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Abstract: In this paper, the structure and working principle of four-mass vibration MEMS gyroscope
(FMVMG) are introduced, and the working modes of FMVMG are simulated and analyzed. On
the basis of this, an improved noise reduction method based on interval local mean decomposition
(ILMD) and parabolic tracking time-frequency peak filtering (PTTFPF) is proposed. PTTFPF can
resample the signal along a parabolic path and select the optimal filtering trajectory, but there is still
a contradiction, choosing a short window length may lead to good signal amplitude retention, but
the random noise reduction effect is not good, while choosing a long window length may lead to
serious amplitude attenuation, but the random noise reduction effect is better. In order to achieve
a better balance between effective signal amplitude preservation and random noise reduction, the
ILMD method was used to improve PTTFPF. First, the original signal was decomposed into product
functions (PFs) by local mean decomposition (LMD) method, and the sample entropy (SE) of each PF
was calculated. The PFs are divided into three different components. Then, short window PTTFPF
is used for useful PF and long window PTTFPF is used for mixed PF, noise PF is directly removed.
Then the final signal is reconstructed. Finally, the denoised useful PF and mixed PF are reconstructed
to obtain the final signal. The proposed ILMD-PTTFPF algorithm was verified by temperature
experiments. The results show that the denoising performance of the ILMD-PTTFPF algorithm is
better than that of traditional wavelet threshold denoising and Kalman filtering.

Keywords: four-mass vibration MEMS gyroscope; local mean decomposition; sample entropy;
parabolic tracking time-frequency peak filtering

1. Introduction

With the development of sensor manufacturing technology, the accuracy of micro-
electro-mechanical system (MEMS) gyroscopes has been continuously improved, which
can meet the requirements of many fields. However, in the process of test and calibration of
gyroscope, the noise of the test signal greatly affects the identification of the working mode
of the sensor and the calibration accuracy of the sensor, therefore, reducing the noise of
the output signal is an effective method to improve the calibration accuracy of the MEMS
gyroscope, thereby improving the performance of the gyroscope [1–3].

Previously, there were many scholars devoted to the study of algorithms to suppress
the noise of MEMS gyroscope. In work [4], a new type of silicon microstructure equivalent
circuit model was presented, according to this model and weak signal detection technology,
the different noise components of MEMS gyroscopes are studied, including mechanical
thermal noise, electrical thermal noise, flicker noise, and Coriolis signal in-phase noise.
Work [5] proposed an improved denoising algorithm based on fast Fourier transform (FFT)
and simple wavelet denoising algorithm. Experimental results show that the performance
of the improved denoising method is better than that of the FFT denoising method and
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simple Wavelet denoising method. Work [6] proposed a signal processing algorithm
based on a three-dimensional adaptive filter demodulator. This method eliminates the
common mode noise and orthogonal coupling caused by the initial capacitance mismatch.
This kind of adaptive filter has the advantages of fast convergence, low noise, and less
hardware resources. Work [7] proposes a drift model based on the combination of genetic
algorithm and Kalman filter, which can eliminate errors in the entire temperature range.
In work [8], a real-time wavelet de-noising method is used for the error compensation of
MEMS gyroscope, at the same time, sparse and redundant representation methods are
used to optimize the wavelet coefficients, the lag correction algorithm is used to reduce the
boundary effect of wavelet decomposition. In work [9], a noise reduction algorithm based
on improved empirical mode decomposition (EMD) and forward linear prediction (FLP) is
proposed, which eliminates noise more effectively than traditional EMD or FLP methods.
In work [10], in order to balance the signal fidelity and noise reduction effect, sample
entropy (SE) and empirical mode decomposition (EMD) are used to improve time-frequency
peak filtering (TFPF). The denoising performance of this method is better than traditional
wavelet, Kalman Filter and fixed window length TFPF method. In work [11], a new interval
empirical mode decomposition (IEMD) noise reduction method is proposed, which greatly
improves the signal quality and the accuracy of the inertial navigation system solution.
Work [12] proposed a filtering algorithm based on quadrature demodulation, adding Q-
channel demodulation filtering to the original single-channel demodulation method. This
solution can eliminate the interference signal without destroying the output signal of the
gyroscope. Work [13] introduced an improved Sage-Husa adaptive Kalman filter (SHAKF),
and proposed an improved autoregressive model. The SHAKF method reduces the random
error of the fiber optic gyroscope effectively and improves the accuracy of the fiber optic
gyroscope. Work [14] combined adaptive sampling strong tracking algorithm (ASSTA)
and scaled unscented Kalman filter algorithm for interferometric fiber optic gyroscope
(IFOG) signal denoising. In this algorithm, the state error covariance (P) is updated by
the suboptimal fading factor and the ASSTA method. The simulation results show that
the algorithm can reduce the drift of the gyroscope signal. Work [15] proposed a MEMS
gyroscope denoising method based on deep learning, applying recurrent neural networks
(RNN) variant simple recurrent unit (SRU-RNN) to the MEMS gyroscope’s signal denoising.
The simulation results prove the SRU-RNN’s superiority. Work [16] proposed a nonlinear
parabolic tracking time-frequency peak filtering (PTTFPF). This method resamples the
signal along the parabolic path and extracts the data matrix to select the optimal filtering
trajectory. From the literature above it can be concluded that local mean decomposition and
Kalman filter are very excellent noise reduction method for MEMS gyroscopes. However,
there are some other outstanding de-noising methods that have been proposed but never
used for four-mass vibration MEMS gyroscope.

