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Abstract: This paper presents an efficient path-planning algorithm for microrobots attempting to pass
through environments with narrow passages. Because of the extremely small size of a microrobot, it
is suitable for work in this kind of environment. The rapidly exploring random tree (RRT) algorithm,
which uses random sampling points, can quickly explore an entire environment and generate a sub-
optimal path for a robot to pass through it; however, the RRT algorithm, when used to plan a path for
a microrobot passing through an environment with narrow passages, has the problem of being easily
limited to local solutions when it confronts with a narrow passage and is unable to find the final path
through it. In light of this, the objectives of the considered path planning problem involve detecting
the narrow passages, leading the path toward an approaching narrow passage, passing through
a narrow passage, and extending the path search more efficiently. A methodology was proposed
based on the bidirectional RRT in which image processing is used to mark narrow passages and their
entrances and exits so that the bidirectional RRT can be quickly guided to them and combined with
the deterministic algorithm to find paths through them. We designed the methodology such that
RRT generates the sampling points for path growth. The multiple importance sampling technique is
incorporated with bidirectional RRT, named MIS-BiRRT, to make the path grow faster toward the
target point and narrow passages while avoiding obstacles. The proposed algorithm also considers
multiple candidate paths simultaneously to expand the search range and then retain the best one as a
part of the planning path. After validation from simulation, the proposed algorithm was found to
generate efficient path planning results for microrobots to pass through narrow passages.

Keywords: microrobot; rapidly exploring random tree; path planning

1. Introduction

Due to the development of MEMS technology over the past decade, microrobots,
which are constructed using small-sized sensors, actuators, processors, etc., have continued
to be innovatively designed. Microrobots are characterized by extremely small size, light
weight, low power consumption, and low cost [1]. Among microrobots, the origami robots
in particular [2,3] have attracted much attention in recent years. The origami robots, which
are usually structured with soft materials [4], could transform their shape to perform
certain tasks which the rigid robots cannot. Therefore, they are especially suitable for
entering complex and narrow spaces, such as those involved in vessel diagnosis of the
human body [5,6], pipeline inspection of buildings [7,8], and military reconnaissance of
otherwise inaccessible areas [9]. Most of the research on microrobots has only discussed the
construction of their electromechanical systems and hardware mechanisms but has seldom
explained how to navigate them to perform tasks in complex and narrow spaces. Hence,
this paper focused specifically on designing the path-planning capability of a microrobot
in order to efficiently pass through complex environments, especially those that contain
narrow passages.

The field of path planning can be divided into two major methodologies: deterministic
and stochastic. Common deterministic methodologies include Dijkstra’s algorithm [10],
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the artificial potential field algorithm [11], and the A* algorithm [12], which can design
a fixed and unique path plan. The A* algorithm can find the definite and optimal path
solution even if the search space is small, such as the kind of narrow passage considered in
this paper. During the A* algorithm path search process, a point on the designed path is
determined by calculating the distance between each point in the environment map and
the starting/target point. These deterministic methods, however, are not suitable for path
planning in vast and complex environments as they are computationally intensive and
time-consuming. By contrast, the well-known stochastic path planning algorithms, such as
probabilistic roadmap (PRM) [13] and rapidly exploring random tree (RRT) [14], have the
characteristics of fast path searching and high variability. The RRT algorithm randomly
samples a guiding point on the map and then generates a corresponding waypoint to
repeatedly construct the path until it approaches the target point. Because this type of
stochastic method is relatively fast, it can efficiently find a path in a wide-open space, unlike
deterministic methods.

