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Abstract: Reservoir Computing (RC) is a network architecture inspired by biological neural systems
that maps time-dimensional input features to a high-dimensional space for computation. The key to
hardware implementation of the RC system is whether sufficient reservoir states can be generated.
In this paper, a laboratory-prepared zinc oxide (ZnO) memristor is reported and modeled. The
device is found to have nonlinear dynamic responses and characteristics of simulating neurosynaptic
long-term potentiation (LTP) and long-term depression (LTD). Based on this, a novel two-level RC
structure based on the ZnO memristor is proposed. Novel synaptic encoding is used to maintain
stress activity based on the characteristics of after-discharge and proneness to fatigue during synaptic
transmission. This greatly alleviates the limitations of the self-attenuating characteristic reservoir of
the duration and interval of the input signal. This makes the reservoir, in combination with a fully
connected neural network, an ideal system for time series classification. The experimental results
show that the recognition rate for the complete MNIST dataset is 95.08% when 35 neurons are present
as hidden layers while achieving low training consumption.

Keywords: Reservoir Computing; memristor; synaptic plasticity; stress activity

1. Introduction

As artificial neural networks (ANN) are widely used in the field of artificial intelligence,
some of their limitations in the process of specific applications continue to emerge. For
example, convolutional neural networks (CNNs), which consist of convolutional layers
and fully connected layers [1], show strong recognition performance when processing
static image information [2,3], but when the temporal relationship between each input
vector is very tight, the recognition error of CNNs is greatly increased. Similar to general
forward-structured neural networks, CNNs are not suitable to deal with problems related
to time sequence. On the other hand, although recurrent neural networks (RNN) can be
used to solve time series-related problems, they have disadvantages such as overly complex
training algorithms, large computational effort, slow speed of convergence, and difficulty
in determining the network structure, as shown in Figure 1a, in addition to the case of
memory fading. These are serious obstacles to the application of recursive neural networks
in practical problems.

To solve the problem of training consumption, Jaeger and Maass proposed echo
state networks (ESNs) [4] and liquid state machines (LSMs) [5], respectively. Although
they proposed different perspectives, their intention was to improve upon the traditional
recurrent neural networks, and in 2007, they unified the name “Reservoir Computing” [6].
RC is a biologically inspired machine learning model that mainly simulates the neuronal
activity patterns of the human brain excited by neural impulse signals during information
processing. As shown in Figure 1b, the conventional RC structure mainly consists of an
input layer, a reservoir layer, and an output layer. The input vector is connected to the
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reservoir via the input weight Win. The reservoir generally consists of a large number
of randomly connected nonlinear nodes, with inter-node connection weights denoted by
W. When the input changes, the RC behaves as a delayed response, and the output layer
classifies the input signal by obtaining data from each nonlinear node and performing
linear regression. Both Win and W are randomly generated throughout the system, and do
not require further training once they are generated. Only the output weight Wout needs to
be trained before being obtained. Since the relationship between the state variables and
the output is linear, the output weight Wout only needs to be obtained by solving a linear
regression problem, which is the biggest advantage of RC over the traditional RNN.
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Presently, a large number of potential binary or ternary oxides have shown high-speed
resistive switching states and large switching ratios [7–9], which is extremely beneficial for
the development of applications of memristors [10]. When a scanning voltage or a pulsed
voltage is applied to the memristor, the memristor exhibits continuous multi-conductor
state changes, similar to the regulation of the connection strength of neural synapses, called
synaptic plasticity. Several studies have already shown that this neuronal structure and
transmission similar to those of the human brain have great advantages in building mem-
ristor neural networks, providing a promising non-von Neumann computational paradigm
and, thus, a certain degree of significant speed and energy efficiency. In addition, mem-
ristors have made great progress not only in the hardware of neural networks [11–17], but
also are widely used in many fields such as information storage [18,19], nonlinear dynam-
ics [20,21], neuronal models [22,23], nonvolatile logic [24,25], and chaotic circuits [26–28].
Several research results have now shown the realizability of hardware RC systems, such
as using spintronic oscillators [29,30], photonic techniques [31–33], or memristors [34–38].
Among them, the nonlinear dynamic response characteristics possessed by memristors
are well-suited for RC system hardware [39,40], but this has certain limitations, such as
the input signal duration and rate, which are strictly limited to a certain range based on
the conductivity self-attenuation characteristic reservoir, which is far from satisfying the
increasingly complex information-processing needs. In this paper, we demonstrate a novel
RC structure based on ZnO memristors, utilizing the memristor conductance accumulation
effect for initial processing of the input data and adjusting the reservoir state by controlling
the mask. In addition, based on the nonlinear dynamic response of the memristor, pulse
modulation is used to simulate the short-term memory effect of neurons and maintain their
stress activity, thereby helping to greatly alleviate the limitations of the self-attenuating
characteristic reservoir on the duration and interval of the input signal. Finally, the output
of the memristor is directly used as the reservoir state, thus omitting the read pulse opera-
tion and improving the data-processing speed of the RC system. The experimental results
show that the recognition rate for the complete MNIST dataset is 95.08% when 35 neurons
are present as hidden layers.
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2. Methods

