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Abstract: The influence of N incorporation on the optical properties of Si-rich a-SiCx films deposited
by very high-frequency plasma-enhanced chemical vapor deposition (VHF PECVD) was investigated.
The increase in N content in the films was found to cause a remarkable enhancement in photolumi-
nescence (PL). Relative to the sample without N incorporation, the sample incorporated with 33% N
showed a 22-fold improvement in PL. As the N content increased, the PL band gradually blueshifted
from the near-infrared to the blue region, and the optical bandgap increased from 2.3 eV to 5.0 eV.
The enhancement of PL was suggested mainly from the effective passivation of N to the nonradiative
recombination centers in the samples. Given the strong PL and wide bandgap of the N incorporated
samples, they were used to further design an anti-counterfeiting label.
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1. Introduction

The motivation to realize monolithic optoelectronic integrated circuits has spurred
great efforts to explore efficient Si-based light sources that can operate at room tempera-
ture and is compatible with the mainstream complementary metal-oxide-semiconductor
technology (Fadaly, Dijkstra et al. 2020) [1–6]. Thus far, different techniques such as
plasma-enhanced chemical vapor deposition and sputtering associated with appropriate
post-annealing processing are being employed to obtain efficient light emission from Si-
based materials [7–16]. Among the investigated materials, SiOx and SiNx systems have
been reported to exhibit intense light emission [15,16]. However, the wide bandgap of
silicon oxide (~8.5 eV) hinders the effective injection of carriers, and the material is thus
unsuitable for the fabrication of stable and efficient electroluminescent devices. Meanwhile,
a large number of nonradiative recombination centers in silicon nitride systems increase
the difficulty of obtaining efficient electroluminescence [17]. In recent years, amorphous
silicon carbide (a-SiCx) films have also attracted much attention because of their low-cost
preparation and superior physical and chemical properties, such as strong photolumines-
cence (PL), high doping efficiency, visible region transparency, and immense potential in
the fields of Si-based photoelectric integration, photovoltaic cells, and detectors [18,19].
Thus far, a large number of studies have explored the structural, electrical, and optical
properties of a-SiCx films [20]. The experimental results have shown that the properties
of a-SiCx films are closely related to their contents of C and Si atoms and the bonding
configuration between atoms. For example, the valence band edges and conduction band
edges of a-SiCx films are contributed by Si and C atoms. An increase in C content in a-SiCx
films is conducive to replacing Si–Si bonds, thereby increasing the density of silicon–carbon
bonds and thus effectively widening the bandgaps of the films. The incorporation of
different atoms into the materials from the working gas is a well-known process affecting
the structure and physical properties of the materials [21–24]. In the previous work of
our research group, by incorporating O atoms into a-SiCx films from the oxygen gas flow
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with PECVD technique, the influence of O doping on the luminescence characteristics of
a-SiCx films was studied, and a three-level model based on the luminescence center of a Si
dangling bond was established [25]. The net gain coefficient of the film was observed under
ultraviolet pumping. Although efficient PL from SiC-based materials has been investigated,
progress is slow. This lag is partly due to the lack of information available to correlate PL
with other influence factors.

In this study, we showed the influence of N incorporation on the optical properties of
Si-rich a-SiCx films. PL measurements combined with X-ray photoelectron spectroscopy
(XPS) analysis revealed that an increase in N content resulted in a remarkable enhancement
in PL and switcheed the emitted light from the red region to the blue region. The intense
tunable light emission was discussed herein. Given the strong PL and wide bandgap of N
incorporated samples, they were used to design an anti-counterfeiting label in this work.

2. Experimental Details

Amorphous Si-rich a-SiCx films with a thickness of 300 nm were fabricated by very
high-frequency plasma-enhanced chemical vapor deposition (VHF PECVD, Shenyang
New Blue Sky Vacuum Technology Co., Ltd., Shenyang, China) technology at a substrate
temperature of 250 ◦C; SiH4 and CH4 were used as reaction gas sources. The flow rates of
SiH4 and CH4 were set at 2.5 and 5 sccm, respectively. During the preparation phase, the
flow rates of NH3 were introduced and set as 0, 5, 10, and 15 sccm to investigate the effects
of N incorporation on a-SiCx. The room temperature PL and PL decay characteristics
of the films were measured with an Edinburgh FLS1000 fluorescence spectrometer. The
absorption spectra of the films were obtained with a Shimadzu UV-3600 spectrophotometer.
The microstructures of the films were evaluated using the Horiba LabRAM HR Evolution
Raman spectrometer. The Si, C, and N contents in the films were determined by XPS
(Thermo-VG Scientific ESCALAB 250, Waltham, MA, USA). The bonding structures were
examined by a Fourier transform infrared (FTIR) spectrometer.