Due to the random sampling characteristic of RRT, several researches [15,16] have
pointed out its inefficiency in planning a path through complicated environments and
narrow passages. As illustrated in Figure 1, the probability of RRT generating waypoints in
the narrow passage is reduced since the area of the narrow passage is small. If no waypoints
are generated in a narrow passage, RRT cannot find a path through it. Some research [17–21]
discussed the improvement of RRT path planning through narrow passages. Since the
path planning under consideration here is that the map can be known in advance, marking
the narrow passages first can quickly guide the RRT to find a pass through it. Most of
them employed the bridge test method [19,22] to find the area of a narrow passage and
mark specific waypoints around the narrow passage. The concept of the bridge test is to
randomly sample a point that falls within an obstacle region. The adjacent obstacle can then
be detected by sampling another point that is close to the previous sampling point within
the region. Then, the middle of these two sampled points around a narrow passage is
denoted as the specific waypoint to guide the RRT algorithm through it; however, detecting
the adjacent obstacles around a narrow passage using this kind of sampling is slow and
inefficient. The Locally Guided Multiple BiRRT* (LGM-BRRT*) [19], which constructs the
local exploration with bidirectional RRT* between the adjacent identification points of
narrow passages, would accelerate the path planning toward the narrow passages. Global
sampling and local search trees [20] utilize image morphology to detect narrow passages,
and in this paper, we proposed a path-planning concept in which the areas with narrow
passages in them are first identified using image morphology instead of searching for a
path in the entire space. Rather than blindly directing the RRT path planning toward a
narrow passage even when there is another better path reaching the target point, we guided
the RRT path growing toward a narrow passage only when the RRT path tree approached
this narrow passage.
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The related works of RRT improvement mentioned above can assist the RRT path
in growing toward the narrow passages. These works could successfully plan a path
passing through the rooms where only the entrance of each room is considered a narrow
passage. However, when a narrow passage is thin and long, these related works may
still hard find a path through this kind of narrow passage. Due to the characteristics of
RRT uniform sampling, the search range easily affects the path-searching efficiency. The
adaptive RRT [23] draws several points around a waypoint of the RRT tree, which is close
to a narrow passage, to find the feasible extension of the RRT tree through the narrow
passage. The principal component analysis could be utilized to sample the space around
a narrow passage [18] for efficiently expanding the RRT tree through it. The concept
of dynamic sampling space [15] is also proposed, where the growth of the RRT tree is
concentrated within this sampling space to increase the probability of finding the exit of the
narrow channel. Although the improvements in waypoint sampling could assist the RRT
methodologies to plan a path through a narrow passage, the process of iterative sampling
through a long narrow passage would be quite time-consuming. We guided the RRT
algorithm to quickly generate such a path to a narrow passage and then used an effective
method to deterministically plan a path through it. Since the A* algorithm generates good
path-planning results in small and narrow regions, the path-planning algorithm employed
here was switched to this kind of deterministic method for efficiently finding a path in the
narrow passage.

In addition to the problem of crossing narrow passages, the path-searching process of
traditional RRT methodology is often aimless due to its use of random sampling in complex
environments. Even if the last generated waypoint is close to the target point, random
sampling of the entire space could easily result in the next waypoint being far away from
the target. This kind of aimless sampling during path searching makes path planning
inefficient and consumes considerable time, especially in vast and complex environments.
Therefore, several improvements were proposed for the waypoint sampling of RRT so that
unnecessary searching and computational time can be reduced. The rapidly exploring
random disjointed tree* (RRdT*) [24] establishes a Markov chain to consider the direction
of path growth according to the growth of the previous waypoint. Peng et al. [25] utilized
particle swarm optimization (PSO) to adjust waypoint sampling according to the path
growth of RRT and apply it to the path planning of multi-UAVs. In addition, multi-RRT [26]
incorporated a sampling mechanism named Goal Bias, which considers the position of the
target point and accelerates the path growth of RRT toward the target point. Multi-RRT
also draws multiple path growth directions simultaneously to increase the search range.
Liu et al. [27] sampled new waypoints to avoid obstacles by detecting the obstacle edge
when it was close to the growth path.

In this paper, we integrated the concepts of several waypoint sampling mechanisms
to guide the path planning of a microrobot. Specifically, this paper proposes a multiple
importance sampling bidirectional rapidly exploring random tree (MIS-BiRRT) to remedy
the problem of RRT path planning through narrow passages that suffer from aimless path
searching. The environmental map is first considered as an image for detecting the feature
points of obstacles and narrow passages. The multiple importance sampling mechanism is
used to draw the waypoints of a growing RRT path toward the target point, toward the
entrance of a narrow passage, or so as to avoid obstacles. When the path grows into the
entrance of a narrow passage, the RRT methodology switches to the deterministic path
planning method to quickly obtain the optimal path through the narrow passage.

The rest of this paper is structured as follows. The path planning problem is first
formulated, and the path planning plus image feature detection for narrow passages is
explained in Section 2. Section 3 describes the multiple importance sampling mechanism
and multiple new waypoints generation of the proposed MIS-BiRRT. The simulation results
and comparisons are presented in Section 4 to verify the efficiency of the proposed MIS-
BiRRT. Finally, the conclusions are given in Section 5.
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2. Problem Formulation and Path Planning in Narrow Passages

A two-dimensional environment map E, which is assumed to be known in advance,
contains the free-moving space F and obstacle space O. The goal of the entire path-planning
process of a microrobot is to find a collision-free path τ that can lead the microrobot from
the starting point qinit to the target point qgoal in F. E may also contain several unlabeled
narrow passages P through which a microrobot of size r could pass, i.e., P ∈ F. Planning
path τ using just the RRT algorithm would be difficult because of the small search area
of the narrow passage. Since the map can be known in advance, marking the narrow
passages can quickly guide the RRT to pass through them. The objectives of the considered
path planning problem can be defined as detecting the narrow passages, leading the path
toward an approaching narrow passage (instead of blindly leading to a narrow passage),
passing through a narrow passage, and extending the path search more efficiently. Hence,
the concept of the path planning algorithm proposed here is to design the paths in the
narrow passages and those in the broad areas separately using two methodologies. The
environment map E is illustrated in Figure 2, in which the white region is the free-moving
space F and the black region is the obstacle space O. The entrance of i-th narrow passage is
labeled with the identification point, IPi. The bidirectional rapidly exploring random trees
(BiRRT) [28], which can efficiently increase the path searching efficiency, was employed
to generate the path trees from the starting point and goal point at the same time. Tinit
is the path tree growing from starting point qinit, Tgoal is the path tree growing from the
target point qgoal . Since the area of a narrow passage is small, the optimal path of a
microrobot through it is deterministic and can be efficiently designed using the well-known
A* algorithm [12].
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Figure 2. Path planning using different methodologies for narrow passages and for broad areas.
(Blue: identification points of narrow passages; Green and red: growing waypoints of BiRRT in the
broad areas).

