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Abstract: Two structures (Ag/ZnO/ITI/glass: #1 sample and Ag/ZnO/SiO2/Si: #2 sample) are
investigated, on the one hand, from the point of view of the formation of evanescent waves in the
gratings of metal strips on the structures when the incident TEz wave in the radio frequency range
is used. The simulation of the formation of evanescent waves at the edge of the Ag strips, with
thicknesses in the range of micrometers, was carried out before the test in the subwavelength regime,
with the help of a new improved transducer with metamaterial (MM) lenses. By simulation, a field
snapshot was obtained in each sequence of geometry. The evanescent waves are emphasized in
the plane XY, due to the scattering of the field on the edge of the strips. On the other hand, ZnO
nanoparticles are investigated as a convenient high-efficiency biodetection material, where these
structures were used as a biosensitive element to various enzymes (glucose, cholesterol, uric acid,
and ascorbic acid). The obtained results demonstrate that the investigated structures based on ZnO
nanostructures deposited on different supports are fast and sensitive for enzyme detection and can
be successfully incorporated into a device as a biosensing element.

Keywords: zinc oxide nanoparticles; enzymes biorecognition; biomaterials; gratings mesostructures;
multifunctional nanosystem

1. Introduction

The combined discipline of nanobiosensing is a result of how engineering sciences,
physics, chemistry, and biology coincide at the nanometer scale. Nanomaterials obtained
from metal oxides, shaped into nanoparticles, have been extensively used for their capacity
as electrode biosensing elements to enhance the efficiencies of electrochemical biosen-
sors [1]. Metal oxide nanoparticles can increase the efficiency of photochemical reactions
and greatly improve the catalytic activity of enzymes to generate novel photoelectro-
chemical systems [2]. Due to the high electrical conductivity of the resulting size of the
nanostructured metal oxides, the designed biosensors enhance the signal-to-noise ratio
and the sensitivity by more than one order of magnitude compared with that observed
in bulk material electrodes [3]. This improved performance was due to the rich enzyme
loading and a better electrical communication capability of the nanomorphological struc-
ture and the active center of the biomolecules. The diverse electroanalytical techniques
such as pulse and square-wave voltammetry, electrochemical impedance spectroscopy, and
cyclic voltammetry were employed to analyze the electron transport phenomena such as
diffusional mass transport, adsorption, chemisorption, charge transfer, chemical reaction,
and convection [4]. The metal oxide nanoparticles’ modified electrochemical interfaces
behave as a nanostructured biosensing element. Therefore, the electroanalytical limit of
detection of a nanostructured element may be much lower than that of an analogous
macrosized element because there is a bigger ratio between faradaic (the current generated
by the reduction or oxidation of some chemical substance at an electrode) and capacitive
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currents. Due to the significant features of nanostructured metal oxide that show significant
enhancements, much of the literature has reported that metal-oxide-modified interfaces
have become biosensitive [2]. Nanostructured metal-oxide-based enzymatic biosensors
have excellent prospects for interfacing biological recognition events with electronic sig-
nal transduction so as to design a new generation of bioelectronics devices with high
sensitivity. Indeed, there has been substantial progress in the past decade on enzymatic
electrochemical biosensors.

The biosensor is an analytical device formed by a biosensing matrix (receptors, nucleic
acids, enzymes, antibodies, and microorganisms) and a transducer (electrochemical, piezo-
electric, calorimetric, photometric, and acoustic/mechanical) that transforms biological
features into measurable signals as shown in Figure 1 [1]. Enzymes play a major role in any
kind of biosensor as they are the recognition unit responsible to deliver the information to
the transducing device.
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Figure 1. Working principles of a biosensing materials-based enzyme.

The hybridization of individual nanostructures can combine or even improve the
properties of each component. Metal nanoparticles are typically characterized by their high
surface activity, large specific surface area, good electron conductivity, strong biomolecule
absorbability, and biocompatibility [5,6]. ZnO nanoparticles and nanostructured thin films
have been studied in terms of their gas-sensing abilities and biosensing element [7,8] where
it was shown that a rough surface with a larger surface area had a positive influence on the
sensor response [9–13].