In this paper, the ZnO memristor prepared in the laboratory was modeled, and a
novel two-level RC structure was proposed based on this device. Meanwhile, due to the
limited speed of information processing by the self-attenuating characteristic reservoir,
the concept of after-discharge was introduced, and a novel encoding method was used to
maintain the stress activity of simulated neurons to different pulses in order to improve the
recognition accuracy.

2.1. Pt/ZnO/Pt Memristor and Model

Among all transition metal oxides, ZnO has the advantages of stable resistive switch-
ing characteristics, uniformity, low bias requirement for SET and RESET voltages, low
processing cost, and low pollution, so ZnO was chosen as the resistive layer material for the
memristor in this paper. Finally, a bipolar memristor with asymmetric resistive switching
characteristics was formed [7,9]. Figure 2a,b shows the Pt/ZnO/Pt-structured memristor
prepared in the laboratory, which first deposited a 50 nm thin film of ZnO as a resistive layer
on a commercial Pt/Ti/SiO2 wafer using RF magnetron sputtering, and then deposited a
50 nm thick Pt electrode to form a Pt/ZnO/Pt structure using electron-beam deposition,
where the specific fabrication process and device characteristics have been described in
detail in a previous work [41]. Figure 2c shows the transmission electron microscopy image
of the memristor cross section.
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Figure 2. (a) Pt/ZnO/Pt memristor structure. A resistive switch consisting of a ZnO film is 

sandwiched between the top and bottom electrodes; (b) Pt/ZnO/Pt memristor showing a sandwich 

structure; (c) cross−sectional TEM image showing the Pt/ZnO/Pt memristor; (d) comparison of the 

experimental measurement data of the prepared memristor with the simulation data of the 

mathematical model; (e) Evolution of the device conductance as a function of the voltage pulse 

stressing numbers. All the voltage pulses show the same width of 200 ms and amplitude of 1.8 v. 
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which undergo a resistance state transition through ion migration and redox reactions. 

Figure 2. (a) Pt/ZnO/Pt memristor structure. A resistive switch consisting of a ZnO film is sand-
wiched between the top and bottom electrodes; (b) Pt/ZnO/Pt memristor showing a sandwich
structure; (c) cross−sectional TEM image showing the Pt/ZnO/Pt memristor; (d) comparison of the
experimental measurement data of the prepared memristor with the simulation data of the mathe-
matical model; (e) Evolution of the device conductance as a function of the voltage pulse stressing
numbers. All the voltage pulses show the same width of 200 ms and amplitude of 1.8 v.

In general, memristors use the conductive mechanism of conductive filaments (CFs),
which undergo a resistance state transition through ion migration and redox reactions. The
device exhibited a distinct resistive switching behavior at a direct current (DC) scan voltage,
as well as stable multi-state characteristics. A voltage was applied at the top electrode (TE),
and the bottom electrode (TB) was grounded during the scan. When a positive bias was



