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Abstract: Normally-off p-gallium nitride (GaN) high electron mobility transistor (HEMT) devices
with multi-finger layout were successfully fabricated by use of a self-terminating etching technique
with Cl2/BCl3/SF6-mixed gas plasma. This etching technique features accurate etching depth control
and low surface plasma damage. Several devices with different gate widths and number of fingers
were fabricated to investigate the effect on output current density. We then realized a high current
enhancement-mode p-GaN HEMT device with a total gate width of 60 mm that exhibits a threshold
voltage of 2.2 V and high drain current of 6.7 A.

Keywords: gallium nitride (GaN); enhancement-mode; p-GaN HEMT; multi-finger layout; self-
terminating etching

1. Introduction

Due to the advantages of gallium nitride (GaN) over silicon, GaN-based power de-
vices have recently received widespread attention in power electronics applications as
these devices exhibit high breakdown voltage, low on-resistance (Ron), and fast switching
speed [1–5]. The dominant platform for developing commercial GaN power electronic
devices is based on lateral heterojunctions (e.g., AlGaN/GaN) grown on large-size, low
cost silicon substrates [3].

However, the high-density two-dimensional electron gas (2DEG) induced by the
strong polarization effect makes GaN high electron mobility transistors (HEMTs) exhibit
normally-on behavior which increases the complexity of circuit design and introduce safety
concerns. Enhancement-mode (E-mode) HEMTs with a positive threshold voltage (VTH)
are more desirable for practical power switching applications [6–8].

In recent years, normally-off GaN HEMTs have been realized by several approaches
such as fluorine plasma ion implantation [9], ultra-thin AlGaN barrier [10], recessed
gate [11], and p-GaN gate [12]. Among them, the p-GaN gate HEMTs are the most promis-
ing solution owing to the stronger control over the gate region, superior Ron × QG (gate
charge) figure of merit [13], and thermal stability, and have been recently commercialized
in the power electronics market [14]. The working principle behind this design is that
the conduction band under the gate is lifted up through the p-GaN cap, resulting in a
normally-off operation with a positive threshold voltage.

For application in real power integrated circuits, the devices are required to have
high current and high breakdown voltage capability [15], which are realized by increasing
the total gate width and thus the device area. The critical issue of large-area devices is
low yield [16,17]. Several methods have been reported to optimize large current device
fabrication. Optimizing the Mg profile in the p-GaN layer and controlling the epitaxial
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growth condition are the most standard methods to improve device characteristics [18].
Devices with better dielectric quality have also been realized to achieve low leakage and
low on-resistance [19]. Using thicker Au-plated ohmic electrodes has also been shown
to increase the drain current [15]. Modifying the device geometry through variation of
gate width or number of gate fingers can also effectively provide higher dissipated power
capability when designing with a multi-finger layout [20].

However, few papers realize E-mode high drain current GaN HEMT devices through
the actual fabrication process because of the challenging etching process. The two major
challenges of p-GaN gate HEMTs are accurate etching uniformity control of the non-gated
channel region [21–23] and plasma-induced damage on the underlying AlGaN surface
during the p-GaN removal process [24,25]. The residual p-GaN layer will deplete the 2DEG
density resulting in a decrease in current density. Likewise, over-etching of the AlGaN
barrier layer will also decrease the current density due to decreasing the polarization
effect [26]. Both conditions will deteriorate the conduction of the device. Thus, in order to
maintain the 2DEG for low conduction resistance, etching of the p-GaN layer should stop
on top of the AlGaN layer [27].

Traditionally, the p-GaN etching step makes use of Cl2/BCl3-mixed gas plasma in
slow rate inductively coupled plasma reactive ion etching (ICP-RIE) [28]. The critical issue
is that the slow etching rate is sensitive to the ICP chamber conditions. Therefore, it is
difficult to have a stable and repeatable etching process because of the narrow window for
etching time.