In recent years, time-frequency peak filtering (TFPF) has been applied more and more
in the field of signal processing [17]. However, the traditional TFPF has disadvantages
in the selection of window length. Using a fixed window length for all signal compo-
nents will result in a serious loss of effective components or insufficient noise reduction
capabilities. In addition, the PTTFPF resamples the signal along the parabolic trajectory,
this method can enhance linearity and effectively improve the performance of traditional
TFPF [16–18]. However, the curvature in the data of the FMVMG is relatively complicated,
and it is difficult to accurately fit a parabola to a signal mixed with noise. In order to solve
these problems, we combine PTTFPF and ILMD in this article. The interval local mean
decomposition (ILMD) method is essentially a combination of local mean decomposition
(LMD) [19–22] and sample entropy (SE) [23,24]. First, the traditional LMD algorithm is used
to decompose the FMVMG signal into several product functions (PFs); second, based on
the characteristics of sample entropy calculation and product functions, the numerous PFs
are divided into three categories: noise PF, mixed PF, and useful PF. The noise PFs should
be wiped off directly. The mixed PF is denoised with a long-window PTTFPF, because
long-window PTTFPF can effectively reduce random noise. The useful PF is denoised with
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a short-window PTTFPF, this can make the linearity in the window best, so as to retain the
information of the signal effectively on the basis of removing the noise. Finally, recombine
the denoised mixed PF and denoised useful PF to get the final denoised signal.

The experimental results can verify the reliability of the denoising method in this
paper. Compared with the source signal, the ILMD-PTTFPF method improves the bias
stability of denoised signal by about 19 times, and reduces the noise characteristic by about
24 dB.

The rest of this paper is organized as follows: FMVMG description is shown in
Section 2; Section 3 is a description of the proposed ILMD-PTTFPF algorithm. Section 4
introduces the experimental results and the discussion of denoising result; Section 5 is
the conclusion.

2. Four-Mass Vibration MEMS Gyroscope

The noise reduction algorithm in this paper is aimed at a new microelectromechani-
cal system, a four-mass vibration MEMS gyroscope (FMVMG). The core components of
FMVMG are four sensitive masses, and the decoupling of the driving and detection modes
of the four masses is realized through the design of a reasonable ratio of stiffness between
two degrees of freedom and elastic beams. Due to the advantages of the material and
structure of the resonator, FMVMG has many significant advantages, such as high precision,
low energy consumption, long life, and mass production.

2.1. Structure and Workong Principle of FMVMG

Figure 1 shows the structure of FVMMG with four sensitive blocks at its core. The
four-mass harmonic oscillator consists of 10 supporting anchors, 16 driving and detection
frames, 4 mass blocks and multiple folded beams for connection, drive, and detection (the
specific structure is shown in Figure 1). Four cross-shaped driving and detection frames
are designed around each mass block. One end of the drive frame and the detection frame
is connected with the mass block through the folding beam, and the other end is connected
with the supporting anchorage point. The reasonable selection of the stiffness of the folded
beam and the design of the 2-DOF structure effectively decouple the driving mode from
the detection mode.

