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Abstract: Modeling of soft robotics systems proves to be an extremely difficult task, due to the
large deformation of the soft materials used to make such robots. Reliable and accurate models
are necessary for the control task of these soft robots. In this paper, a data-driven approach using
machine learning is presented to model the kinematics of Soft Pneumatic Actuators (SPAs). An Echo
State Network (ESN) architecture is used to predict the SPA’s tip position in 3 axes. Initially, data
from actual 3D printed SPAs is obtained to build a training dataset for the network. Irregular-
intervals pressure inputs are used to drive the SPA in different actuation sequences. The network is
then iteratively trained and optimized. The demonstrated method is shown to successfully model
the complex non-linear behavior of the SPA, using only the control input without any feedback
sensory data as additional input to the network. In addition, the ability of the network to estimate
the kinematics of SPAs with different orientation angles 6 is achieved. The ESN is compared to
a Long Short-Term Memory (LSTM) network that is trained on the interpolated experimental data.
Both networks are then tested on Finite Element Analysis (FEA) data for other 6 angle SPAs not
included in the training data. This methodology could offer a general approach to modeling SPAs
with varying design parameters.

Keywords: Echo State Network (ESN); reservoir computing; Recurrent Neural Network (RNN);
Long Short-Term Memory (LSTM); soft robotics; Soft Pneumatic Actuators (SPA); modeling

1. Introduction

The use of soft materials has recently gained traction in robotics and the field of soft
robotics has seen many developments. The main reason for this is the advantages gained by
using soft materials instead of building completely rigid robots, the main advantage being
the high flexibility that could be achieved by soft robots. Building soft robots would allow
us to mimic different living creatures and organisms with high robustness and adaptability
to their environment. Moreover, soft robots are safer to interact and collaborate with
humans than traditional robots with rigid bodies [1].

However, one of the main hurdles of building soft robots is the complex non-linear dy-
namics they exhibit due to the compliant nature of the soft materials used to build them [2].
These complex dynamics are hard to model, and subsequently are very challenging to
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control. Achieving high-level control of soft robots would allow them to be deployed
in actual working environments to perform complex and intelligent tasks. Despite the
challenges presented in building soft robotics systems, the advantages they offer over rigid
robots are essential to achieve more complex and robust robotics tasks and reach high
human-robot interaction. The limitations of rigid robots are mainly due to their designs
using hard links and structures that have limited degrees of freedom, which are much
easier to model and control using traditional algorithms. However, these robots are not safe
to directly interact with humans in work environments, as well as not being robust enough
to adapt to different environments and perform highly complex tasks. Consequently, many
researchers have been concentrating on solving the modeling and control problems of soft
robotics systems.

2. Related Work

Several approaches have been investigated to achieve modeling and control for soft
robots. Some methods are based on mathematical analysis approximation of the soft
structure such as the piecewise constant curvature model approximation [3], the geometrical
exact approach such as the Cosserat rod theory [4], and the variable-strain method that
generalizes the piecewise constant-strain approach [5]. Other methods rely on data-driven
techniques such as neural networks and reinforcement learning [6].

However, the elastic behavior of the soft material leads to large deformation in the
body of soft robots. Hence, it becomes extremely difficult to reach a general model for such
robotic systems. Many attempts have been made in this area to model the deformation
of soft actuators. Finite-element methods have been used by Moseley et al. to predict
the displacement and force of a soft pneumatic actuator (SPA) [7]. Several attempts also
investigated the modeling of a fiber-reinforced soft actuator using continuum models [8-10].
Another model that’s widely used is the Euler-Cantilever-Beam model, which assumes that
the soft actuator behaves like a cantilever beam [11-13]. Other approaches tried to split the
actuator into several small segments and study the bending of each segment separately,
then add them together to estimate the total bending of the whole actuator [14].