In this work, a p-GaN gate enhancement-mode GaN HEMT using a multi-finger layout
was successfully demonstrated to achieve high current density by using Cl2/BCl3/SF6-
based ICP etching along with endpoint detection (EPD) to have real-time monitoring of the
etching depth. This technique features self-termination at an AlGaN barrier surface with a
wider tolerance of etching time and etching uniformity. Furthermore, several devices with
different gate widths and number of fingers were fabricated to investigate the effects on
output current density. The realized E-mode GaN HEMT devices were characterized by
DC measurements. For a device with a total gate width of 60 mm, the threshold voltage
(VTH) is 2.2 V, and the drain current reaches 6.7 A, indicating a drain current density of
112.5 mA/mm.

2. Materials and Methods

Figure 1a,b shows the cross-section of the p-GaN gate HEMTs and schematic top
view of the p-GaN HEMT with multi-finger structure, respectively. The AlGaN/GaN
heterostructures were grown by MOCVD on 800 µm p-Si substrates. The layer stack
consisted of a 3.8 µm thick (Al)GaN buffer layer to enable high voltage operation, a 300 nm
thick GaN channel layer, an 8 nm AlN spacer layer to effectively suppress alloy disorder
scattering [29], and a 15 nm Al0.2Ga0.8N barrier layer. The top layer consisted of a 70 nm
thick Mg-doped p-GaN layer with a doping concentration of 4 × 1019 cm−3.

The device fabrication started with active region isolation by mesa etching to a 200-nm
depth using Cl2/BCl3 SAMCO ICP RIE-200iPC (inductively coupled plasma reactive ion
etching). Then, the 7-µm long p-GaN gate region was protected using photoresist, and a
high-selectivity Cl2/BCl3/SF6-mixed gas plasma etch was performed on the non-gated
active region by using ICP RIE200i. In principle, when the SF6 plasma reaches the AlGaN
barrier surface, the fluorine ion reacts with the Al atoms and forms a thin AlF3 etching
stop layer (SF6 plasma + Al→AlF3). During the dry etching process, the employment
of endpoint detection provides real-time monitoring of the etching depth where specific
wavelengths of light (300–350 nm) are irradiated on the surface of the non-gated active
region. After the light source reaches the surface, a portion of light is reflected directly
from the surface, but some enters the wafer and is reflected back from the channel layer.
Thus, the reflected light received by the detector is a combination of signals from each layer
within the sample, and specific interference fringes are then formed and can be displayed
on a monitor. If the etching depth does not change, the reflected light intensity would stay
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constant. A mixture of Cl2/BCl3/SF6 gas plasma was applied to remove the p-GaN cap
for 132.8 s, and the reflected light intensity remained constant after that time indicating
the end of the etching process. After that, the thin AlF3 layer on the surface was removed
by a buffered oxide etchant (BOE) wet treatment for 1 min. The resulting surface and
actual etching depth were measured by NanoSurf Flex atomic force microscopy (AFM) as
shown in Figure 2. The etching depth was exactly 70 nm, the thickness of the p-GaN layer,
and the average roughness (Ra) was 1027 pm (30 × 30 µm2). Afterwards, Ti/Al/Ni/Au
(25/125/40/150 nm) were used to form ohmic contacts as source and drain electrodes,
followed by annealing in N2 ambient at 875 ◦C for 45 s using Premtek RTP-T41M (rapid
thermal processing). Using a transmission line measurement (TLM), the channel sheet
resistance and specific contact resistivity were 310 Ω/sq and 9469 Ω·µm2, respectively. The
good ohmic contact and sheet resistance were due to the accurate etching depth (which
maintains a high 2DEG density) and smooth surface with negligible ion bombardment
damage. Ni/Au (15/280 nm) gate metal was deposited by e-beam evaporation to form a
Schottky contact. Next, 300 nm thick SiNx surface passivation was deposited using Samco
PD-220N PECVD to reduce the N vacancies on the device’s surface. Finally, after contact
window opening on the gate regions, a thick Ti/Au (15/1300 nm) Metal 1 was deposited
to serve as the gate electrode bridge. The realized large-area p-GaN HEMT device with
multi-finger structure is shown in Figure 1c. The power device has a gate length (LG) of
4 µm, gate–source distance (LGS) of 3 µm, gate–drain distance (LGD) of 3 µm, and total gate
width of 60 mm. The device DC characteristics were analyzed using an Agilent B1505A
power device analyzer.
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Figure 1. (a) Cross section of the p-gallium nitride (GaN) high electron mobility transistors (HEMT) device structure.
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(individual gate width WG/# of fingers = 1000 µm/60, LG = 4 µm, LGD = 3 µm, and LGS = 3 µm).
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Figure 2. (a) Atomic force microscopy (AFM) image of the p-GaN gate region. (b) The depth profile
of the p-GaN gate with an etching depth 70 nm and average roughness (Ra) of 1027 pm.

