of a novel low-pressure lapping method by the finite element method. The results
indicate that the rotational speed plays a major role in the low-pressure lapping process.
When the rotational speed was higher than a certain level, i.e., 1000 rpm in the experiment,
the abrasive particles driven by the fiber obtained sufficient momentum to impinge on the
surface of the workpiece. This finally wore the asperities and tool marks away. This model
not only describes the surface generation mechanism of the low-pressure lapping method,
but can also be used to predict the possible lapping parameters when different materials
and forms of the workpiece are used. The recommended combination of lapping parame-
ters determined from this simulation is to control the rotational speed at 800–1500 rpm and
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