The environment in the broad areas, which are outside the narrow passages P, i.e.,
{F− P} ∈ F, is larger and more complex than that in the area in P. Utilizing the determinis-
tic A* algorithm to design a path in the broad areas would be slow and inefficient. It would
also be difficult to do so using the traditional stochastic RRT methodology, which uses
aimless waypoint sampling. Therefore, we proposed an MIS-BiRRT based on bidirectional
rapidly exploring random trees (BiRRT) [28] to efficiently obtain the path of a microrobot
moving within the broad areas, which is explained in Section 3. The path growth of our
MIS-BiRRT is guided to the identification point to assist the microrobot through the narrow
passage. The detection of identification points and the connection of paths in the narrow
passages and in the broad areas are described in the following two subsections.

2.1. Detection of Narrow Passages and Identification Points

As illustrated in Figure 1, directly utilizing the traditional RRT algorithm to plan a
path in the free-moving space F would experience difficulty trying to find a path through a
narrow passage. In order to improve the efficiency of path planning, we first marked the
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narrow passages P in the free-moving space F. The environment map is treated as a 2D
binary image for image morphology and logic operations. As demonstrated in Figure 3, the
small white stripes, which are the narrow passages between the broad areas, are eroded by
the image opening operation (Figure 3b). The image opening operation for the white regions
employs the square structuring element with an area larger than size r of a microrobot so
that the narrow passages detected later are those that the considered microrobot can pass
through. Then, the location map of narrow passages IP can be extracted by performing the
element-wise XOR logic operation between E and the opened map image Io. Io could also
be regarded as the broad areas {F− P} ∈ F.
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The white points in the location map of narrow passages IP yielded from morphologi-
cal and logic operations are only simply independent pixels. It is still necessary to further
mark the region of the narrow passage completely and label its entrance and exit. Here, the
image thinning process, which can present the shape and preserve the connectivity of the
adjacent white pixels, is applied to the location map of narrow passages IP, as shown in
Figure 4. As presented in Figure 4c, the endpoints of the extracted skeleton of a narrow
passage are defined as the feature points of a narrow passage. However, only the feature
points located around the white regions, i.e., the broad areas {F− P} ∈ F, in the opened
map image Io are assigned as the identification points IPi =

{
IPi

1, . . . IPi
j . . . , IPi

Mi

}
of the

i-th narrow passage, where Mi is the total number of the extracted identification points IPi
j

of the i-th narrow passage. The identification points, which indicate the entrance or exit of
the narrow passages, are later employed to design the path through the narrow passages.
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2.2. Path Planning through the Narrow Passage

The identification points of the narrow passages are to assist the RRT methodology
employed in the broad areas to quickly find the narrow passages. Since the width of a
narrow passage is small, this subsection also explains path planning through a narrow
passage with its assigned identification points. Figure 5 illustrates an example of guiding
the RRT path planning process used in the broad areas to pass through a narrow passage.
As shown in Figure 5a, qnew is the new growth waypoint generated by the RRT algorithm.
When a new waypoint qnew is within distance dIP from one of the identification points
IPi

j , the path tree Tinit should be led to the i-th narrow passage to construct the path of the

microrobot. The closest identification point IPi
j is then assigned as a midway target point

and a new path tree growth TIPi
j
, as shown in Figure 5b, is triggered at the same time. Once

the locally bidirectional RRT paths [28] between the original tree Tinit and the new tree TIPi
j

are connected, the new tree TIPi
j

is combined with the original tree Tinit, as illustrated in

Figure 5c. Directing the identification point in this way solves the problem faced by the
traditional RRT in not finding the path to narrow passages (Figure 1).
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Figure 5. Path planning through the narrow passage: (a) RRT close to a narrow passage; (b) a
new tree (blue color) growing from the identification point; and (c) the combined path toward the
narrow passage.

In addition, since the selected identification points are the entrance or exit of a narrow
passage to the broad areas, the selected identification points would also be regarded as
the starting and target points when planning the path through the narrow passage. As
mentioned at the beginning of Section 2, the A* algorithm [12] generates good path-planning
results in small and narrow regions, which can be considered a deterministic problem.
The path of a microrobot passing through a narrow passage is designed between the
identification points of the same narrow passage by the path planning of the A* algorithm.
An identification point can be considered an interface between a broad area and a narrow
passage. The path planned by the A* algorithm in a narrow passage can also be integrated
into the tree Tinit (or Tgoal) of the BiRRT methodology.