3. Results and Discussion

Figure 1 shows the Si, N, and C contents of the films prepared with different NH3
flow rates. When the NH3 flow rate was zero, the Si and C contents of the films were 71%
and 29%, respectively. These values indicated that the films were Si-rich silicon carbides.
As the NH3 flow rate increased from 5 sccm to 15 sccm, the film composition changed
significantly. When the NH3 flow rate was 5 sccm, the Si and C contents of the films
remarkably decreased to 53% and 14%, respectively, while the N content rapidly increased
to 33%. As the NH3 flow increased further, the Si and C contents of the films decreased
continuously while the N content increased.
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Figure 1. Si, N, and C contents of the samples fabricated at different NH3 flow rates.



Micromachines 2021, 12, 637 3 of 8

Figure 2 presents the Raman scattering spectra of the films with different N contents.
A dominant Raman peak appeared at around 480 cm−1, which was attributed to the
transverse optical vibration mode of the amorphous silicon [26]. A weak peak at ~790 cm−1

corresponded to the longitudinal optical vibration mode of SiC [26]. The results indicated
that Si–Si and Si–C bonds existed in the form of an amorphous structure and no other Si
and/or SiC nanocrystalline structure was produced in the films.
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Figure 2. Raman spectrum of the films with different N content.

The FTIR spectrometer was employed to clarify the bonding configurations of the
films incorporated with different N contents, and the results are shown in Figure 3. The
absorption peak at ~640 cm−1 corresponded to the SiHn rocking vibration [27]. The absorp-
tion peak at ~780 cm−1 corresponded to the Si–C stretching vibration [23]. The ~850 cm−1

absorption peak was ascribed to the Si–N stretching vibration [28]. The absorption band at
~1000 cm−1 was associated with the Si–CH2 stretching vibration, and the 1250 cm−1 ab-
sorption peak was ascribed to the C–Hn stretching vibration [27]. The peak at ∼2140 cm−1

bands was connected to the Si–H stretching mode [27]. The 3350 cm−1 peak corresponded
to the N–H stretching mode [28]. As shown in Figure 3, the SiHn rocking vibration dis-
appeared while the Si–C and Si–N stretching vibrations strengthened as the N content
increased in the films. Therefore, the films mainly existed in the form of Si–C and Si–N
bond structures.
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Figure 4 shows the transmission spectra of the films with different N contents. With
the increase in the N content from 0% to 43%, the absorption edge moved toward the
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short-wave direction, indicating that the increase in the N content effectively widened the
optical bandgap of the films. According to the formula [29]:

ad = − ln T (1)

where T is the transmittance and d is the film thickness. The absorption coefficient a of
the film can be obtained, as shown in the inset of Figure 4. In our case, the optical band
gap E04 was defined as the photon energy corresponding to the absorption coefficient α
= 104 cm−1 [29]. As indicated in the inset of Figure 4, the increase in the N content from
0% to 43% resulted in a notable increase in the optical bandgap E04 from 2.3 eV to 5.0 eV.
Our experimental results indicated that N plays an important role in the modulation of the
optical bandgap of Si-rich SiCx.
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Figure 4. Transmission spectra of the samples with different N contents. Inset shows the correspond-
ing absorption spectra.

Figure 5a displays the normalized PL spectra of the films incorporated with different
N contents. For the films without N, the PL spectra, excited by the 325 nm line from the Xe
lamp, peaked at around 800 nm. With the increase in N content from 0% to 43%, the PL
peak blueshifted and gradually moved from ~800 nm to ~450 nm. All the films exhibited
a strong visible light emission under 325 nm excitation that could be clearly observed
by the naked eye in a bright room environment (Figure 5a). Moreover, the PL intensity
increased rapidly with the increase in N content and reached the maximum when the N
content was 33%. Compared with the films without N, the samples incorporated with N
showed a 22-fold increase in PL intensity (Figure 5b). These results implied that N plays an
important role in the PL of a-SiCx. That is, N can modulate the PL wavelength of a-SiCx
and greatly increase PL intensity. Comparing Figures 4 and 5b showed that the change
of the optical bandgap with N content was optically consistent with the change of the PL
peak energy with N content (Figure 6a). In addition, the energy of the optical bandgap was
significantly greater than the corresponding PL peak energy. This result suggested that PL
did not originate in band-to-band recombination. The PL spectra of the films excited at
different excitation wavelengths were also studied herein to gain further insights into the
PL characteristics. As shown in Figure 6b, the PL peak position barely changed with the
excitation wavelength increasing from 275 nm to 425 nm. This behavior was consistent
with that of defect-related PL, in which the peak position was independent of the excitation
wavelength because of the narrow distribution of the defect-related localized state [30].
Thus, PL was considered to originate from defect-related luminescence centers.
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Figure 5. (a) Normalized PL spectra and (b) corresponding photoluminescence intensity of the films incorporated with
different N content under an excitation wavelength of 325 nm.
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Luminescence decay measurements were performed to further clarify the PL mecha-
nism. Figure 7a shows the room temperature luminescence decay curves of the films. The
decay curves could be well-fitted with a double exponential function. The fitted equation
is as follows [31]:

