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Ultra-precision machining technology has been widely used in the manufacture of
many mission-critical components for various industrial areas, such as the advanced op-
tics, photonics aerospace, automotive, telecommunications, biomedical and energy and
environmental sectors, among others. The increasing degree of geometrical complexity,
requirement of high precision and the evolution of the materials used for machined work-
pieces have led to many research challenges in different fields, including ultra-precision
machining technologies, novel machining processes, cutting mechanics, surface generation
mechanisms, novel machine design, advanced sensing, machine metrology, accurate control
of the machining process through modeling and simulation of ultra-precision machining
processes, error compensation, materials sciences, measurement and on-machine metrology,
as well as advanced applications for functional uses.

This Special Issue offers a high-quality collection of 17 papers detailing the latest re-
search results and findings in the field of ultra-precision machining technology and related
applications. These papers cover various aspects of this topic, including multi-physical cou-
pling simulation of electrochemical machining and aerostatic spindle, error measurement
and compensation, femtosecond-laser-assisted etching, numerical modeling of cutting
force and stress, prediction of milling stability, influence of tribological characteristics,
tribochemical mechanical polishing, low-pressure lapping, thermal effect, micromachining
innovation design, single-particle erosion mechanism, dynamic performance of aerostatic
thrust bearing, fly-cutting process and ultrasonic-vibration-assisted cutting.

Highlights of this collection of papers are as follows. Li et al. [1] present a study
focused on the forming mechanism of cooling hole electrolytic machining using multi-
physical field coupled simulation and experimental observation. An investigation of the
main error sources was conducted by Xiang et al. [2] for the error motion measurement of a
precision shafting based on a T-type capacitive sensor. Wang et al. [3] report a femtosecond-
laser-assisted dry-etching technology that can be utilized to realize the fabrication of silicon
microlenses. A new cutting force coefficient model is established Li et al. [4], revealing the
influence of the cutting-edge radius on the cutting process. An updated full-discretization
method is presented by Ma et al. [5] for milling stability prediction based on cubic spline
interpolation. Nagît, et al. [6] elaborate the tribological behavior of test piece surfaces,
analyzing the changes in the values of the coefficient of friction and loss of mass that
appear over time. Qi et al. [7] demonstrate the mechanism underlying oxygen production
and the tribochemical reaction mechanisms of SiC during fixed abrasive tribochemical
mechanical polishing. Yu et al. [8] describe the modeling and simulation of the surface
generation mechanism of a novel low-pressure lapping method using the finite element
method, indicating that rotational speed plays a major role in this process. A three-degrees-
of-freedom (3-DOF) quasi-static kinematics model is established by Lei et al. [9] for motion
errors containing the thermal effect for the hydrostatic guideway. Experimental results
show that the model has a certain effect on thermal error prediction. Wang et al. [10]
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present a knowledge-based holistic framework that enables process planners to achieve
micromachining innovation design by analyzing innovation design procedures and avail-
able knowledge sources. Cao et al. [11] combine smoothed particle hydrodynamics (SPH)
simulation and an experiment to investigate the single-particle erosion mechanism of op-
tical glass and verify the effect of impact velocity and particle size on material removal
rate. Wang et al. [12] utilize the FLUENT software to simulate and analyze the impact
of throttling characteristics of small orifices on the stiffness and stability optimization of
aerostatic thrust bearings. Dai et al. [13] analyze the electrochemical machining (ECM)
process in a film-cooling hole by conducting a multi-physics coupling simulation on the
basis of Faraday’s law and a fluid heat transfer mathematical model. An et al. [14] utilize
simulation to explore the causes of potassium dihydrogen phosphate (KDP) chip formation
in the single-point diamond fly-cutting process, and micro-cracks on the machined surface
are analyzed based on thermo-mechanical coupling and chip morphology. Guan et al. [15]
propose a high-precision machining method for weak-stiffness mirrors based on the fast
tool servo system and realize a clamping error with a peak-to-valley (PV) value of 5.2 µm
and a cutting error with a PV value of 1.6 µm. Zhang et al. [16] demonstrate a 104 kHz
ultrasonic-vibration-assisted cutting system could achieve a constant surface roughness of
about 3 nm to 4 nm in machining steel optical modules with 0–15◦ slope degrees. Finally,
Chen et al. [17] establish a multi-field coupling 5-DOF dynamics model for the aerostatic
spindle considering the interaction between the air film, spindle shaft and the motor.
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