3. Multiple Importance Sampling Bidirectional Rapidly Exploring Random
Trees, MIS-BiRRT

In the traditional RRT methodology [14], the direction of path growth is determined
by the generation of a random guiding point, qrand, to find the closest waypoint qnear in the
planned path tree. A new waypoint qnew is then generated at a fixed distance of extension
from the closest waypoint qnear toward the random guiding point qrand. However, the
random guiding point qrand is randomly sampled on the map according to a uniform
distribution. Even if the last waypoint qlast in the path tree was close to the target point
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qgoal , the next waypoint qnew could easily be far away from the target due to this aimless,
random approach.

Although traditional RRT is fast, this kind of aimless, random generation of guiding
point qrand cannot efficiently find the path for a microrobot through complex environments
and narrow passages. Hence, the multiple importance sampling strategy is designed to
generate a random guiding point qrand such that the microrobot can be quickly led to the
target point and avoid obstacles. The multiple importance sampling strategy also directs
the path growth toward the narrow passages and is integrated with the BiRRT algorithm as
MIS-BiRRT, jointly conducting the path planning through narrow passages, as discussed in
Section 2. Moreover, the generation and selection of multiple new waypoints are proposed
for MIS-BiRRT to increase the searching range to improve the efficiency of the path growth.

3.1. Multiple Importance Sampling

The importance function is a way to provide cues for random sampling generation.
Multiple importance sampling [29] aggregates multiple importance functions to generate
random samples more efficiently and in a multivariate manner, enabling it to cope with com-
plex variation rather than just a single fixed situation. The multiple importance sampling
strategy of MIS-BiRRT involves four types of importance functions, namely Qgoal(qrand),
QIP(qrand), Qobstacle(qrand), and Quni f orm(qrand), to sample the random guiding point qrand
of path growth in a complex environment. The importance function for target Qgoal(qrand)
directs the path growth direction to the target point qgoal by using the direction sampling
concept [27], and it is formulated as

Qgoal(qrand) = N(qrand; qgoal , σgoal), (1)

where N(·) is the 2D normal distribution with the mean qgoal and a user-defined standard
deviation σgoal . The importance function for identification point QIP(qrand) navigates the
path growth toward an approaching narrow passage. As mentioned in Section 2.2, the
importance function QIP(qrand) is adopted when the last growth waypoint qlast in the path
tree is close to an identification point IPi

j of the i-th narrow passage, i.e.,
∣∣∣qlast − IPi

j

∣∣∣ ≤ dIP.
The importance function for identification point QIP(qrand) is defined as

QIP(qrand) = N(qrand; IPi
j , σIP), (2)

which is a normal distribution with the closest identification point IPi
j as the mean and the

standard deviation σIP.
If there is an obstacle in front of the guiding direction of the previous two importance

functions, the importance function of obstacle avoidance Qobstacle(qrand) is then employed
to design the path growth across the obstacle [27]. We applied the image skeletonization
process to the obstacle regions O with black pixels in the 2D binary image of environment
map E. As shown in Figure 6a, the orange dashed line is the extracted skeleton of an
obstacle region, and the red points are the Hk endpoints FPk

h , h = 1, . . . , Hk of the k-th
obstacle that blocks the guiding direction to the target point (green dotted line). The
endpoint FPk

h of the obstacle skeleton, which is closest to the path tree, was selected as the
random guiding point qrand to navigate the microrobot across the obstacle. The importance
function of obstacle avoidance Qobstacle(qrand) is denoted as

Qobstacle(qrand) = N(qrand; FPk
h , σobstacle), (3)

which is a normal distribution with the closest obstacle endpoint FPk
h as the mean and

the standard deviation σobstacle. From practical implementation, however, it is noticed that
once the path is very close to the obstacle, as shown in Figure 6b, the new waypoint qnew
generated from importance function Qobstacle(qrand) repeatedly clashes with the obstacle
such that the RRT algorithm is stuck here. Hence, once the new waypoint qnew sampled
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from the importance function Qobstacle(qrand) is located in the obstacle region O, the new
waypoint qnew needs to be resampled from another importance function Quni f orm(qrand):

Quni f orm(qrand) = U(qrand; F), (4)

where U(·) is the 2D uniform distribution. This draws the random guiding point qrand
within the free-moving space F uniformly. By using the importance function Quni f orm(qrand),
the new path growth waypoint qnew has a high probability of being able to escape from
its trap and search for another feasible direction of movement. The mechanism of the
importance function of uniform resampling Quni f orm(qrand) is designed by referring to
many stochastic optimizations [30], which can overcome the local solutions.
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3.2. Generation of Multiple New Waypoints

In order to increase the searching range of the RRT methodology, Multi-RRT [26]
draws several new waypoints for path growth simultaneously. However, these growth
points are all at fixed angle intervals, and so many of them are scattered blindly and are not
used efficiently. Here, the concept of multiple new waypoint generation is incorporated
into our MIS-BiRRT, which proposes a more efficient mechanism to generate and select
new waypoint samples in order to increase the path-searching range of a microrobot.