Micromachines 2022, 13, x  3 of 17 
 

 

the numerous PFs are divided into three categories: noise PF, mixed PF, and useful PF. 
The noise PFs should be wiped off directly. The mixed PF is denoised with a long-window 
PTTFPF, because long-window PTTFPF can effectively reduce random noise. The useful 
PF is denoised with a short-window PTTFPF, this can make the linearity in the window 
best, so as to retain the information of the signal effectively on the basis of removing the 
noise. Finally, recombine the denoised mixed PF and denoised useful PF to get the final 
denoised signal 

The experimental results can verify the reliability of the denoising method in this 
paper. Compared with the source signal, the ILMD-PTTFPF method improves the bias 
stability of denoised signal by about 19 times, and reduces the noise characteristic by 
about 24 dB. 

The rest of this paper is organized as follows: FMVMG description is shown in Sec-
tion 2; Section 3 is a description of the proposed ILMD-PTTFPF algorithm. Section 4 intro-
duces the experimental results and the discussion of denoising result; Section 5 is the con-
clusion. 

2. Four-Mass Vibration MEMS Gyroscope 
The noise reduction algorithm in this paper is aimed at a new microelectromechani-

cal system, a four-mass vibration MEMS gyroscope (FMVMG). The core components of 
FMVMG are four sensitive masses, and the decoupling of the driving and detection modes 
of the four masses is realized through the design of a reasonable ratio of stiffness between 
two degrees of freedom and elastic beams. Due to the advantages of the material and 
structure of the resonator, FMVMG has many significant advantages, such as high preci-
sion, low energy consumption, long life, and mass production. 

2.1. Structure and Workong Principle of FMVMG 
Figure 1 shows the structure of FVMMG with four sensitive blocks at its core. The 

four-mass harmonic oscillator consists of 10 supporting anchors, 16 driving and detection 
frames, 4 mass blocks and multiple folded beams for connection, drive, and detection (the 
specific structure is shown in Figure 1). Four cross-shaped driving and detection frames 
are designed around each mass block. One end of the drive frame and the detection frame 
is connected with the mass block through the folding beam, and the other end is connected 
with the supporting anchorage point. The reasonable selection of the stiffness of the folded 
beam and the design of the 2-DOF structure effectively decouple the driving mode from 
the detection mode. 

Coriolis Mass

Anchor

Drive Frame

Sense Frame

Connect Spring

Drive Spring

Sense Spring

Force Rebalances 
Comb

Drive Comb

Drive Sense Comb

Sense Comb
 

Figure 1. Structure of FMVMG.

Because of the two free design, the whole four mass block is designed to connect many
elastic beams. The structure is complex, so we can approximate it to a spring damping
structure. Therefore, the lumped model of FMVMG is shown in Figure 2.
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Figure 2. The lumped model of FMVMG.

FMVMG is a kind of Coriolis vibration gyroscope. Its working mechanism is the
mutual transfer of Coriolis force coupling energy between driving mode and detection
mode. wave. Its working mode is shown in Figure 3. When there is no external input
angular velocity, a periodic sinusoidal AC signal is applied to the driving electrode of
each mass block to obtain the driving mode shown in Figure 3a. When the mounted
carrier rotates in the direction perpendicular to the driving vibration, an angular velocity
is generated on the z-axis, and the energy of the driving mode forms the vibration of the
detection mode as shown in Figure 3b through the Coriolis effect.
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2.2. Modal Analysis of FMVMG

The ANSYS software is used to simulate the sensitive structure of the four-mass gyro,
and the simulation results of the first 12 modals are extracted. The natural frequencies are
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shown in Table 1. The first eight modes of the sensitive structure are translational motions
in the plane of the four-mass block, in which the motions of the adjacent masses in the
sixth and seventh modes are reversed, and the four-mass micro-gyroscope vibrates in a
trapezoidal mode. The FMVMG studied in this paper was measured in these two modes,
and the 6th and 7th modes are the basic modes of FMVMG. Through electrostatic control
techniques and rational electrode arrangements, the gyroscope can resonate in these modes.
The 8th to 12th modes are out-of-plane translational motions of the four-mass.

Table 1. The oscillator modal frequency of FMVMG.