Micromachines 2022, 13, 1700 4 of 14

applied, the device changed from a high-resistance state (HRS) to a low-resistance state
(LRS); we defined this resistance change of the device as STE; conversely, when a negative
bias was applied, the device changed from a high-resistance state (LRS) to a low-resistance
state (HRS); we defined this resistance change of the device as RESTE. After repeated
experiments, the mathematical model was constructed based on the drift speed-adaptive
memristor (DSAM) [42] based on the obtained data. The i–v relationship of DSAM model
is shown in the following equation:

v(t) = (Ro f f − x∆R) · i(t) (1)

where Ron and Roff are the minimum and maximum resistance values of the memristor,
∆R is their difference, and x is denoted as the normalized conducting zone width, the
derivative of which is expressed as:

dx
dt

= g(i, v) · f (x, i), (2)

g(i, v) =


kon · ∆R · i(t), v(t)>von;

0, vo f f ≤ v(t) ≤ von;
kon · ∆R · i(t), v(t)<vo f f ,

(3)

f (x, i) =
{

(a · (1 − x))p, i>0;
(a · x)p, i ≤ 0.

(4)

where g(i, v) is the voltage threshold equation, f (x, i) is the velocity-adaptive equation,
von and voff denote positive and negative threshold voltages, kon and koff denote linear
adjustable parameters, and a and p are fitting parameters.

According to the data obtained for fitting, the main parameters of the final model
were set to von = 0.2 v, voff = −0.2 v, Ron = 250 Ω, Roff = 10 k, kon = 270, koff = 24, a = 0.47,
and p = 2.3. As shown in Figure 2d, the proposed mathematical model of the memristor
had a high agreement with the actual device in terms of current–voltage relationship
under the same programming pulse. As shown in Figure 2e, when a positive pulse with
a voltage of 1.8 v was applied, the memristor exhibited multiple continuously adjustable
stable conductance states. However, since positive feedback during SET usually leads
to uncontrolled excessive growth of CFs, if a negative pulse with an amplitude of 1.8 v
is applied during the execution of RESET, this will result in the inability to achieve the
transition between stable conductance states. Therefore, during RESET, it was necessary
to change the cutoff voltage and adjust the CFs in a relatively mild way to achieve the
transition between resistive states during RESET. According to the reset operation of the
memristor in DC scan mode shown in Figure 3a, it was found that the device currents were
all decreasing, so a relatively mild 0.4 v was used as the reset voltage.

On the other hand, according to the above device’s performance, shown in Figure 3b,
its resistance state with a continuous adjustable characteristic was highly similar to a
biological neural synapse. According to the Hebbian learning rule, when stimulation of
the presynaptic membrane precedes the postsynaptic membrane, the postsynaptic current
tends to rise and the synapse shows LTP; conversely, the postsynaptic current tends to
fall and the synapse shows LTD [43]. Accordingly, the pulses were applied to the top and
bottom electrodes of the memristor, respectively, causing different degrees of resistance
state changes in the memristor, and based on this property, the following RC system was
constructed by simulating the bionic synapse.
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Figure 3. (a) Continuous regulation of the device current in the negatively biased reset processes;
(b) Simulation of bionic synaptic LTP and LTD characteristics (pulse width 200 ms and pulse interval
50 ms).

2.2. RC System Based on ZnO Memristor

The echo state network structure consists of sparsely connected large-scale analog
neurons, and its structure is shown in Figure 1b. The network structure consists of M inputs,
N nodes, and P outputs; the input vector, state vector, and output vector after sampling are
expressed as follows: 

u(n) = [u1(n), u2(n), . . . , uM(n)]T

x(n) = [x1(n), x2(n), . . . , xN(n)]
T

y(n) = [y1(n), y2(n), . . . , yP(n)]
T

(5)

In this structure, ESNs map u(t) to a higher-dimensional space by input weights,
while to eliminate the influence of arbitrary initial states on the dynamic characteristics of
the system, the system states are collected only after a certain moment m, which is finally
classified by the output layer for data classification.

The output weights Wout are trained by computing the error between the network
output value ŷ(t) and the desired output y(t) [44,45], with the aim of minimizing the error.

ŷ(t) =
P−1

∑
i=0

xi(n)Wout
i (n) (6)

E = min
1

Z − z + 1

Z

∑
j=z

[
P−1

∑
i=0

xi(n)Wout
i (n)−yi(n)

]2

(7)

where Z − z + 1 is the length of the sampled data. The state equation and the output
equation during training [46] can be expressed as:{

x(t + 1) = f [u(t)Win + x(t)W + fback[ŷ(t)− y(t)]Wout]
ŷ(t + 1) = u(t)Win + x(t + 1)W + fback[ŷ(t)− y(t)]Wout

(8)

The above equation ultimately requires solving for the connection weights Wout be-
tween the reservoir and the output, while the outputs y(t) are generated by the state vari-
ables x(t) through a fully connected neural network, which exhibits a linear relationship.
At the mathematical level, it is simply necessary to solve the linear regression problem.