Furthermore, several groups have been investigating data-driven approaches. Most
notably, the use of different machine learning and deep learning models is showing promis-
ing results. These models rely on training neural networks that are capable of predicting
the deformation of the soft material and the position of the actuator tip or end-effector.
Some proposed models are linear regression models [15]. One approach used simulation
data from a Finite Element Method (FEM) hyperelastic material model to train an Artificial
Neural Network (ANN) to predict the bending angles of SPAs with variable geometrical
parameters [16]. However, the most commonly used networks to model the time series
data obtained from the actuator are Recurrent Neural Networks (RNNs). Thuruthel et al.
embedded soft sensors into the actuator to obtain bending data and used it to train an RNN
that can predict the position of the actuator’s tip and the force applied by it [17]. Another
group used a Bidirectional Long Short-Term Memory (BiLSTM) network, a type of RNN, to
estimate the position of a hydraulic soft hybrid sensor-actuator [18].

Despite offering reasonable accuracy, RNNs still struggle to fully map the input-output
relationship of the soft actuator. ESNs provide a possible solution to this problem, due to
their ability to model the non-linear dynamics of complex systems. They depend on the
concept of Dynamic Reservoir (DR) computing and they tend to simulate the actual soft
robotic system more accurately, due to their closeness to the real system. Some attempts
have been made to use ESN to model and control complex dynamic systems, such as the
CoroBot’s Arm [19]. Sakurai et al. also used an ESN to model a McKibben Pneumatic
Artificial Muscle (PAM) [20].

In this article, an ESN is used to model an SPA using irregular data, and to predict the
position of the actuator’s tip in 3 dimensions (Figure 1). In the next section, an overview of
the SPA used in the experiment is presented, including its design features. The concept
behind ESNss is also discussed. In the subsequent sections, the experiment conducted
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is demonstrated in detail with the ESN training, and the results attained, showing the
performance of the network in predicting the SPA tip position in 3D. In addition, a Long
Short-Term Memory (LSTM) network is trained on the interpolated data and its perfor-
mance is compared against the ESN’s. Finally, both trained networks are tested for their
ability to generalize using data obtained from Finite Element Analysis (FEA) simulation.
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Figure 1. The pipeline for the modeling of the SPA using ESN. Ground truth data is obtained for
different input actuation sequences of the SPA (left). The ESN learning process (right) is done in
a cyclic manner. The network is first trained with fixed parameters, then the output weights are fixed
and the parameters are optimized. The process is done iteratively till convergence.

3. Methodology

The proposed approach is to use machine learning techniques that can emulate the
non-linear dynamics of complex systems to predict the 3D position of the tip of the Soft
Pneumatic Actuator (SPA) due to the deflection of the soft material after applying pressure
to the actuator. One class of neural networks suitable for such spatio-temporal task is the
RNN, as it possesses internal states that act as memory. In this experiment, we used the
ESN, which is based on the concept of Reservoir Computing (RC), and compared its results
with the LSTM network, which is one of the most promising networks used with time series
data. This section presents the details of the SPA used, the experiment performed including
the data acquisition process, and the models used to predict the SPA’s kinematics.

3.1. Soft Pneumatic Actuator (SPA)

SPAs, widely known as Pneunets, could be used to develop soft robots that can achieve
complex movements and locomotion. In general, SPAs have air chambers that allow the
soft material to contract and expand when pneumatic pressure is applied to their internal
structure. Applying different pressure values, whether positive or negative pressure,
makes the actuator reach different positions in 3D space. Several design parameters also
affect the performance of the SPA, such as the geometry of the air chambers and their
number, the orientation and inclination angles of the chambers, the length of the actuator,
and its thickness. All these factors, in addition to the non-linear nature of the soft material,
contribute to the complexity of modeling of the SPA. Conventional modeling methods used
to describe rigid robots” kinematics cannot be applied in the case of soft robots. Instead,
a common method used to estimate the behavior of SPAs is the FEA, which could simulate
the deformation of the hyperelastic material under different operating values. However,
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this process requires intensive computation power and is very lengthy. New research
proposes the use of differentiable simulation as a method of modeling soft robots and
bridging the simulation-to-reality gap [21].