It was explained in the previous subsection how to determine the path growth of
a new waypoint qnew according to the sampling of random guiding point qrand. In the
multiple new waypoints generation methodology of MIS-BiRRT, there are M random
guiding points qr

rand, r = 1, . . . , M sampled from each of the four importance functions,
Qgoal(qrand), QIP(qrand), Qobstacle(qrand), and Quni f orm(qrand). Each selected importance
function corresponding to a random guiding point qr

rand draws M new waypoints qr,s
new,

s = 1, . . . , M from the corresponding closest waypoints qr
rand. In order to maintain the

smooth movement of the microrobot, the variation in orientation angle between each step,
i.e., between qr,s

new and qr
near, is limited within a feasible range. As illustrated in Figure 7a,

there are M2 new waypoints qr,s
new, r = 1, . . . , M, s = 1, . . . , M used to search the path of a

microrobot at one time. In order to maintain a fixed computational load, only M of these
M2 new waypoints are actually selected to extend the paths. The performance index of
each waypoint qr,s

new is estimated by the possibility of path growth toward the target point:

p(qr,s
new) = αd(

1 

 

, , ,( ) ( ,  ) ( ,  )r s r r s r r r s r

new near new near goal near new near goalp q αd q q q q βθ q q q q= +  ) + βθ(

1 

 

, , ,( ) ( ,  ) ( ,  )r s r r s r r r s r

new near new near goal near new near goalp q αd q q q q βθ q q q q= +  ), (5)

where α and β are the weight constants and d(

1 

 

, , ,( ) ( ,  ) ( ,  )r s r r s r r r s r

new near new near goal near new near goalp q αd q q q q βθ q q q q= +  ) and θ(

1 

 

, , ,( ) ( ,  ) ( ,  )r s r r s r r r s r

new near new near goal near new near goalp q αd q q q q βθ q q q q= +  )
evaluate the distance and angle, respectively, between the vector of the hypothesized path

growth and the vector toward the target point, as shown in Figure 7b. The vector

1 

 

, , ,( ) ( ,  ) ( ,  )r s r r s r r r s r

new near new near goal near new near goalp q αd q q q q βθ q q q q= +  
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denotes the direction and distance from the waypoint qr
near of the path tree to the target

point, and the vector

1 

 

, , ,( ) ( ,  ) ( ,  )r s r r s r r r s r

new near new near goal near new near goalp q αd q q q q βθ q q q q= +  implies the extension of path growth from the waypoint qr
near

to a hypothesized new waypoint qr,s
new. The new waypoints with the smallest values of

p(qr,s
new) are selected to generate the new waypoints, and the others are excluded. The

purpose of growing multiple new waypoints each time is to increase the searching range
and the probability of path growth toward the target point. Furthermore, the smaller value
of p(qr,s

new) in (5) implies that there is a smaller difference in the orientation angle between
the selected new waypoint qr,s

new and the target point. This selecting mechanism can also
ensure that the planned path is smooth toward the target point.
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new from the waypoint
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near of the path tree.

When designing the path tree Tgoal of MIS-BiRRT generated from the target point
qgoal toward the starting point qinit, the starting point qinit is regarded as the target during
multiple importance sampling and the generation of the multiple new waypoints men-
tioned above. Once the bidirectional path trees Tinit and Tgoal of MIS-BiRRT have at last
approached within a predefined (small) distance, the collision-free path τ for the microrobot
through the complex environment is obtained by connecting the bidirectional path trees.
The planned path τ is then defined from the connected waypoints and the corresponding
parent waypoints in the bidirectional path trees Tinit and Tgoal .

4. Simulation and Analysis

We illustrate six environmental maps, as shown in Figure 8, to test the path planning
efficiency of the proposed MIS-BiRRT methodology. Maps 1–5 have narrow passages, but
Map 6 does not, and each map is 2.4 m × 2.4 m. Map 5 is a complex environment map
with many obstacles and narrow passages. The starting point in each map is set as the left
top corner of the environment, and the goal point in each map is set at the right bottom
corner. The considered microrobot is a legged one [2] with a size of 40 mm × 40 mm. In
the simulations of Section 4.1, the proposed MIS-BiRRT algorithm is compared with other
path planning algorithms, namely RRT [11], BiRRT [28], RRT* [31], PRM [13], A* [12], and
hybrid A* [32], to demonstrate the superiority of the method described in this paper. Then,
the ablation studies, which simulate the path planning by removing certain components of
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the proposed MIS-BiRRT, is provided in Section 4.2. The impact of these components in
MIS-BiRRT could be measured from the results of ablation studies.
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Quantitative indicators, including the computational time (time) and the total length
(length) of the planned path, are used to evaluate the path planning algorithms in the
following simulation results. The better a path planning algorithm is, the shorter its com-
putational time and the shorter the planned path it can generate for the microrobot through
the environment. The total number of new sampled waypoints (total waypoints) and suc-
cessfully extended new waypoints (successful waypoints) are also recorded as quantitative
indicators for evaluating the algorithms. Since the new sampled waypoints could clash
with obstacles and have to be resampled repeatedly, the successfully extended ratio (success
ratio) is defined to calculate the ratio of successful waypoints to total waypoints. An effi-
cient sampling mechanism in an RRT-type methodology should have a higher success ratio,
which indicates that a smaller number of new sampled waypoints fail to grow the path.

