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Abstract: Conventional thermo-optic devices—which can be broadly categorized to that with and
without a thermal isolation trench—typically come with a tradeoff between thermal tuning efficiency
and tuning speed. Here, we propose a method that allows us to directly define the tradeoff using
a specially designed thermo-optic phase shifter with an interleaved isolation trench. With the
design, the tuning efficiency and speed can be precisely tailored simply by controlling the duty ratio
(suspended length over total heater length) of the suspended design. Phase shifters are one of the
main components in photonic-integrated circuits, and having phase shifters with a flexible design
approach may enable the wide adoption of photonic applications such as an optical neural network
and LiDAR.
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1. Introduction

Silicon photonics is one key technology that provides high-density, large-scale, and
compact on-chip optical systems that can be mass produced using mature complementary-
metal-oxide-semiconductor (CMOS) technology [1,2]. Such a platform is already ap-
plied to many complex photonic-integrated circuits, such as quantum optical comput-
ing [3–5], LiDAR [6–8], data communications [9–11], sensing [12,13], and optical neural
networks [14–17]. Among above applications, the thermo-optic phase shifter is one of the
key building blocks.

The common thermo-optic phase shifter design includes the use of a metal heater
on the top of an optical waveguide [18]. To improve phase-shift modulation efficiency,
a thermal isolation structure (in the form of ‘suspended design’) is introduced, which is
formed by removing the silicon substrate under the waveguide region [19,20]. The air
isolation region formed as a result of removing the silicon structure results in stronger
heat confinement within a small waveguide volume which can significantly enhance the
thermal tuning efficiency. However, this comes with a tradeoff. Due to stronger heat
confinement, thermal dissipation is less effective, which in turn results in a lower tuning
speed. Table 1 summarizes the performance comparison of several representative designs.
While a conventional thermo-optic phase shifter design results in a higher tuning speed and
lower tuning efficiency, the suspended thermo-optic phase shifter design is the opposite—a
high tuning efficiency but low tuning speed.

In this work, we propose a thermo-optic design that enables us to define the tradeoff.
In the design, we introduce interleaved isolation trenches to enable the convenient control
of thermal conductance—which effectively enables the flexible control of both the tuning
efficiency and speed. This is made possible by controlling the ratio of isolation trench
length over heater length (hereafter, suspended design duty ratio). With such control,
specific phase shifter requirements (which differs from application to application) can be
readily met.
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Table 1. Performance comparison of thermo-optic phase shifter on Si channel waveguide.

Heater
Material Structure Heat

Isolation
Tuningv

Efficiency
Switch
Time Ref.

TiN MZI No 21.4 mW 12 µs [18]

TiN MZI Suspended 0.49 mW 144 µs [19]

TiN Ring Suspended 2.4 mW 170 µs [20]

2. Theory

The mechanism by which thermo-optic phase shifters shift the optical phase of an
optical signal is as follows: a change in temperature in optical waveguide induced by
a heater placed in close proximity to the waveguide results in a shift in the waveguide
refractive index, therefore, the optical phase of the optical signal traverses through the
waveguide. The two main performance metrics of a thermo-optic phase shifter is the
thermal tuning efficiency and response time. Thermal tuning efficiency is defined by the
electrical power Pπ required to achieve π-phase shift. Here, a high efficiency phase shifter
would need a lower electrical power. Assuming there is no spatial gap or finite thermal
conductance between the heater and optical waveguide, Pπ can be defined as

Pπ = G × A × ∆Tπ (1)

where G is the thermal conductance of an optical waveguide to its surrounding region
(for example, Si substrate), A is the effective area traversed by heat (which is related to
heater width W and heater length L), and ∆Tπ is the temperature change to achieve π-phase
shift (which is related to the operation wavelength and thermo-optic coefficient) [18,21].

The thermo-optic tuning response time constant τ, on the other hand, is the time
required by the thermo-optic phase shifter to shift the optical phase. τ is inversely propor-
tional to the thermal tuning speed, and can be defined as:

τ = H/(G × A) (2)

where H is the heat capacity of the heated optical waveguide (of one of the MZI arms).
τ can be retrieved from rise time (Trise) and fall time (Tfall), from which the time taken
for the voltage level to rise from 10% to 90% (Trise) and fall from 90% to 10% (Tfall) can
be precisely determined on the rising and falling edges of the signal, respectively, using
the relation [18]:

Trise (Tfall) ∼= 2.197 × τ (3)

It is evident from Equations (1)–(3) that both the thermal tuning efficiency and tuning
response time are directly related to thermal conductance G. Because G of the air is almost
three orders of magnitude lower than that of silicon and silica, a straightforward method to
reduce G (which increases the tuning efficiency but reduces the tuning speed) is obtained
by isolating the area surrounding the heater [22,23]. In this work, we extend the concept
further by adjusting the length of the suspended structure (or ‘interleaved’ suspended
structure) to precisely control both the tuning efficiency and tuning speed by changing the
length of the isolation trench which changes G. An area with a suspended design has ultra-
low G, which could reduce G of the whole phase shifter area. This enables us to directly
define the tuning efficiency and tuning speed tradeoff, as we shall thoroughly discuss.