Previous work has discussed the process of soft material identification, and the design,
manufacturing, FEA simulation, and validation for SPAs of different inclination angles [22].
The effect of varying the inclination angle of the chambers on the gripping force was
investigated. The yielding and buckling issues of the SPA’s bending and their effects on
the output force are also discussed in [23]. In [24], 4 SPAs (seen in Figure 2) with different
orientation angles of 35°, 60°, 120°, and 145° were fabricated using Fused Deposition
Modeling (FDM) 3D printing with the Felix Tec 4. In addition, CURA software is used for
slicing the CAD design. The SPAs are made from Thermoplastic Polyurethane (TPU) soft
material, which require certain printing parameters such as 0.1 mm layer height, 0.4 mm
line width, and a temperature of 220 °C. To improve the sealing, the final layer is heated
using the ironing feature. The infill density of the actuators is 100% and the adhesion
between the layers was improved by increasing the contact area between the side walls
and top layers using inner fillets. The SPA orientation during printing was set in the pull
direction of the extrusion nozzle. No support materials were used. The SPAs were tested
by applying pressure and observing the deflection of the SPA’s tip in 3D space. The SPAs
were used as the flippers for a biomimetic turtle robot and its motion was analyzed. In this
current work, an ESN is used to model these SPAs and predict the tip position within its
3D work envelope.

3.2. Experiment

A practical experiment is conducted on 3D-printed SPAs to acquire training and testing
data for the ESN and assess the performance and accuracy of the proposed method.

3.2.1. Setup

The experiment’s setup, as shown in Figure 3, is mainly comprised of the 3D-printed
SPA, which is subjected to a varying operating pressure, and a vision system acting as
a feedback method to capture the ground truth data used to train the ESN. The SPAs were
3D-printed with 4 different orientation angles of 35°, 60°, 120°, and 145°. Several trials
were conducted on each SPA by applying pneumatic pressure to actuate the SPA using
compressed air. A high-speed valve was controlled using pulse width modulation (PWM)
to vary the input pressure inside the SPA from a range of 0.1 to 0.6 Megapascal (MPa).
During each trial, the SPA was driven by a sequence of actuation pressures and its behavior
was observed. The 3D position of the actuator’s tip is obtained by analyzing the recorded
video stream of the trials, using computer vision tracking software. The Tracker video
analysis tool is built upon the Open Source Physics library [25].

3.2.2. Data Acquisition

The acquisition of the ground truth data for the training procedure was done using
two cameras. The actuation trials were recorded from two views: an x-y plane, and an
x-z plane, to obtain the actuator’s motion in the 3 dimensions. Markers were placed on
the actuator’s tip to enable position tracking during the image processing stage (seen in
Figure 3). The two streams were calibrated using a calibration grid and synchronized to
obtain the 3D position at each actuation step. Finally, the Tracker tool was used to annotate
the videos and extract the ground truth positions, as described in [24]. The tool auto tracks
the pixels containing the marker on the actuator’s tip and extracts its coordinates for each
frame of the video.
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Figure 2. 3D Design and geometrical dimensions of the SPA for orientation angles bigger and smaller
than 90°. (a) Detailed CAD design with dimensions. (b) SPAs 6 = [35°, 60°, 120°, 145°] demonstration
that shows the orientation angle effect.
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Figure 3. Experimental setup for the actuation of the SPA, including the calibration grid, cameras,
and pressure visualization for data acquisition.

During the data acquisition, the main focus was to capture the final position for each
actuation step. Due to the non-linear dynamics exhibited by the SPA, the transient time
varies between the different actuation pressures. In addition, the memory effect exhibited
by the SPA affects the dependence of the state of the actuator on previous actuation forces.
To capture such behavior, the pressure sequences used during the experiment consist of
pressure steps sampled at irregular intervals between them, to showcase the response of
the SPA to the same pressure input but coming from different previous input pressures.
For this reason, the recorded data is represented in irregular time steps. The data is used to
train both the ESN and LSTM models.

3.3. Modeling Using Echo State Network (ESN)

The ESN is a special type of RNN. It was first proposed by H. Jaeger [26]. It is one of
two paradigms, the other being Liquid State Machines, that are known as reservoir computing
(RC) [27]. The reservoir computing concept is inspired by recurrent neural networks. It is
based on creating a complex dynamical system (reservoir) with non-trainable weights. The
input signals are connected to this reservoir via fixed weights, thus, allowing the mapping
to higher dimensional computational spaces (embedding). The embedding could then be
connected to the output via a simple linear trainable layer (readout layer).