Based on the above derivation, the structure diagram of the RC system designed in
this paper is shown in Figure 4a. To recognize pictures using the RC system, the first step
was to turn the pictures into a circuit-recognizable form, i.e., to encode the pixels. The
image input to the reservoir was cropped to an n × 4 format, where each line contains
4 pixels, with black pixels representing the number “0” and white pixels representing the
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number “1”, resulting in a 4-bit binary number. When the highest bit was high (white
pixel), the pixel was encoded as 8 voltage pulses; when the lowest bit was high, the pixel
was encoded as 1 voltage pulse, and so on, for a total of 16 arrangements.
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Figure 4. (a) RC system structure proposed in this paper; (b) Part of the peripheral circuit of the
memristor in the first-level reservoir; (c) Hold operation is performed on each voltage signal to keep
the voltage stable in the ∆t range.

From Figure 2e, it can be seen that the memristor conductance state was positively
correlated with the number of input pulses, and different numbers of pulses led to different
conductance states. Specifically, when a positive pulse was applied to the memristor, the
memristor state changed and the response showed an increase in conductance. When
multiple pulses were applied at short intervals, the conductance kept increasing, while
the memristor state returned to the original state when multiple reverse voltages were
applied continuously, i.e., the resistance state when no pulses were applied. Figure 4b
shows part of the peripheral circuitry of the memristor in the first level of the reservoir.
When the pulse sequences corresponding to the different pixel arrangements are input from
the IN2 port, the two transmission gates close, N3 closes, N4 conducts, and the voltage
pulses pass through the memristor and are grounded. At this time, the image information
corresponding to the pulse sequence is stored in the memristor, and a read pulse is output
from IN1 to read the memristor resistance value. When IN1 is high, the two transmission
gates are turned on by the inverter and with the AND gate, and both N3 and N4 are turned
off, so the output current is output from OUT1 after the read pulse passes through the
memristor. After a group of data is processed, the memristor resistance needs to be reset; at
this time, the reset pulse is output by IN3, the same two transmission gates are closed, N3 is
on and N4 is off, and the pulse will reset the memristor resistance and then ground through
N3. This prevents any current from passing through the transmission gate and affecting
the RC system. In this pixel-encoding approach, the original set of image features is then
represented as the conductance state of individual memristors after pulse stimulation, and
the collective memristor state contains all pixel point information. Since the ZnO memristor
is a voltage-controlled device, the current signal is converted into a voltage form using the
transimpedance amplifier to facilitate subsequent processing. Subsequently, all voltage
signals are integrated into a vector and multiplied with a matrix containing only ±1 (for
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reasons described in the next section). Finally, the voltage signal is stabilized within ∆t (∆t
is the transfer delay of the memristor) by performing the operation shown in Figure 4c,
generating a time pulse sequence.

The traditional reservoir is composed of randomly connected nonlinear neuron nodes.
The concept of “after-discharge” in synaptic transmission is introduced here, so that the
device state depends not only on the current input, but also on the availability of other
pulse inputs within the nearest τ time frame through a feedback circuit. Due to the transfer
delay, the interaction between neurons prevented the excitation response from disappearing
immediately in the reservoir, thus forming rich reservoir states at each nonlinear node.
However, the hardware implementation of the reservoir process is very difficult to achieve
random connections between multiple devices and guarantee their performance, so this
paper used the time-division multiplexing principle to input the pulse sequence into the
series circuit of the memristor and resistor. The pulse sequence, as shown in Figure 4c,
will result in the memristor having different conductance states at different time periods,
so the time required for the memristor to go from LTP to LTD under the same pulse
conditions was defined as τ. We divided τ into N equidistant points (node spacing θ = τ/n)
corresponding to N virtual nodes, and the bottom electrode of the memristor was used as
the sampling point on the virtual node for sampling. It should be noted that there was no
need to distinguish between the voltage signal of the input and the output signal of the
feedback circuit separately, but there was a need to directly collect the state changes of the
memristor at different points in time under the combined effect of these two signals, where
virtual nodes were used instead of the nonlinear nodes in the traditional reservoir, and
the collected data could be linearly regressed to characterize the original corresponding
image information.