I(t) = A1 exp(
−t
τ1

) + A2 exp(
−t
τ2

) (2)

where I0 is the background constant, τ1 and τ2 are the luminescence lifetimes of the
two decay processes, and A1 and A2 are the proportions of the two decay processes.
According to the fitting equation, the average luminescence lifetime was calculated to
be in the nanosecond range, as shown in Figure 7b. This result was consistent with the
defect luminescence lifetime of Si-based materials reported in the literature [16,31]. This
result further supported the speculation that PL arose from defect-related luminescence
centers. By comparing Figures 5b and 7b, we found that the change of the luminescence
lifetime with the N content was consistent with that of the PL intensity. As shown in
Figure 7b, the luminescence lifetime increased from 3.4 ns to 6.3 ns with the increase in
N content from 0% to 33%. In luminescent silicon-based materials, radiative channels
and nonradiative channels are involved in the recombination process of carriers. The
lifetime of the nonradiative recombinations for the luminescent silicon-based materials
is much shorter than that of radiative recombinations [32], and thus the increase in the
measurement luminescence lifetime is mainly due to the decrease in nonradiative channels
in the recombination process of carriers. Therefore, the increase in the luminescence
lifetime indicated that the increase in the N content effectively passivated the nonradiative
recombination centers to some extent. The Si–N bonding energy is known to be greater than
the Si–Si bonding energy. Therefore, with the addition of N during the growth process, the
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Si–Si bond was partially replaced by the Si–N bond. The weak Si–Si bond was particularly
reduced, thereby reducing the nonradiative recombination centers. The increase in the PL
intensity with the N content (Figure 5) proved this view. When the N content increased
from 40% to 43%, the PL intensity gradually decreased, and the luminescence lifetime
decreased from 6.2 ns to 4.2 ns. This result could be attributed to the continued increase in
N that aggravated the disorder of the films and, thus, led to the increase in the nonradiative
recombination centers in the films. Properly modulating the N content in Si-rich SiCx could
effectively widen the optical bandgap, and an efficient light emission could be obtained.
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Figure 7. (a) Room-temperature luminescence decay traces and (b) lifetime taken from the samples
incorporated with different N content, respectively.

On the basis of the above results, we further explored the application of N incorpora-
tion in the field of anti-counterfeiting. A film incorporated with 40% N was used to design
the anti-counterfeiting symbol “T” on a quartz substrate. As shown in Figure 8a, the sym-
bol “T” is transparent in the visible region as a result of the wide bandgap demonstrated in
Figure 4. As expected, the quartz substrate exhibited a bright “T” symbol under 325 nm
light irradiation because of its efficient PL properties, as shown in Figure 8b.

Micromachines 2021, 12, x FOR PEER REVIEW 7 of 8 

 

 

 
Figure 8. (a)The anti-counterfeiting symbol “T” on the quartz substrate. (b) The bright “T” symbol 
under 325 nm light irradiation. 

4. Conclusions 
The effects of N incorporation on the optical properties of Si-rich a-SiCx films were 

investigated. The increase in N content caused a significant enhancement in PL. Relative 
to the samples without N incorporation, those incorporated with 33% N showed a 22-fold 
increase in PL. Moreover, the increase in N content blueshifted the PL from the near-in-
frared region to the blue region and widened the optical bandgap from 2.3 eV to 5.0 eV. 
As indicated by the analyses of the infrared absorption spectra and PL decay characteris-
tics, the enhancement of PL was mainly due to the effective N passivation to the nonradi-
ative recombination centers in the samples. Given the strong PL and wide bandgap of the 
N incorporated samples, they were used to design an anti-counterfeiting label. Overall, 
the strong tunable light emission and fast decay dynamics of the films open the possibility 
of applying such materials to photonics and optoelectronics integration. 