Metal strip gratings (MSGs) can act as filters or be used as conductive strips o micro-
strips in specific applications such as microsensors, flexible printed circuits, etc. [14]. The
interaction of electromagnetic fields with periodic metallic structures is a subject of study
both theoretically and experimentally. The thin MSGs with silver features and subwave-
length operating at 500 MHz and the formation of many evanescent modes in slits as well
as anomalous modes was revealed by using metamaterial (MM) lensing and/or circular
aperture diffraction with the subwavelength diameter [15,16]. The investigation of thick
MSG with silver bands and a transverse magnetic-excited subwavelength feature polarized
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field, TMz, in the RF domain, proved the formation of a single evanescent mode in the slits,
whose maximum was located in the strips, in the proximity of the lateral edge. This mode
was detected experimentally using MM lenses with the investigated structures having great
applicability potential as sensors and biosensors that work in the subwavelength regime
from the perspective in which evanescent waves can appear in slits and the possibility of
being a biosensitive element [12]. Relatively recent research has revealed that metallic struc-
tures with sub-wavelength features in the electromagnetic (EM) field at RF and microwave
frequency range have potential for producing unusual EM response [17,18], creation of
high impedance surface [19], have an effective plasmonic behavior [20], and high index
of refraction and negative refractive index [21]. The grating structures constructed from
subwavelength dimension components [22] can be used in the design of biosensors so that
high sensitivity is achieved. The analyte particles penetrate the deposited biosensitivity
material modifying the refractive index of the assembly [19,22]. The diffraction limits using
a sensor with MM decrease until 300 nm instead of 100 µm in the case of conventional
sensors and biosensors [23,24]. Extending the analysis to mesostructures, we focus on the
study and obtainment gratings with Ag strips deposited on different substrates by vacuum
thermal evaporation method at room temperatures; both samples were obtained.

This paper presents the results obtained at the EM nondestructive evaluation of strip
gratings deposited on different substrates used as bioactive surfaces using the EM sensor
with MM lens in order to improve the appearance of evanescent waves when the slits of
gratings are filled with immobilized enzymes [22]. This paper examines the performance
of the ZnO nanoparticles’ biosensing properties in order to establish their availability for
use as convenient, high-reliability biosensing materials on various substrates (ITO/glass
and SiO2/Si).

2. Materials and Methods
2.1. Preparation of Ag/ZnO Structures

A wide range of techniques to deposit thin films can be used, such as molecular beam
epitaxy (MBE), single-source chemical vapor deposition, sol–gel, spray pyrolysis and Rf
magnetron sputtering, and metal–organic chemical vapor deposition [24,25]. The materials
used in this study are two structures that consist of Ag grids on zinc oxide deposited on two
different substrates (Ag/ZnO/ITO/glass—#1 sample and Ag/ZnO/SiO2/Si—#2 samples)
are shown in Figure 2. Deposition of Ag/ZnO structures on different substrates by ther-
mal vacuum evaporation was performed on VUP5M equipment. The used substrates
of 180 × 180 mm2 areas were cleaned using the well-known procedures: ITO/glass and
glass substrates were cleaned with acetone, washed with deionized water and alcohol,
and dried with hot air; SiO2/Si and nSi[100] substrates were cleaned with HF solutions,
washed in deionized water, and dried with air. The deposition conditions were: pressure
10−5 Torr, evaporator–substrate distance 8 cm, deposition rate 0.05 nm/s, and a deposition
time of 30 s. The Zn thin layer was subjected to an ambient heat treatment at 450 ◦C for
1 h and the ZnO phase was obtained. Ag gratings with different widths and thicknesses
in the range of micrometers were obtained as follows: different masks were used, the
evaporator–substrate distance was changed between 4–8 cm and the deposition time was
varied between 2–15 min [26]. After nanostructured ZnO layers were obtained by deposit-
ing the metallic layer of Zn with the mask in Figure 2a and subjecting the sample to the
thermal treatment of 450 ◦C, we followed whether the thickness of the silver film depends
on the deposition rate by increasing the deposition time (Figure 2d). In order to do this, we
used the mask in Figure 2b to deposit multiple sets of samples in which we increased the
deposition time between 2–15 min (Figure 2c). We found that a deposition time t = 2 min
results in a thin silver film with h = 900 nm thickness. Increasing the deposition time up
t = 15 min, we obtained a thick silver film with h = 14 µm thickness.
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Figure 2. (a) Mask for Zn deposition; (b) mask for Ag strip deposition; (c) metallic structure type
MSG; and (d) thickness vs. time.