The last point to note is that the delay error existing in the whole reservoir structure
mainly came from two aspects, namely the circuit delay and sampling delay. Firstly, the
delay existing after the hardware circuit was completed was relatively fixed, and the impact
on the reservoir was also relatively fixed, so it had little impact on the final recognition
accuracy; secondly, in terms of sampling, since the sampling was done by external mature
commercial ADC modules, the sampling delay was relatively small. Therefore, the biggest
time error came from the fact that the time point at which each sampling started could not be
precisely synchronized, but the state change of the same image information was convergent
after it was inputted into the reservoir; the different starting time of sampling only led to a
deviation in the time dimension of the collected data, but the actual information content
was the same, so the impact on the final recognition accuracy was also small.

2.3. Synaptic Plasticity-Based Coding

In this section, the picture pre-processing method and the pulse adjustment method
for the memristor are explained separately. Because the advantage of the RC lies in the
processing of temporal information, in this paper, the MNIST dataset was transformed into
temporal information before processing and recognition, as shown in Figure 5a, requiring
pre-processing of 28 × 28 images. Firstly, the original grayscale image was converted into a
binary image. At this point, if a whole row was treated as a time series, there were, theoreti-
cally, 1,048,576 different inputs, which are difficult to distinguish for a single memristor,
so in order to improve the recognition accuracy, the image was cut into 7 columns (each
column was 28 × 4 in size) on average, and subsequently integrated into a 196×4 image.
According to the encoding method described in the previous section, the images were con-
verted into pulse sequence classes, and the differences existing in the original images were
distinguished using the different resistance states of the devices due to different number of
pulses. Based on this feature, a simple example is shown in Figure 5b, where the image
size is 5 × 4 and the contents are the numbers “2” and “3”. Here, five memristors are used
to recognize the images, and each row in both images corresponds to the same number of
white pixels, with rows 1 through 5 being 2, 1, 2, 1, and 3, respectively. The pixel informa-
tion is converted into temporal pulses that are input into the memristors, whose reservoir
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states are characterized in Figure 5c,d, respectively. There was a significant difference in the
state of the reservoir when only the pixel arrangement was different; thus, it was shown
that the memristor had a natural advantage for recognizing time-sensitive sequences.
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Figure 5. (a) Grayscale image conversion to binary image with 7 columns sliced and stitched together.
In the end, the image is transformed into a 196 × 4 image and encoded; (b) example images of
numbers “2” and “3”; (c) reservoir state of “2”; (d) reservoir state of “3”. A1-5 corresponds to A1-n in
Figure 4a (at this point n = 5).

Although the above process could perform preliminary classification of the temporal
pulse signal, in this coding method, the inputs were positive pulses, and the memristor
resistance range was limited; when the memristor was adjusted to the LTP state, it could
no longer respond to the pulse stimulus, so the data collected at the sampling point did
not reflect the input difference, and eventually led to a network recognition accuracy with
substantial error, so using this method alone does not apply to complex image recognition.
The key to improving accuracy is to maintain synaptic stress activity in response to pulses,
so this paper multiplied the voltage signal in a second-stage reservoir with a matrix
containing only ±1 to assign random positive and negative signs to the pulse sequence,
minimizing the device being regulated all the way to LTP or LTD. At the same time, a
synaptic plasticity-based encoding approach was introduced to maintain synaptic stress
activity in response to impulses. The circuit diagram for generating the regulation pulses is
shown in Figure 6a. This circuit works simultaneously and independently of the sampling
circuit described above, and the input signal shares the signal shown in Figure 4c. When
continuous positive pulses are input, N1 and N2 turn on, P1 and P2 turn off, then VDD
charges C1 through the N1 transistor, and when the number of positive pulses reaches a
certain number, the voltage across C1 capacitor exceeds the reference voltage Vref, then
the comparator outputs a high-level pulse and connects to the bottom electrode of the
memristor for the purpose of regulating the conductance; conversely, the regulating pulse
is output from another comparator and connects to the top electrode of the memristor.
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If a low-level pulse is input at this time, N1 and N2 turn off, P1 and P2 turn on, and
VDD charges C2 while discharging C1 through P2. However, the amount of conductance
regulated by a large number of forward pulses cannot be offset by one reverse pulse and,
similarly, the amount of charge accumulated by a large number of forward pulses cannot
be fully released by one reverse pulse, so a large resistor R1 needs to be connected in series
during the discharge process for slowing down the discharge of the capacitor.
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Figure 6. (a) Schematics for generating auto−regulating pulses; (b) Continuous positive pulses are
input to adjust the memristor to the LTP state. If the subsequent programmed pulses remain positive,
a reverse regulation pulse is automatically applied to keep the resistance state stable; (c) Continuous
negative pulses are input to adjust the memristor to the LTD state. If the subsequent programmed
pulses remain negative, a reverse regulation pulse is automatically applied to keep the resistance
state stable.