3. Structures and Fabrication

The length of the interleaved suspended structure, which can be arbitrarily set to
modify G, can be systematically characterized by introducing the term duty ratio D, defined
by the ratio of suspended length Lsuspended over total length Ltotal:

D = Lsuspended/Ltotal × 100% (4)



Micromachines 2022, 13, 1925 3 of 6

It is clear that D = 0% and D = 100%, respectively, imply conventional design without
the suspended structure and fully suspended design, respectively. In this work, by fixing
the total heater length area at 200 µm (which includes two interleaved area with Ltotal of
100 µm each), as shown in Figure 1, we can vary D = 0% to D = 100% by correspondingly
changing Lsuspended from 0 µm to 100 µm.
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Figure 1. Section view of thermo-optic phase shifter with interleaved suspended design.

We fabricated the devices on the SOI wafers of the 220 nm-thick top Si layer and
3-µm-thick BOX layer wafers on the Advanced Micro Foundry (AMF) standard platform.
The TiN metal layer, acting as a heater layer, is deposited and formed on top of the Si
waveguide with a 2 µm vertical distance. The thickness of oxide on the TiN metal heater
is approximately 1 µm. The suspended area is formed by isotropic etching to partially
remove the Si substrate beneath the Si waveguide. Figure 2 shows the top-view optical
microscopy image of the fabricated thermo-optic phase shifters with interleaved isolation
trenches with different D. The actual length and width of the suspended design is slightly
larger than the designed length due to the extension of the isotropic etching. The actual
length of the suspended design Lsuspended is calculated as,

Lsuspended = Ldesigned + 2 × Lextended (5)

where Ldesigned is the designed length. Lextended is the extended length, which is caused by
isotropic etching. Lextended is related to the isotropic process, which is approximately 6 µm
in the AMF standard process flow with a 5 µm-wide-designed oxide trench. Additionally,
the thickness of the removed silicon substrate below the buried oxide in this work is
approximately 15 µm. In this work, the length of suspended design Lsuspended includes
the extended length Lextended. To ensure that the extended length Lextended is the same, all
measured devices are from the same die of the same wafer.
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4. Characterization and Results

To measure the performance of the thermo-optic phase shifter with interleaved isola-
tion trenches, we designed the thermo-optic phase shifter such that it is seamlessly placed
on one of the waveguide arms of an unbalanced Mach–Zehnder interferometer (MZI).
The metal heater of the phase shifter introduces heat to induce the required optical phase
shift. Inverse tapers are used to couple the optical signal to and from the MZI. The MZI
comprises two 1 × 2 multi-mode interferometers (MMI) that split and combine the optical
signal, respectively, to and from two 500 nm-width single-mode Si waveguides with dif-
ferent lengths. To measure the thermal tuning efficiency, we used the direct current (DC)
characterization setup, as illustrated in Figure 3. In the setup, lensed fiber is used to couple
the polarized quasi-TE light of 1550 nm wavelength into the device via an inverse taper.
An electrical probe is placed onto the aluminum pads of the device to apply voltages from
a source meter. The current and output optical power are measured by a source meter
and power meter, respectively. Then, the electrical power consumption to achieve π phase
shift Pπ could be extracted, based on the applied voltage, measured current, and measured
optical power. To measure the thermal tuning response, we used the alternating current
(AC) characterization setup, which is similar to the DC characterization setup, except that
the output optical signal from the MZI is sent to the external photodetector (which converts
the optical signal to the electrical signal), and the square electrical drive signal generated by
an arbitrary waveform generator is split into two paths, i.e., to the heater via an electrical
probe, and to the oscilloscope as reference. The signal rise time Trise and fall time Tfall could
be directly determined from the oscilloscope.
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Figure 4a shows the cross-section of the conventional design with the duty ratio
D of 0. An additional 5-µm trench is introduced for a fully suspended design with the
duty ratio D of 100%, as shown in Figure 4d, The electrical power consumption Pπ of the
suspended design is 0.68 mW, which is one order of magnitude smaller than that of the
conventional design, as shown in Figure 4b,e. Owing to the tight heat confinement in the
optical waveguide area, the thermal tuning efficiency improves significantly. However, due
to the poor heat dissipation, the rise time of the suspended design increases from 22 µs to
307 µs, and the fall time increases from to 17 µs to 425 µs, as shown in Figure 4c,f, thus,
indicating that the thermal tuning response time increases by one order of magnitude.
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Figure 4. Measured thermal tuning performance of the conventional design with duty ratio D of 0%
and fully suspended design with duty ratio D of 100% at 1550 nm wavelength. (a) Cross-section of
conventional design. (b) DC characterization of the conventional design. (c) AC characterization
of conventional design. (d) Cross-section of the suspended design. (e) DC characterization of the
suspended design. (f) AC characterization of the suspended design.

Figure 5 summarizes the measured thermal tuning performance of the thermal phase
shifters (Pπ ; Trise and Tfall—from which τ can be retrieved) with respect to D at the 1550 nm
optical signal wavelength. As D is increased from 0% to 100%, Pπ decreases from 15.23 mW
to 0.68 mW, while both Trise and Tfall, respectively, increase from 22 µs to 307 µs and from
17 µs to 425 µs. The results conform to Equations (2) and (3). With such a controllable
physical parameter in the form of D, both the thermal tuning efficiency and speed can be
precisely tailored to conveniently meet the specific requirements for different applications.
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5. Conclusions

In summary, we propose and demonstrate for the first time a thermo-optic phase
shifter with interleaved suspended structures. Our specially designed phase shifter enables
the convenient control of both the tuning efficiency and tuning speed. This is achieved via
our customized duty ratio of the interleaved suspended structure. Our design provides
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flexibility to finely tune the required thermal efficiency and tuning speed, which can
broadly differ depending on applications such as quantum optical computing, optical
neural network, and LiDAR.
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