4.1. Simulation Results and Comparison

The simulation results of the proposed MIS-BiRRT compared with the RRT, BiRRT,
RRT*, PRM, A*, and hybrid A* algorithms are presented in Table 1. The stochastic algo-
rithms, RRT, BiRRT, RRT*, MIS-BiRRT, and PRM, were evaluated by taking the average of
thirty executions of each algorithm. Since PRM randomly draws the nodes in the entire
environment and connects the adjacent nodes as the planned path, the path planned by
PRM is the longest of all methods. The RRT* method, which is an asymptotically optimal
modification of RRT, is the fastest of all methods considered here. However, since RRT*
omits a more extensive search by extending the tree, the path length obtained by RRT*
is the longest among the category of RRT algorithms. Compared with RRT and BiRRT,
MIS-BiRRT is superior in terms of path length, total waypoints, and success ratio. Since
the proposed MIS-BiRRT can mark the narrow passages, quickly find the path through
them, and generate multiple import waypoints over a wide area, it can effectively reduce
unnecessary path searches. Because MIS-BiRRT utilizes image processing and generates
more sampling waypoints, however, it requires more computation to generate, resulting in
a slightly higher computational time than that required by RRT and BiRRT.
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Table 1. Comparison of path planning results.

Environment Algorithm Time
(s)

Length
(m)