With continuous input of forwarding programming pulses (blue arrows), as shown
in Figure 6b, the memristor conductance continuously increases, manifesting as an LTP
state, and if the input remains a positive pulse, reverse regulation pulses (red arrows) are
punched in after each time frame to stabilize the conductance within a certain range. This
is manifested by the fact that when a continuous positive pulse is input, the conductance
of the memristor is regulated to a certain value and then no longer increases and no
longer responds routinely to similar pulses, which is biologically manifested as a fatigue
state due to the depletion of transmitters in the synaptic transmission process. Similarly,
as shown in Figure 6c, when the memristor behaves as an LTD state, with the input
remaining as negative pulses, positive pulses are punched in after each time frame to
prevent the conductance from continuing to decrease, no longer responding to the same
kind of negative pulses, but at the same time maintaining a high sensitivity to non-identical
pulses to characterize the input difference. By adopting this new encoding method to
maintain the stress activity of simulated synapses to pulses, this will cause different changes
in the resistance state of the amnestic at different moments when pulses containing image
information are input into the memristor, and the collected data will reflect the amount of
pulse changes more obviously, ultimately improving the recognition accuracy.

3. Results

Based on the above method, the MNIST dataset is recognized using a ZnO memristor-
based RC system. The MNIST dataset in the network simulation is obtained from the
National Institute of Standards and Technology (NIST) database, where 60,000 images
are used for training and 10,000 images are used to test the network recognition accuracy.
Because the advantage of the reservoir calculation lies in the processing of the time se-
ries information, in order to characterize the reservoir calculation, the MNIST dataset is
transformed into time series information before processing and identification in this paper.

As shown in Figure 7a,b, even when the hidden layer is not included, the recognition
accuracy of the complete MNIST dataset improved rapidly, reaching 88.92% after only
five batches, with the loss function reduced to less than 0.4 (the loss function indicates the
difference between the predicted and actual values, which is represented here by the mean
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squared error). In Figure 7c, the results of the MNIST test set are shown. The confusion
matrix shows that the network has a high recognition accuracy for the dataset, with the
main error being the recognition of “9” as “4”, followed by “5“ being incorrectly recognized
as “8”. Furthermore, the network recognition is improved when 35 neurons are added to
the readout layer as a hidden layer, and in Figure 7d,e, the network recognition accuracy
reaches 95.08%, while the loss function is reduced to 0.17. The confusion matrix in Figure 7f
shows that most of the errors are found in the recognition of “9” as “4”. Finally, since the
results of the weights are not unique for each training, the two output layers are tested
20 times in this paper, and the final standard deviations regarding the recognition accuracy
are 0.067 and 0.208, respectively.
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Figure 7. (a) Accuracy of training and validation (without hidden layers); (b) loss of training and
validation (without hidden layers); (c) confusion matrix of data sets in (a); (d) accuracy of training
and validation (hidden layer contains 35 neurons); (e) loss of training and validation (hidden layer
contains 35 neurons); (f) confusion matrix of data sets in (d).