Modal Order Number Resonant Frequencies

1 25,644 Hz
2 25,999 Hz
3 26,476 Hz
4 26,550 Hz
5 29,636 Hz
6 30,740 Hz
7 30,886 Hz
8 37,230 Hz
9 38,543 Hz
10 40,070 Hz
11 41,445 Hz
12 41,955 Hz

The main model simulation diagram of the four-mass resonator structure is shown in
Figure 4. The natural frequencies of the resonant structure are 30,740 Hz and 30,886 Hz,
respectively, and the minimum frequency difference of the interference mode is 1377 Hz.
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Under the electrostatic drive, the resonator works in a driving manner, as shown
in Figure 4a, the four-mass blocks move in opposite directions in the up-down direction.
When measuring the angular velocity, the resonator changes the vibration mode according
to the Coriolis principle, and excites the detection mode as shown in Figure 4b, and the
four-mass block moves in the opposite direction in the left and right directions.
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3. Denoising Methods
3.1. Interval Local Mean Decomposition

Time-frequency analysis is an effective tool for analyzing non-stationary signals. The
time-frequency analysis method provides joint distribution information of time domain
and frequency domain. It describes the relationship between the frequency of a signal and
time. The basic principle of time-frequency analysis is to design a joint function of time
and frequency, and use it to describe the energy intensity of a signal at different times and
frequencies. Typical time-frequency analysis methods include window Fourier transform,
Wigner distribution, wavelet transform, etc., [25,26].

Local mean decomposition (LMD) is also a time–frequency analysis method. It can
decompose non-stationary signals into numerous product functions (PF) adaptively. PF is
the product of the frequency modulation signal and the envelope signal. The amplitude of
PF represents the instantaneous amplitude of the envelope signal, and its instantaneous
frequency is obtained from the frequency modulation signal. Therefore, the parameters
of each PF component can represent the complete time-frequency distribution of the
original signal.

The process of LMD is shown as follows [19]:

• Step 1: determine all local extreme points ni of the original signal x(t), and calculate
the mean value mi of two adjacent extreme points ni and ni+1:

mi =
(ni + ni+1)

2
(1)

All mi is connected by straight lines and smoothed by moving average method to
obtain the local mean function m11(t).

• Step 2: envelope estimates ai are calculated from local mean points ni:

ai =
|ni − ni+1|

2
(2)

Similarly, all the ai are connected by straight lines and smoothed by moving average
method to obtain the envelope estimation function a11(t).

• Step 3: the local mean function m11(t) is separated from the original signal x(t):

h11(t) = x(t)−m11(t) (3)

• Step 4: divide h11(t) by a11(t) to demodulate h11(t):

s11(t) =
h11(t)
a11(t)

(4)

Ideally, s11(t) is a pure frequency-modulated signal, in which case, the envelope
estimation function a12(t) = 1. If s11(t) does not meet the conditions, then s11(t) will be
used as the original data to repeat the above iterative process until a pure frequency-
modulated signal s1n(t) is obtained, that is, −1≤ s1n(t) ≤1, and its envelope estimation
function a1(n+1)(t) = 1. 

h11(t) = x(t)−m11(t)
h12(t) = s11(t)−m12(t)

...
h1n(t) = s1(n−1)(t)−m1n(t)

(5)
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Among them: 
s11(t) = h11(t)/a11(t)
s12(t) = h12(t)/a12(t)

...
s1n(t) = h1n(t)/a1n(t)

(6)

The condition for iteration termination is:

lim
n→∞

a1n(t) = 1 (7)

• Step 5: the envelope signal is obtained by multiplying all the envelope estimation
functions generated in the iteration process:

a1(t) = a11(t) · a12(t) · · · a1n(t) =
n

∏
i=1

a1i(t) (8)

• Step 6: the first PF component PF1(t) of the original signal is obtained by multiplying
the envelope signal a1(t) and the pure frequency-modulated signal s1n(t):

PF1(t) = a1(t) · s1n(t) (9)

PF1(t) contains the component with the highest frequency in the original signal, which
is a single-component AM-FM signal. Its instantaneous amplitude is the envelope signal
a1(t), and its instantaneous frequency f1(t) can be calculated from the pure frequency-
modulated signal s1n(t):

f1(t) =
1

2π
· d[arccos(s1n(t))]

dt
(10)