Finally, the MSG structures in Figure 2c, marked in Table 1, (#1 sample [Ag/ZnO/ITO/glass],
#2 sample [Ag/ZnO/SiO2/Si], #3 sample [Ag/ZnO/glass], and #4 sample [Ag/ZnO/nSi[100]]).
In this paper, we studied #1 and #2 samples from the set of 5 because the metallic strip
gratings were obtained on the samples having conductive traces made of silver with 14 µm
thickness and 1.2 mm width deposited on ZnO with the distance between traces being
0.8 mm (Table 1).

2.2. Characterization of Ag/ZnO Structures

The morphologies and structural characterization of the as-grown ZnO structures
were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and
atomic force microscopy (AFM). The XRD patterns were made on a diffractometer using
CuKα radiation (λ = 1.5406 Å) in order to identify the phase composition of the samples
(Figure 3). The crystallinity and crystalline ZnO nanoparticles were observed by the X-ray
diffraction patterns. The samples were analyzed in the range of 2θ = 5◦–80◦ with a scanning
angle rate of 0.02 and a 2 s/step count time. The sharp and narrow diffraction of the
peaks demonstrated that all ZnO thin films were of good crystalline quality. The reflection
peaks at (100), (002), (101), (103), and (112) were indicative of the hexagonal wurtzite ZnO
nanostructure. XRD results demonstrate that there are two peaks in the pattern at 34.4◦

and 36.2◦, which correspond with the (002) and (101) planes of ZnO, respectively. The
XRD patterns showed significantly sharp peaks for Ag, ZnO, and ITO. Remarkably, the
XRD results for both samples show diffraction peaks of silver at (111) and (200) planes at
2θ = 38.2◦ and 44.4◦.
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Table 1. The characteristics for the obtained metallic strip grating structures emphasizing the #1 and
#2 samples from the set of 5 in the study.

No. Sets
Metallic Strip

Grating
Structures (MSG)

Deposited Time
[min] Width (Ag) [mm] Width (ZnO)

[mm]
Thickness Ag

Strip [µm]

set I

#1
[Ag/ZnO/ITO/glass]

2 [0.9–1.2] [0.6–0.8] 0.9

#2
[Ag/ZnO/SiO2/Si]

#3
[Ag/ZnO/glass]

#4
[Ag/ZnO/nSi[100]]

set 2

#1
[Ag/ZnO/ITO/glass]

4 [0.9–1.2] [0.6–0.8] 1.4

#2
[Ag/ZnO/SiO2/Si]

#3
[Ag/ZnO/glass]

#4
[Ag/ZnO/nSi[100]]

set 3

#1
[Ag/ZnO/ITO/glass]

6 [0.9–1.2] [0.6–0.8] 4.4

#2
[Ag/ZnO/SiO2/Si]

#3
[Ag/ZnO/glass]

#4
[Ag/ZnO/nSi[100]]

set 4

#1
[Ag/ZnO/ITO/glass]

10 [0.9–1.2] [0.6–0.8] 8.5

#2
[Ag/ZnO/SiO2/Si]

#3
[Ag/ZnO/glass]

#4
[Ag/ZnO/nSi[100]]

set 5

#1
[Ag/ZnO/ITO/glass]

15 [0.9–1.2] [0.6–0.8] 14

#2
[Ag/ZnO/SiO2/Si]

#3
[Ag/ZnO/glass]

#4
[Ag/ZnO/nSi[100]]
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film nanostructures.

The weakness of the peaks is related to the thickness of the thin films. The peaks
correspond directly to the hexagonal structure of the ZnO [27–29]. This is due the nature of
the source material, and it is assumed that only nanoparticle migration from the source to
the substrate takes place. All of the indexed peaks in the obtained pattern are well-matched
with that of bulk ZnO, which confirms that the synthesized products are crystalline and
possess a wurtzite hexagonal structure. No other peak related to impurities was detected
in the pattern within the detection limit of the X-ray diffraction, which further confirms
that the obtained products are pure ZnO.