Total
Waypoints

Successful
Waypoints Success Ratio

Map 1

RRT 5.998 7.739 10,221 260 0.025
BiRRT 4.258 7.875 4884 186 0.036
RRT* 2.839 8.113 7360 1935 0.263

MIS-BiRRT 12.528 7.119 783 242 0.309
A* 420.536 6.905 - - -

Hybrid A* 3.038 6.840 - - -
PRM 5.466 9.642 - - -

Map 2

RRT 6.051 4.265 4028 263 0.065
BiRRT 3.423 4.266 1907 152 0.080
RRT* 0.490 4.321 1608 547 0.340

MIS-BiRRT 10.231 3.741 610 254 0.416
A* 183.623 3.758 - - -

Hybrid A* 1.666 3.684 - - -
PRM 5.347 6.202 - - -

Map 3

RRT 5.878 5.278 8399 257 0.031
BiRRT 6.001 5.292 9658 255 0.026
RRT* 3.817 5.452 9830 2299 0.234

MIS-BiRRT 12.933 4.791 332 120 0.361
A* 6025.050 4.720 - - -

Hybrid A* 4.580 4.585 - - -
PRM 98.856 7.378 - - -

Map 4

RRT 7.569 8.011 5482 321 0.059
BiRRT 6.321 8.297 6263 266 0.042
RRT* 3.112 8.247 5981 2102 0.351

MIS-BiRRT 9.634 7.139 1052 419 0.398
A* 634.071 6.778 - - -

Hybrid A* 5.831 6.720 - - -
PRM 5.607 10.787 - - -

Map 5

RRT 5.948 5.770 6384 198 0.031
BiRRT 3.464 5.728 3731 115 0.031
RRT* 1.833 5.846 5048 1343 0.266

MIS-BiRRT 10.425 5.576 2686 306 0.114
A* 230.075 4.819 - - -

Hybrid A* 12.050 4.800 - - -
PRM 46.158 7.694 - - -

Map 6

RRT 7.184 5.756 2294 314 0.137
BiRRT 3.054 5.620 1338 138 0.103
RRT* 0.436 5.916 1440 729 0.506

MIS-BiRRT 9.816 5.287 940 339 0.361
A* 5911.466 4.748 - - -

Hybrid A* 4.234 4.676 - - -
PRM 5.653 11.337 - - -

In terms of path length, the hybrid A* algorithm, a deterministic algorithm, is the
best and can be regarded as the optimal path solution in each environment. Because the
solution to the problem is explicit, the A* and the hybrid A* algorithms yield shorter paths
than the stochastic algorithms. However, the A* algorithm requires an enormous amount
of calculation and the computational time is considerably large, which can be seen from
the comparison. The overall efficiency of the A* algorithm is not high. Except in Map 5,
the hybrid A* algorithm takes even less time than some RRT-type methods. However, in a
complex environment such as Map 5, the hybrid A* algorithm is obviously slower than all
RRT-type methods.
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Next, we discussed the simulation differences of each method in these six maps. Maps
1–4 all contain significant narrow passages in the environments. Map 2 has a long and
straight, narrow passage, and Map 3 has a crooked narrow passage. Map 4 looks like
two rooms with narrow passages as the entrances. Since there are thin and long narrow
passages in Map 1–4, the path lengths in Map 1–4 obtained by the proposed MIS-BiRRT
algorithm are close to those obtained by the A* or the hybrid A* algorithm. This is due to the
fact that a deterministic algorithm can easily yield the optimal solution in a narrow space.
In contrast, in Map 5, with several short narrow passages, or in Map 6, with no narrow
passages, where the RRT methodologies would have stochastic results in the broad areas,
the path length planned by the proposed MIS-BiRRT algorithm is close to that obtained
by RRT, BiRRT, or RRT*. In addition, since there are multiple long narrow passages in
Map 1, 3, or 4, which would be multiple difficulties to block the waypoints sampling, the
computational time spent by RRT* algorithm in Map 1, 3, or 4 is longer than that in Map 2,
5, or 6. Due to the proposed MIS-BiRRT could adaptively switch between the stochastic
and deterministic manners, the computational time taken by our method does not vary
much in different environments. Since there are no narrow passages at all in Map 6, which
would not block the waypoints sampling of RRT-type methodology, the success ratio of
RRT, BiRRT, or RRT* in Map 6 is higher than that in Map 1 to 5.

Then, we visualized and compared the results of path planning for Map 5. Figures 9 and 10
present the search ranges and the resulting paths, respectively. In Figure 9, the blue point
at the left top corner is the starting point, and the red point at the right bottom corner is
the goal point. PRM randomly and chaotically draws the nodes in the entire environment,
which displays the characteristic of stochastic methodology with clueless sampling (blue
dots). As shown in Figure 9, RRT needs to sample an enormous number of waypoints, and
BiRRT is aimlessly searching with many waypoints even though it combines searching
from another direction. RRT* searches the environment with less tree extension than
RRT or RRT* such that its resulting path is longer than that of RRT or RRT*. Due to the
characteristics of multiple importance sampling designed in the proposed MIS-BiRRT, there
are clues for generating the waypoints such that unnecessary searching could be reduced.
By contrast, the A* and hybrid A* algorithm plans the path by searching regions of the map,
indicated by gray in Figure 9, and so they would have taken more time than the stochastic
methodologies. The A* or the hybrid A* algorithm shows the straight and shortest planned
path in Figure 10, but RRT, BiRRT, and RRT* paths are tortuous. The path planned by
MIS-BiRRT shows the features of both deterministic and stochastic algorithms as it adapts
throughout the process.

4.2. Ablation Studies

For the following simulations, we tried to remove certain modules of the proposed
MIS-BiRRT methodology to see the effectiveness of each (see Table 2). The BiRRT al-
gorithm [22], which is the infrastructure of the MIS-BiRRT methodology, provides the
importance function Qgoal(qrand) for directing the waypoints toward the goal point, i.e.,
BiRRT + G in Table 2. The BiRRT + GO method in Table 2 denotes the BiRRT algorithm
accompanied by the importance functions Qgoal(qrand) and Qobstacle(qrand) that guide the
path growth toward the target point and avoid obstacles. In addition, the Multi-RRT [20]
concept is implemented to modify the BiRRT + GO method accompanied with the impor-
tance function Quni f orm(qrand) (Multi-BiRRT in Table 2), which simultaneously generates
five new waypoints spaced at a fixed angle toward a guiding point qrand.

BiRRT + G, which employs Goal Bias [20] as a simple clue for guiding the path growth
toward the goal point, is the fastest algorithm presented in Table 2 but also generates
the longest path length. The BiRRT + GO method has one more importance function
than BiRRT + G, which refers to direction sampling [21] for obstacle avoidance; however,
the guidance of these two importance functions in the BiRRT + GO algorithm does not
generate good planning results and even takes considerable time searching for a path. This
inefficiency of the BiRRT + GO method is due to the poor integration of the importance
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functions, which simply want to move toward the target point and avoid obstacles, and
do not provide any leading clues to or through the narrow passages. Both the BiRRT + G
and BiRRT + GO methods waste many samples searching for a feasible path, and, as
such, they have a lower success ratio (Table 2). BiRRT + G or BiRRT + GO spent less
computational time on path planning in Map 6, which contains no narrow passages, than
in other environmental maps.
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Table 2. Comparison of ablation studies.

Environment Algorithm Time
(s)

Length
(m)

Total
Waypoints

Successful
Waypoints Success Ratio

Map 1

BiRRT + G 4.300 7.861 9346 188 0.020
BiRRT + GO 31.724 7.748 8819 178 0.020
Multi-BiRRT 14.864 7.273 913 116 0.127
MIS-BiRRT 12.528 7.119 783 242 0.309

Map 2

BiRRT + G 3.801 4.195 4235 163 0.038
BiRRT + GO 34.964 4.01 2528 120 0.047
Multi-BiRRT 17.874 3.895 262 96 0.366
MIS-BiRRT 10.231 3.741 610 254 0.416