• Step 7: the first PF component PF1(t) is separated from the original signal to obtain
a new signal u1(t), using u1(t) as the original data, repeat the above steps for k times
until u1(t) is a monotone function.


u1(t) = x(t)− PF1(t)
u2(t) = u1(t)− PF2(t)

...
uk(t) = uk−1(t)− PFk(t)

(11)

At this time, the original signal x(t) is decomposed into the sum of PF components
and a monotone function uk(t):

x(t) =
k

∑
i=1

PFi(t) + uk(t) (12)

Since the result of LMD contains many PF components, it is impossible to denoise all
PF components separately. Therefore, for the convenience of subsequent noise reduction
processing, sample entropy (SE) is introduced here to classify numerous PF components,
which can be divided into noise PF, mixed PF, and useful PF. The interval local mean
decomposition (ILMD) method is essentially a combination of LMD and SE.

SE is used to judge the complexity of time series by measuring the probability of
generating new patterns. For the time series composed of N data, the calculation method
of sample entropy is as follows:

• Step 1: construct a sequence of m-dimensional vectors by ordinal number, Xm(1), Xm(2),
· · · , Xm(N-m + 1), among them, Xm(i) = { x(i), x(i + 1), . . . , x(i + m − 1)}, 1≤ i ≤N-m + 1.

• Step 2: the distance d[Xm(i), Xm(j)] between vectors Xm(i) and Xm(j) is defined as the
absolute value of the maximum difference between the two corresponding elements:



Micromachines 2022, 13, 1807 8 of 16

d[Xm(i), Xm(j)] = maxk=0,···,m−1(|x(i + k)− x(j + k)|) (13)

• Step 3: count the number of j (1≤ j ≤N-m, j 6=i) whose distance between Xm(i) and
Xm(j) is less than r, and define it as Bi:

Bm
i (r) =

1
N −m + 1

Bi (14)

where, 1≤ i ≤N-m+1.

• Step 4: definition B(m)(r) is:

B(m)(r) =
1

N −m

N−m

∑
i=1

Bm
i (r) (15)

• Step 5: increase the dimension to m+1, count the number of j (1 ≤ j ≤ N-m, j 6=i) whose
distance between Xm+1(i) and Xm+1(j) is less than r, and define it as Ai:

Am
i (r) =

1
N −m− 1

Ai (16)

• Step 6: definition A(m)(r) is:

A(m)(r) =
1

N −m

N−m

∑
i=1

Am
i (r) (17)

B(m)(r) is the probability of two sequences matching m points under the similar toler-
ance r, A(m)(r) is the probability of two sequences matching m + 1 points, and the sample
entropy is defined as:

SampEn(m, r, N) = − ln[
A(m)(r)
B(m)(r)

] (18)

where N is the length of the signal; m is the embedded dimension, it usually takes a value of
1 or 2; r is the similar tolerance (usually selecting 10–25% of the signal standard deviation).

3.2. Parabolic Tracking Time Frequency Peak Filtering

Time-frequency peak filtering (TFPF) realizes signal denoising by encoding the noisy
signal x(t) as the instantaneous frequency (IF) of an analytic signal z(t):

z(t) = a(t) · ej2πµ
∫ t

0 x(λ)dλ (19)

where, µ is the frequency modulation (FM) index, a(t) is the instantaneous amplitude of z(t).
Pseudo Wigner–Ville distribution (PWVD)is a bilinear time-frequency distribution

with good time–frequency focusing. It is an effective method for suppressing cross terms
in Wiener–Ville distribution (WVD). The denoised signal x’(t) can be recovered by using
the peak of the PWVD of Z(t):

x′(t) = argmax[PWz(t, f )]
µ

(20)

where,

PWz(t, f ) =
∫ ∞

−∞
h(τ)z(t +

τ

2
)(t− τ

2
)ej2π f τdτ (21)

where h(τ) is the window function.
The window length (WL) in TFPF directly affects the signal fidelity and noise reduction

effect. The long-WL TFPF has good denoising performance, but the denoised signal will
have amplitude loss, especially in the peak and trough position. TFPF with short-WL has
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good linearity in the window, and the signal amplitude loss is small after denoising, but
there are still many noise components.