Structural characterization was performed by scanning electron microscopy (SEM)
analysis using a JEOL JSM 6390 instrument. SEM images show that the surfaces of the strips
are free of inclusions and defects, making them suitable for radio frequency applications.
From the SEM analysis, it was also highlighted that the obtained structures achieve the
necessary quality for the study of evanescent waves as the penetration depth of the radio
frequency waves is comparable to the thickness of the tape grating. SEM images confirm
that the grown structures are crystalline ZnO nanoparticles synthesized in high density
with uniform morphologies. SEM shows that the ZnO layer without the enzyme has a
uniform film with a columnar structure of ZnO films (Figure 4a,b). The morphological
characterization was performed by atomic force microscopy (AFM) with the AFM XE-100
instrument where AFM (Figure 5a,b) images of the ZnO layer with the enzyme show many
globular structures [30–32], confirming immobilization of different enzymes.

The influence of nanoparticle size on the performance of investigating biosensors and
nanoparticles with smaller size were established to be more suitable for enzyme immobiliza-
tion [33]. Other studies reported on designing of biosensors based on the immobilization
of different enzymes with nanostructure metal oxides, such as glucose oxidase, cholesterol
oxidase, urease, hemoglobin, cytochrome C, tyrosinase, etc. [34]. Electrical contacting of
redox enzymes with electrodes is a key process in the construction of third-generation
enzyme electrodes. Although biosensing systems used a diversity of recognition elements,
electrochemical detection mechanisms use preponderant enzymes. This is mostly due to
their specific binding capabilities and biocatalytic activity. The electrochemical reactions
can be utilized for construction of amperometric biosensors. The electrochemical biosensor
is defined as a self-contained device that is capable of providing specific and quantitative or
semi-quantitative analytical information using a biological element (in this case an enzyme),
retained in direct spatial contact with an electrochemical transduction element [35]. The
detecting mechanism for our glucose/cholesterol biosensors consist of the voltage applied
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across the two electrodes which causes a current to flow via electron tunneling through the
potential barrier between the nanoparticles. The exhaustion region at the surface of the film,
produced from a mixture of cholesterol oxidase/glucose oxidase and ZnO nanoparticles, is
extended by the electrical field of electrons generated by the reaction between cholesterol
oxidase/glucose oxidase and glucose/cholesterol. The ZnO nanostructures reoxidize by
transferring the electron to the external circuit due to efficient electron transfer and a good
redox property of the prepared nanostructures biomatrix. The increase in current with
increasing concentration of glucose/cholesterol is attributed to the increase in the number
of released electrons during oxidation of glucose/cholesterol.
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3. Experimental Set-Up and Simulations

The investigation of the appearance of evanescent waves at the edge of Ag strips, with
thicknesses in the range of micrometers, was carried out in the subwavelength regime, with
the help of a new improved transducer with metamaterials lenses. The sensor based on
the MM lens described in ref. [36–38] is coupled to Anritsu MS2028C VNA, improving the
spatial resolution to obtain the EM images using Fourier optics [39] and the experimental
set-ups presented in ref. [12,15] were used at a working frequency of 874 MHz (Figure 6).
The finite-difference time-domain (FDTD) method was chosen as a simulation procedure
with XFDTD software [40] because it involves a fine mesh to avoid numerical dispersion,
establishes well-defined boundary conditions and an effective absorbing boundary condi-
tions, and chooses proper excitation in space and time [41]. By simulation, a field snapshot
can be obtained in each sequence of geometry. The evanescent waves are emphasized in
the plane XY due to the scattering of the field on the edge of the strips. Figure 6a presents
the result of simulation with XFDTD where the Ey component is displayed. In ref. [26],
the behavior of the field with air in the slits is presented and it can be shown that for uric
acid between the strips, the amplitude of the electric field has the same behavior as in [21]
but the amplitude decreases due to the high electrical permittivity of uric acid. Thus, the
symmetrical maxima appear in the middle of the slits, decreasing to the minimum value on
the strips’ edges. Inside the strips, another pair of maxima appear, followed by a decrease
to the middle of the strip.
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Figure 6. (a) experimental set-up; (b) block scheme.