Map 3

BiRRT + G 5.764 5.102 12,793 237 0.019
BiRRT + GO 58.282 5.222 12,888 242 0.019
Multi-BiRRT 15.499 4.908 264 65 0.246
MIS-BiRRT 12.933 4.791 332 120 0.361

Map 4

BiRRT + G 6.184 8.236 8010 260 0.032
BiRRT + GO 49.765 8.044 6517 240 0.037
Multi-BiRRT 25.821 7.430 1222 175 0.143
MIS-BiRRT 9.634 7.139 1052 419 0.398

Map 5

BiRRT + G 6.858 6.172 4386 77 0.018
BiRRT + GD 33.496 6.294 3542 77 0.021
Multi-BiRRT 14.948 5.989 1682 134 0.080
MIS-BiRRT 10.425 5.576 2686 306 0.114

Map 6

BiRRT + G 2.981 5.602 1846 134 0.073
BiRRT + GO 20.174 5.559 1769 132 0.075
Multi-BiRRT 25.484 5.873 2356 134 0.057
MIS-BiRRT 9.816 5.287 940 339 0.361

In contrast, Multi-BiRRT generates multiple new waypoints to increase its path-
searching hypotheses compared with the BiRRT + G and BiRRT + GO methods. Since more
samples are drawn from the importance functions, the diversity of sampled waypoints is
increased, and the searched space is wider, causing most of the Multi-BiRRT length results
to be shorter than those of the BiRRT + G and BiRRT + GO methods. We also can see that
Multi-BiRRT spent less computational time to obtain the path in Maps 1, 2, 3, and 5 than in
Map 4 or 6, in which the path is not so obvious to be obtained. Since Map 5 only contains
several short narrow passages, and Map 6 has no narrow passages, due to the efficient
multiple important sampling of the proposed MIS-BiRRT, the path length of MIS-BiRRT is
much better than that of the other algorithm in Map 5 or 6.

Compared with the proposed MIS-BiRRT, however, the diversity of Multi-BiRRT is
still insufficient. Figure 11 illustrates the four path-growing processes of Multi-BiRRT and
MIS-BiRRT in Map 6. We can see that the shapes of the path trees grown by the Multi-
BiRRT method are very similar. Sampling schemes with importance functions represent
a trade-off between degeneracy and impoverishment [24]. The degeneracy phenomenon
is due to aimless sampling, similar to that in the traditional RRT algorithm, whereas
impoverishment can be regarded as the overconcentration of the samples drawn from the
importance function, such as in BiRRT + G or BiRRT + GO, and it may cause the hypotheses
to center only on a local solution. In the proposed MIS-BiRRT methodology, multiple new
waypoints are sampled from multiple importance functions and then selected according to
an evaluation of the sampled waypoints. The MIS-BiRRT algorithm can generate various
path tree shapes, as shown in Figure 11b. The proposed MIS-BiRRT methodology utilizes
the importance functions as clues to concentrate waypoint sampling on high-probability
areas while preserving randomness by using multiple various samples. Although the
proposed MIS-BiRRT requires more computational time than BiRRT + G, its path length,
total waypoints, and success ratio results are the best, which proves that the proposed
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MIS-BiRRT can improve the efficiency of path planning for microrobots through complex
environments with narrow passages.
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5. Conclusions

Due to its extremely small size, a microrobot is especially suitable for performing
tasks in narrow spaces. This paper proposed the MIS-BiRRT path planning algorithm to
efficiently navigate a microrobot through a complex environment with narrow passages.
Unlike general RRT algorithms that use purely stochastic methods for path planning,
MIS-BiRRT adopts both the stochastic and deterministic methods during path planning,
utilizing the advantages of each. The narrow passages are detected by image processing,
and the identification points are labeled to denote the entrance or exit of a narrow passage.
Once the MIS-BiRRT path growth is connected to an identification point, the A* algorithm
is then utilized to quickly find the optimal path through the narrow passage. After exiting
the narrow passage, the path planning switches back to the MIS-BiRRT methodology such
that the inefficiency of the stochastic algorithm in planning a path through narrow passages
can be reduced. In order to increase the sampling efficiency of the RRT path growth in the
broad space, the multiple importance sampling mechanism of MIS-BiRRT is designed to
integrate several importance functions to guide the path growth toward the target point,
ultimately connecting to the identification point of a narrow passage and avoiding any
obstacles. Multiple waypoint sampling and selection are also incorporated into MIS-BiRRT
to increase the variance of generated waypoints while reducing useless ones. Through
simulation and comparison, it is proved that the proposed MIS-BiRRT improves the overall
performance of microrobot path planning in complex environments.

Since the proposed MIS-BiRRT involves more calculations for image processing, mul-
tiple waypoints generation and selection, and the integration of multiple samples, the
computational time is longer than for simple RRT methodologies. It could be reduced
by being implemented via low-level programming libraries when practical. In the future,
the proposed algorithm can be applied in microrobots with microprocessors or embedded
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computation systems. The proposed path-planning method will also be further revised for
practical applications by considering the dynamics of the microrobots.
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