Based on the above experimental results, the recognition performance of different RC
systems for MNIST datasets is statistically presented in Table 1. First, in comparison with
the traditional basic RC system [47], the recognition accuracy of the present design reaches
92% with the same dataset, but with simultaneous training parameters up to 528,000.
Longitudinal comparison of training parameters and accuracy rates clearly shows that
the hardware-implemented RC system has certain superiority. Secondly, in comparison
with the dynamic memristor-based RC system [34], although the trainable parameters are
lower than the present design, it uses an incomplete dataset with only 2000 images in
the test set. The experimental results after selection are somewhat coincidental, and the
cropping of images also simplifies the recognition difficulty to some extent. Nevertheless,
the RC system proposed in this paper is still nearly 4% higher in recognition accuracy.
Finally, in comparison with the diffusive memristor-based RC system [36], the recognition
accuracy of the present design is also improved by 6.52% with superior image size and
trainable parameters. In addition, the reservoir structure proposed in this paper has
good performance when compared with other types of RC systems. Firstly, regarding
the RC system based on photonic memristors [48], although photonic technology can
achieve relatively low energy consumption, using this technology is still in its infancy
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and the processing power of the RC system is still far from being comparable to that of
neural networks. Secondly, regarding the RC system based on the temporal kernel of the
memristor [49], the performance of this reservoir is similar to the present work, but the
RC system proposed in this paper has a slight advantage when the hidden layer is also
added to the output network. The last is an RC system using a self-organizing nanowire
network structure [50], and the final recognition accuracy of the method is 90.04%. Overall,
the novel two-level RC structure based on ZnO memristors maintains high recognition
accuracy for the complete MNIST dataset while achieving low training consumption.

Table 1. Comparison of the recognition performance of RC system on MNIST dataset.

RC System Types Number of
Samples

Image
Size

Trainable
Parameters Accuracy

This work 60,000/10,000 28 × 28
1970 89.52%
7225 95.08%

Basic RC 60,000/10,000 28 × 28 528,000 92.0%

Dynamic
memristor-based RC 14,000/2000 22 × 20 1760 85.6%

Diffusive
memristor-based RC 60,000/10,000 22 × 20 2200 83.0%

Photonic quantum
memristor-based RC

1000/1000
(Contains only 0,3,8) 18 × 12 about 1600 95%

Memristor temporal
kernel-based RC

50,000/10,000 28 × 28
1970 90.01%
7828 95.01%

Self-organizing
nanowire network-

based RC
60,000/10,000 28 × 28 - 90.04%

4. Discussion

In this paper, a Pt/ZnO/Pt-structured memristor is used to implement a two-level
RC system. First, the pulse sequences are classified by multiple parallel memristors, where
multiple parallel memristors are seen as the first level of the reservoir. Subsequently, the
individual memristor outputs are integrated into a vector and multiplied with a random
matrix. Finally, the signal is fed into a series circuit of memristors and resistors through
a simple time-division multiplexing process, i.e., the second-level reservoir. Through
experiments and simulations, it is demonstrated that the use of simulated synaptic LTP
and LTD properties in the second-level reservoir, combined with the after-discharge and
easy-fatigue characteristics of the synaptic transmission process, greatly alleviates the input
signal duration and interval limitations of the reservoir with self-decaying characteristics.
Subsequently, by choosing the appropriate sampling frequency and power supply range,
the timing signal can be processed effectively with an identification accuracy of 95.08% for
the complete MNIST dataset. Theoretically, the system has a very large optimization space
for the handwritten digit recognition task, which leads to error classification mainly due to
the loss of original information in the process of grayscale image binarization, with varying
degrees of influence of the pulse width and amplitude settings programmed by the device
on the feature extraction. Meanwhile, in the error analysis, it is found that the probability
of occurrence of different pixel arrangements is not the same, with the probability of
occurrence of “0000” being as high as 77.2017% and that of “1111” being 4.5482%. The eight
pulses with the highest probability of occurrence account for 50% of the total pulse types,
but their share in the total number of occurrences is already as high as 98.4374%. Therefore,
the subsequent optimization of the system focuses on the high-frequency pulses without
spending a lot of resources to accurately classify all 16 types of pulses, thus effectively
improving the recognition accuracy under constrained resource consumption.

Since RC encodes spatial information in the space–time domain without requiring
training for physical reservoirs, this CMOS process-compatible architecture reduces net-
work size and training costs, and is also attractive for applications that do not require
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extremely high processing speed but have strong constraints on memory size and computa-
tional power. These results provide a possible new idea for the physical implementation of
brain-like computing.
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