During the measurements, the transducer is fixed and the samples are displaced in
front of the transducer using an XY motorized stage, Newmark type, with the scanning step
being 0.1 mm. The EM sensor with metamaterial lenses is connected to an Anritsu MS2028C
VNA (Figure 6a), in the interval 850 MHz–900 MHz at 6 equidistant frequencies, with the
optimal frequency of 874 MHz being confirmed. The distance between the screen with
circular aperture and the surface to be examined (lift-off) is 20 ± 1 µm. Figure 7b shows that
the dependency of the e.m.f. amplitude induced in the reception coil of the sensor correctly
emphasizes the extremely thick conductive strips and eventual interruptions. The realized
samples were deposited on different substrates, without and with enzymes, and were
fixed on a support on a system that assures XY displacement—Newmark USA, controlled
by PC through codes written in Matlab 2019b. The distance between the screen aperture
and the surface to be examined was maintained at 20 µm ± 1 µm [16,36]. By simulation,
a field snapshot was obtained in each sequence of geometry. The evanescent waves are
emphasized in the plane XY, due to the scattering of the field on the edge of strips.
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Considering the middle of the slits as a reference point, symmetrically to left and
right, a 1 mm distance was scanned, and along the length of the strip, a 1 mm distance was
scanned; thus, a surface of 1 × 2 mm2 is scanned, both on the sample without enzyme as
well as the sample with enzymes. The EM field induced in the reception coil was measured;
the measurement system represents the average of 20 measurements for each point in
order to reduce the white noise effect, with the bandwidth of the analyzer being set to
10 Hz to diminish the noise level. The acquisition through the IEEE 488 interface and
storage of data are made by the same PC. Considering the middle of the slits as a reference
point, symmetrically to left and right, a 10 mm distance was scanned, along the length
of the strip distance, so that a surface of a 2 × 2 mm2 structure was scanned in 10 µm
steps in both directions, both on the sample without as well as the sample with enzymes.
Scanning along the y direction corresponds to a period of the grid in the frequency range
850 MHz–900 MHz with a step of 1 MHz. Correlating the results obtained by measuring
the amplitude of the EM field with the conditions obtained, it can be seen that the surface
of the band becomes compact and dense and the distribution of the electric field along
the band is approximately uniform (amplitude measured at each point represents the
average of twenty different measurements) and evanescent waves can be observed. The
spatial resolution of the system (distance between two distinctively visible points) was
verified according to [42]. For gratings with features compatible with the value of the
incident field, the Tez polarized wave acts at normal incidence for gratings [43]. Using
the sensor described above, the results obtained at the scanning of 2 × 2 mm2 of both
grating mesostructures with 10 µm steps in both directions at a frequency of 874 MHz are
presented below.

4. Results and Discussion

Electrochemical biosensors are the most common biosensors, and are more efficient
than conventional measurement techniques such as NMR spectroscopy, radioisotope trac-
ing, and microfluorometric assays [44,45]. Potentiometric measurements usually lack high
sensitivity because of the semi-logarithmic relationship between sensor output and analyte
concentration [46,47]. Figure 8 shows the relation between the current and enzyme concen-
tration for both mesostructures considered as biosensing materials. It can be observed that
the current increases when the concentration and saturation appears at higher concentra-
tions of enzymes. The inset is a calibration curve at λ = 0.6 m. The calibration curves were
obtained in the range of 0.01–9.5 mM of enzymes and the current response showed a linear
dynamic range of 0.04–4 mM.