Parabolic-tracking time–frequency peak filtering (PTTFPF) is an improved method
based on TFPF. This method can improve the performance of traditional TFPF by using the
selection of filtering trajectory and data resampling.

Canny edge detection (CED) algorithm can be used to select the optimal filtering
trace [27,28]. The process of CED includes Gaussian low-pass filtering, calculation of gradi-
ent value and direction, non-maximum suppression of gradient value, and edge connection.

Data resampling is the process of transforming the signal to a new data matrix along
the parabolic filter trace. After the resampling, the linearity of the signal will be greatly
improved, so as to improve the noise reduction performance of TFPF in the window.

3.3. Step of ILMD-PTTFPF

In order to further improve the noise reduction performance of PTTFPF, ILMD and
PTTFPF are combined in this paper. The specific steps are as follows:

• Step 1: Local mean decomposition

Through local mean decomposition of MSRVG output signals, PFs with different
instantaneous frequencies can be obtained.

• Step 2: Classify the PF by SE value

Since the results of LMD contain many PF components, it is not possible to denoise all
PF components separately. In order to simplify the subsequent noise reduction processing,
the PFs are classified by sample entropy, which can be divided into noisy PF, mixed PF, and
useful PF.

• Step 3: Denoise for different PF

Select PTTFPF with different WL to denoise mixed PF and useful PF, and eliminate
noisy PF.

• Step 4: Signal reconstruction

The final denoised signal can be obtained by adding denoised mixed PF and useful PF.
The steps of ILMD-PTTFPF method are shown in Figure 5.
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4. Experiment
4.1. Experiment Platform and Equipment

We carry out temperature experiment to obtain the output signal of FMVMG in
different temperature environment. The main equipment used in temperature experiment
are temperature control box, data acquisition card, signal generator, and the prototype
of FMVMG. The experimental equipment is shown in Figures 6 and 7. The temperature
control box in the laboratory can control the temperature accurately, we have carried out
the experiment in the temperature range of −40 ◦C to 60 ◦C. The computer beside the
device is used to collect the output signal of the FMVMG.
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The prototype of FMVMG is shown in Figure 8. First, put the gyroscope into the
temperature control box, reduce the temperature to −40 ◦C, and keep it for one hour. After
the gyroscope runs stably at this temperature, set the temperature change range from
−40 ◦C to 60 ◦C. Keep it for about 1.5 h after the temperature rises by 20 ◦C to ensure the
stability of the internal temperature change of the gyroscope. During this period, the data
acquisition is continuous, and the sampling rate is 1 Hz, the test lasted 32,290 s.
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Figure 8. The prototype of FMVMG.

In order to avoid contingency, we conducted five groups of temperature experiments,
and found that the results were generally consistent. One group was selected as the sample
data for analysis and processing. The collected data are the output voltage, which can be
converted to angular velocity by scaling.

4.2. Denoising Processing

According to the ILMD-PTTFPF algorithm, the first step is the local mean decompo-
sition of the original signal. The output signal of FMVMG is decomposed into eight PFs
with different physical properties and one residual component. The product function is
obtained by multiplying the envelope signal with the frequency-modulated signal. The
complete time-frequency distribution of the original signal can be obtained by combining
the parameters of each PF. Figure 8 is the result of LMD, where X(t) is the original output
signal of FMVMG and U(t) is the residual component.

According to the results of the LMD in Figure 9, if all the PFs are processed by filters,
we need to study eight filters. Obviously, the work is too complex if eight filters are
employed. Therefore, it is necessary to simplify the filtration process. ILMD is to simplify
the results of LMD into three PFs by SE values. Therefore, the second step is to calculate
the sample entropy value of each PF to distinguish the complexity of them, and classify PFs
according to the similarity of SE value. The sample entropy interval should be divided into
three parts evenly. The PFs in the minimum interval is considered as useful PF, while the
PFs in the middle interval is considered as mixed PF, and the noise PF is in the maximum
interval. The ideal useful PF is a pure signal without noise, the noise PF should be pure
noise, and the mixed PF contains pure signal and noise.