Author Contributions: H.L.: writing—original draft, investigation, formal analysis. Z.L.: writing—
review & editing, formal analysis. Y.G.: investigation, formal analysis. J.S.: investigation. R.H.: in-
vestigation, formal analysis, writing—review & editing. Z.L.: formal analysis, investigation. All au-
thors have read and agreed to the published version of the manuscript. 

Funding: This work was supported by the Guangdong Basic and Applied Basic Research Founda-
tion (2020A1515010432), Special Innovation Projects of Guangdong Provincial Department of Edu-
cation (2020KTSCX076), Project of Educational Commission of Guangdong Province of China 
(2019KTSCX096), Young Talents in Higher Education of Guangdong (2016KQNCX100), Science and 
Technology Planning Projects of Chaozhou (2018GY18), and Program of the Hanshan Normal Uni-
versity (QN202020). 

Data Availability Statement: Data underlying the results presented in this paper are not publicly 
available at this time but may be obtained from the authors upon reasonable request. 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 
1. Fadaly, E.M.T.; Dijkstra, A.; Suckert, J.R.; Ziss, D.; van Tilburg, M.A.J.; Mao, C.; Ren, Y.; van Lange, V.T.; Korzun, K.; Kölling, 

S.; et al. Direct-bandgap emission from hexagonal Ge and SiGe alloys. Nature 2020, 580, 205–209, doi:10.1038/s41586-020-2150-
y. 

2. Zhang, C.; Xu, Y.; Liu, J.; Li, J.; Xiang, J.; Li, H.; Li, J.; Dai, Q.; Lan, S.; Miroshnichenko, A.E. Lighting up silicon nanoparticles 
with Mie resonances. Nat. Commun. 2018, 9, 2964, doi:10.1038/s41467-018-05394-z. 

3. Ni, Z.; Zhou, S.; Zhao, S.; Peng, W.; Yang, D.; Pi, X. Silicon nanocrystals: Unfading silicon materials for optoelectronics. Mater. 
Sci. Eng. R Rep. 2019, 138, 85–117, doi:10.1016/j.mser.2019.06.001. 

4. Lin, G.R; Wu, C.L.; Lian, C.W.; Chang, H.C. Saturated Small-Signal Gain of Si Quantum Dots Embedded in SiO2/SiOx/SiO2 
Strip-Loaded Waveguide Amplifier Made on Quartz. Appl. Phys. Lett. 2009, 95, 021106–021106-3. 

5. Wang, F.; Li, N.; Jin, L.; Yang, D.; Que, D. Reduction of the efficiency droop in silicon nitride light-emitting devices by localized 
surface plasmons. Appl. Phys. Lett. 2013, 102, 081108, doi:10.1063/1.4793757. 

6. Lin, Z.; Huang, R.; Zhang, W.; Zhang, Y.; Song, J.; Li, H.; Hou, D.; Guo, Y.; Song, C.; Wan, N.; et al. Highly Luminescent and 
Stable Si-Based CsPbBr3 Quantum Dot Thin Films Prepared by Glow Discharge Plasma with Real-Time and In Situ Diagnosis. 
Adv. Funct. Mater. 2018, 28, 1805214–1805214–8, doi:10.1002/adfm.201805214. 

7. Huang, R.; Song, J.; Wang, X.; Guo, Y.Q.; Song, C.; Zheng, Z.H.; Wu, X.L.; Chu, P.K. Origin of strong white electroluminescence 
from dense Si nanodots embedded in silicon nitride. Opt. Lett. 2012, 37, 692–694, doi:10.1364/ol.37.000692. 

Figure 8. (a) The anti-counterfeiting symbol “T” on the quartz substrate. (b) The bright “T” symbol
under 325 nm light irradiation.

4. Conclusions

The effects of N incorporation on the optical properties of Si-rich a-SiCx films were
investigated. The increase in N content caused a significant enhancement in PL. Relative to
the samples without N incorporation, those incorporated with 33% N showed a 22-fold
increase in PL. Moreover, the increase in N content blueshifted the PL from the near-
infrared region to the blue region and widened the optical bandgap from 2.3 eV to 5.0 eV.
As indicated by the analyses of the infrared absorption spectra and PL decay characteristics,
the enhancement of PL was mainly due to the effective N passivation to the nonradiative
recombination centers in the samples. Given the strong PL and wide bandgap of the N
incorporated samples, they were used to design an anti-counterfeiting label. Overall, the
strong tunable light emission and fast decay dynamics of the films open the possibility of
applying such materials to photonics and optoelectronics integration.
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