The tested sensor configuration showed large dynamic ranges with an output response
that was linear versus the concentration of the enzymes activity with sensitivity at a
lower response current as shown in the inset in Figure 8a. To evaluate the performance
of the studied biosensing materials, the parameter of selectivity, which is an important
characteristic to describe the specificity towards the target ion in the presence of urea
and ascorbic acid ions, was checked. The calibration shows the study of interferences
versus the time traces line output response change with the time for both mesostructured
biosensing materials. The photocurrent differences (∆I) before and after the addition of
enzymes is used to compare the photoelectrochemical response of both biorecognition
samples: where I0, I are the photocurrents of both modified samples before and after the
addition of cholesterol and glucose, respectively. The regression equation for the #2 sample
is R = 0.999 at cholesterol and for the #1 sample it is R = 0.998 at glucose. Thus, the value of
cholesterol biosensitivity for the #2 sample (1.94 µA/mM) is much better than the value of
glucose biosensitivity for the #1 sample (1.33 µA/mM). As a comparison (Figure 8b), the
photocurrent response of the ZnO nanoparticles with enzymes is higher compared with
the sample deposited on SiO2 vs. ITO/glass support. The results showed that the favorite
support is ZnO nanostructures for active surface biosensing, which indicates that the
enhancement of the current response resulted from the cooperation of ZnO nanoparticles
and enzyme. In checking possible interference from reducing agents such as urea and
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ascorbic acid, which are well-known to interfere with glucose and cholesterol measurement
methods, their addition did not substantially change the signal. Adding 0.05 mM of urea
and ascorbic acid to 0.5 mM glucose and cholesterol only generated some noise shown in
Figure 8d. The morphology of the nanostructure significantly affects biosensing element
properties where ZnO nanostructures have been investigated for application in enzyme
biorecognition materials. Thus, the #1 sample exhibits good performance as a biosensing
material for glucose as well as the #2 sample exhibits for cholesterol (Figure 8a). The
response time is fast, which exhibits a high electron communication feature of the used thin
ZnO films (Figure 8d).
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To check the stability of the realized biosensors, the experiments were conducted over
a long period to investigate the storage stability. As one result, the zinc oxide nanoparticles
deposited onto the silicon oxide substrate have the highest biorecognition of all tested
enzymes. This behavior can be attributed to the concentration of the surface states. It
was found that the concentrations of the surface states are lower for the films deposited
onto silicon than those for the films deposited onto glass substrates. It was concluded
that the nature of the substrate is an important parameter which influences the enzymes’
biorecognition of the zinc oxide nanoparticles. The response time is also a key parameter
defined as the time at which the photocurrent of the biorecognition elements reaches a
saturation value upon exposure to enzymes.

In repeat experiments from the stored nanostructures biorecognition element, it was
found that the realized biosensors did not show any significant decrease in biosensitivity
for more than four weeks while being stored in an appropriate form when not in use. It was
found that 98.5% of initial biorecognition values were retained up to four weeks and then
gradually decreases. This might be due to the loss of the catalytic activity. The obtained
results clearly suggest that the realized biosensor can be used for more than one month
without any significant loss in biosensitivity.

5. Conclusions

The results showed that ZnO nanoparticles form an agreeable structure for enzyme
immobilization, which exhibits good affinity, high sensitivity, and fast response for glu-
cose/cholesterol detection. The research discusses the effectiveness of the EM sensor for
experimentally highlighting the evanescent modes created by TEz polarized EM waves in
the RF spectrum at a frequency of 874 MHz that become evident in mesostructures in the
subwavelength regime. The presence of evanescent modes was noted in the case where
enzymes fill the gaps between the grating strips, supporting the finding that the presence
of an enzyme (such as glucose or cholesterol) in the slits increases the signal amplitude
in the receiving coils as well as the photoelectrochemical response of both biorecognition
samples. The obtained results demonstrated that the investigated structures based on ZnO
nanostructures deposited on different supports are fast and sensitive for enzyme detection
and can be incorporated into a biosensor. Glucose/cholesterol biorecognition offers the po-
tential to fabricate high-performance biosensors for operation in air. While sample #2 shows
a better response time for cholesterol with a biosensitivity of 1.94 µA/mM and R = 0.999,
sample #1 has a better response time for glucose with a biosensitivity of 1.33 µA/mM and
R = 0.998. The investigated biosensing materials exhibit good performance in terms of
improved sensitivity, selectivity, reproducibility, stability, minimal interference, and quick
response, making them suitable for the integration or external interface of a biosensing
element with commercial devices. This adds the benefits of simplicity and low cost for
enzymatic detection of substances with biomedical engineering applications. The results
showed that the support of ZnO nanostructures stimulates the active surface by improving
the response due to the immobilization of enzymes on ZnO nanoparticles. The researched
structures can be used as biosensitive elements in the wireless monitoring of physiological
parameters in biomedical engineering, environment, food industry, as well as in other
cutting-edge domains. Based on ZnO nanostructures in a metallic MSG framework, a quick
and effective method has been employed to biosense glucose and cholesterol.
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