3. Results and Discussion

In order to investigate the relationship between the output current density and multi-
finger layout, p-GaN gate HEMT devices with different gate width (WG) and different
number of fingers were fabricated simultaneously on the same chip. In Section 3.1, devices
with single finger but different WG are compared. In Section 3.2, devices with WG = 60 µm
but different number of fingers are also compared. In Section 3.3, a summary for these
different layouts is discussed. Finally, in Section 3.4, a high drain current p-GaN HEMT
with a multi-finger layout is realized and presented.

3.1. Single Finger Devices with Different WG

As shown in Table 1, five single-finger devices with different gate width are labeled as A
(WG = 60 µm), B (WG = 120 µm), C (WG = 250 µm), D (WG = 500 µm), and E (WG = 2500 µm),
while all other parameters (LG/LGS/LGD = 4/3/3 µm) are held constant. Figure 3a,b shows
the transfer curves of different WG p-GaN HEMTs at VDS = 6 V and VGS = 0~7 V, and
Figure 3c shows output performance at VGS = 6 V and VDS = 0~10 V.

Table 1. Design parameters for single finger devices with different gate widths (WG).

Devices A B C D E

Total gate width (µm) 60 120 250 500 2500
Single WG (µm) 60 120 250 500 2500

# of fingers 1 1 1 1 1
Active area (µm2) 4560 9120 19,000 38,000 190,000
IDS,on (mA/mm) 73.39 69.735 67.608 46.012 24.875
IDS,on (mA/µm2) 9.7 × 10−4 9.2 × 10−4 8.8 × 10−4 6.1 × 10−4 3.2 × 10−4
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As seen in Figure 3a,b, the drain current reaches 83.5 mA for device E (WG = 2500 µm)
and drops to 7.4 mA for device A (WG = 60 µm). This result is consistent with the standard
trend of Si-MOSFETs where the total current increases with longer gate width. However,
as shown in Table 1, the current density of device A is four times greater than the current
density of device E. That is to say, the current density decreases when the gate width
increases. Meanwhile, according to Figure 3c, the on-resistance also dramatically drops
when the gate width increases to 2500 µm. A possible reason for this tendency is that
when the gate voltage is applied on the top finger region (blue gate in Figure 1b), the total
voltage source cannot bias to the end of the individual gate fingers (Figure 1b green and
pink gates) due to the long gate width. Thus, the gate cannot control the channel under
the end of the gate finger, resulting in the 2DEG being unable to form. Table 1 summarizes
the design parameters and electrical characteristics for devices with a single finger but
different gate widths.

3.2. WG = 60 µm Devices with Different Number of Fingers

As presented in Table 2, four devices with the same 60 µm gate width and different
number of fingers are labeled as F (4 fingers), G (10 fingers), H (40 fingers), and I (60 fingers)
while all other parameters (LG/LGS/LGD = 4/3/3 µm) are held constant.

Table 2. Design parameters for WG = 60 µm devices with different number of fingers.