Figure 10 shows the calculated results of sample entropy value and PF classification
results. According to the calculation results, SE values in the range of 0~0.55 are considered
to be useful PF (PF4, PF5, PF6, PF7, PF8), PTTFPF with short window length should be
used to denoise the useful PF, so as to retain the information of the signal. SE values in the
range of 0.55~1.1 are considered mixed PF (PF2 and PF3), using long window PTTFPF can
obtain the best noise reduction performance. Noise PF should be directly removed, which
is in the range of 1.1~1.67 (PF1).
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Figure 11 shows the denoising results of noise PF, useful PF, and mixed PF respectively.
It can be seen that after the long-WL PTTFPF denoising, the noise of mixed PF is significantly
reduced, and the original signal features are not lost at the peak signal. Useful PF also
retains the information of the original signal well after short-WL PTTFPF denoising.

By superimposing the denoised useful PF and the denoised mixed PF, we obtain the
final denoised signal.
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4.3. Discussion of the Denoising Results

Figure 12 shows the denoising results using ILMD-PTTFPF method and the compari-
son between different denoising algorithms. It can be seen that although traditional wavelet
threshold denoising and Kalman filtering can reduce part of the signal noise, it is obvious
that the ILMD-PTTFPF method in this paper has the best denoising ability.
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Indicators of signals after denoising by each method are shown in Table 2 [7,22]. Allan
variance is a standard gyroscope performance analysis method recognized by IEEE and
it is widely used [29]. Comparison of Allan variance of three noise reduction methods
is shown in Figure 12. The bias stability can reflect the random drift characteristic of the
gyroscope. The bias stability is an important indicator to reflect the performance of the
gyroscope among the performance indicators of the gyroscope, the smaller the bias stability
of the gyroscope, the stronger the performance of the gyroscope. The signal to noise ratio
(SNR) is the ratio of the effective power of the useful signal to the noise signal, the higher
the SNR value, the lower the noise of the signal. Standard deviation can reflect the degree
of dispersion of a data set, and it can also indicate the strength of signal noise.
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Table 2. Comparison of indexes of different noise reduction methods.

Methods Bias Stability
(◦/h)

Standard
Deviation

Signal to Noise
Ratio (dB) References

Original signal 24.44 0.0108 22.5 -
Wavelet

threshold
denoising

16.99 0.00567 35.45 Cao et al. [22]

Kalman filter 5.93 0.00734 39.91 Cao et al. [7]
ILMD-PTTFPF 1.26 0.00455 46.16 -

It can be seen from Table 2 that compared with the original signal, the bias stability of
signal denoised by ILMD-PTTFPF method is improved by about 19 times, it is optimized
by 94.8%. The SNR is improved by about 24 dB (noise characteristics are reduced by 24 dB).
The comparison results in Figure 13 show that the ILMD-PTTFPF method has better noise
reduction performance than traditional wavelet threshold denoising and Kalman filtering.
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5. Conclusions and Discussion

This paper introduces the structure and working principle of four-mass vibration
MEMS gyroscope (FMVMG). On this basis, a noise reduction algorithm based on interval
local mean decomposition (ILMD) and parabolic tracking time-frequency peak filtering
(PTTFPF) is proposed. The IEMD-TFPF method in this paper is different from the previous
noise reduction methods. First, ILMD is introduced to process the output signal of the
FMVMG, and the original signal is divided into useful signal, mixed signal, and noise
signal. Then, PTTFPF with different window length is used to denoise the three kinds of
signals respectively, so as to improve the performance of PTTFPF. Finally, the effectiveness
of the algorithm is verified by temperature experiment. Experimental and comparative
results show that compared with the original signal, the bias stability of signal denoised by
ILMD-PTTFPF method is improved by about 19 times, it is optimized by 94.8%, and the
SNR is improved by about 24 dB (noise characteristics are reduced by 24 dB). However, the
bias stability of signal denoised by wavelet threshold denoising method is improved by
about 1 time, it is optimized by 30.4%, and the SNR is improved by about 12.95 dB (noise
characteristics are reduced by 12.95 dB); the bias stability of signal de-noised by Kalman
filter method is improved by about four times, it is optimized by 75.7%, and the SNR is
improved by about 17.41 dB (noise characteristics are reduced by 17.41 dB). Compared with
wavelet threshold denoising and Kalman filtering, the proposed ILMD-PTTFPF method
has the best denoising ability, and ILMD-PTTFPF method can effectively suppress the noise
of the FMVMG.
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