Devices F G H I

Total gate width (µm) 240 600 2400 3600
Single WG (µm) 60 60 60 60

# of fingers 4 10 40 60
Active area (µm2) 11,760 36,160 98,160 146,160
IDS,on (mA/mm) 99.87 93.29 120.7 140.56
IDS,on (mA/µm2) 5.1 × 10−4 2.1 × 10−4 7.4 × 10−5 5.8 × 10−5

Figure 4a,b depicts the IDS-VGS transfer curves of the WG = 60 µm devices with a
different number of fingers at VDS = 6 V. The output drain current at a drain bias of 6 V is
442 mA for device I (60 fingers) and 24 mA for device F (4 fingers). As shown in Table 2,
the current density also increases with the number of fingers. This elevated current is due
to the superposition of current from each finger. Moreover, according to Figure 4c, the
rising output current results from the decrease of on-resistance from 45.68 Ω for device F
(4 fingers) to 3.65 Ω for device I (60 fingers). Table 2 summarizes the design parameters and
electrical characteristics for the devices with WG = 60 µm but different number of fingers.
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3.3. Summary of the Multi-Finger Layout Devices

In order to compare whether the modulation of gate width or number of fingers has
a greater impact on the current density, the drain current density (mA/mm) is plotted
against the total gate width in Figure 5a. Thus, devices with similar total gate width are
more readily compared. For example, device C and device F which have total gate widths
of 250 mm and 240 mm, respectively, are compared to show that when the devices have
similar total gate width, the devices with a multi-finger structure (blue) have significantly
higher current density than devices with a single finger layout (red). The current is greatly
increased as the total gate width is close to 2500 µm. The results are consistent with
the current commercial trend which commonly applies the multi-finger structure on the
devices. The drain current per active area (A/µm2) is also plotted against the total gate
width, as shown in Figure 5b. The results indicate that, with a similar total gate width,
the devices with a multi-finger layout (blue) have higher output current density than the
devices with a single finger structure (red). This result is attributed to the thermal crosstalk
between individual gate fingers which may increase device temperature and also reduce
the power density [20]. Meanwhile, a larger active area brings about more heat dissipation.
Thus, increasing the active area of the multi-finger devices will likely improve the drain
current per active area.
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3.4. Large-Area p-GaN HEMT with High Drain Current Power Device Performance

Based on these experimental results, a high current normally-off p-GaN HEMT device
was fabricated. The device is designed with a total gate width of 60 mm (WG = 1000 µm,
number of fingers = 60), LG of 4 µm, LGD of 3 µm, and LGS of 3 µm. The device DC
characteristics are analyzed using an Agilent B1505A power device analyzer. The transfer
curves of the devices in linear and log scale are shown in Figure 6a at VDS = 10 V, and the
output performance as a function of VGS is presented in Figure 6b.

The threshold voltage (VTH) is 2.2 V (defined by IDS = 1 mA/mm), the subthreshold
swing (SS) is 221.1 mV/dec, and the on/off ratio is 1.4× 105 which exhibits good switching
characteristics. The output drain current and current density is 6.7 A and 112.5 mA/mm,
respectively, at VGS = 8 V and VDS = 10 V, and the on-resistance (Ron) is 43.6 Ω-mm at
VGS = 8 V.
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4. Conclusions

In this work, a high current normally-off p-GaN HEMT device with multi-finger layout
was successfully fabricated using a self-terminating etching technique with Cl2/BCl3/SF6-
mixed gas plasma. Several devices with different gate width and number of fingers were
fabricated to investigate the effects on output current density. The drain current reaches
83.5 mA for devices with WG = 60 µm and drops to 7.4 mA for devices with WG = 2500 µm.
The decrease in current for long gate widths is due to the fact that the applied gate voltage
on the top of the gate finger cannot bias to the end of the finger, resulting in the 2DEG
being unable to form. Through modulating the number of fingers, the output drain current
is 442 mA for devices with 60 fingers while only 24 mA for devices with four fingers. This
elevated current is due to the superposition of current from each finger. Lastly, a high
current normally-off WG = 60 mm p-GaN HEMT device was realized with a threshold
voltage of 2.2 V and drain current of 6.7 A.
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