The main component of the ESN is the dynamic reservoir that constitutes the RNN'’s
hidden layer. The ESN’s ability to model complex dynamic systems comes from the complex
structure of the reservoir. That’s why the reservoir needs to contain a large number of
neurons that are excited to map the input to the output [28]. The architecture of the ESN is
shown in Figure 4.
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Figure 4. ESN Architecture, having a time series input, a reservoir of neurons with a specified
activation function and a linear output layer.

The hidden layer mainly constitutes a large number of hidden neurons that are sparsely
connected via fixed and randomly assigned weights. The only trainable weights in the
network are those of the output neurons. These weights transform the non-linear dynamic
behavior of the reservoir into a linear output that could be learned to reproduce a system’s
spatio-temporal response. An output feedback weight matrix could also be included and
are generated with the system states through teacher forcing using the correct outputs.

A basic ESN consists of N reservoir units, U input signals, and L outputs. The state
update equations are:

x(n) = fF(W"u(n) + Wa(n —1) + W'y(n - 1)) 1)

x(n)=(1—a)x(n—1) +ax(n) ()

where x(n) is the reservoir state of N dimensions and %(#) is its update, f is the activation
function of the reservoir neurons, u(n) is the input signal of U dimensions, W is the N x N
reservoir weight matrix, W is the N x U input weight matrix, y(n) is the output signal of L
dimensions, and W/? is the N x L output feedback weight matrix, which can be eliminated.
« is the leaking rate of the neurons.

The output is obtained through the linear readout layer using the equation:

y(n) = f (WO [u(n); x(n)]) (©)

where o is the output activation function and W"* is the L x (U + N) output weight
matrix that the network is required to learn to get the desired output. [u(n); x(n)]) is the
extended system state.

Using the above equations, the ESN can be trained to learn a spatio-temporal model
with the desired output signal "¢ (n) of L dimensions. The training part could be
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treated as a supervised machine learning task, to minimize a loss function such as the
Root-Mean-Square Error (RMSE) equation described here:

T

7 L) — 3 )2 @

i=1

target) 1
L/

1

L
Ey,y
=1
where T is the number of training data points. The training dataset can have sequences of
different lengths [29].

3.3.1. Network Architecture

The ESN architecture mainly comprises a certain number of neurons in the reservoir.
The network consists of three types of connection weights. The first type is the connection
weights from the input nodes to the reservoir neurons (W;, ). The second type is the internal
connection weights of the reservoir neurons (W). The last type is the connection weights
from the reservoir neurons to the output nodes (Wy,;). Connection weights W;,, are ran-
domly generated real values and are fixed throughout the experiments. The network also
has important parameters that affect its learning ability, mainly the spectral radius of the
reservoir weight matrix. It affects the decay time of the input impulse response and the
non-linear interaction of inputs. One other parameter is the sparsity or the connectivity of
the reservoir weight matrix. It determines the number of connections between the reservoir
neurons, which affects the dynamics of the reservoir and the variation of its signals. Higher
sparsity makes the reservoir act as loosely coupled subsystems [26], which helps capture the
dynamics of the system being modeled. The activation function for the reservoir neurons is
also an important parameter, with the most commonly used being tanh.

For this experiment, the input of the network is the applied pressure and the orienta-
tion angle (0) of the SPA, and the output to be predicted are the x, y, and z positions of the
actuator’s tip. The trials were split into training and testing subsets. A total of 52 actuation
sequences were used with a total of 1128 actuation steps, divided into 36 and 16 sequences
(794 and 334 steps) for training and testing, respectively (70-30% train-test split). Pre-
processing on the data is done by converting (6) from degrees to radians, and converting
the positions from millimeter (mm) to meter (m).

The training is performed in two stages. First, the network is trained with fixed
hyperparameters, only training the output weights. Next, a Bayesian optimization method
is used to reach the best parameters for the network. During the optimization training,
the weights of the output layer are fixed from the previous training, while the network
hyperparameters are optimized. Iteratively alternating between these two steps allow us to
reach the optimized hyperparameters and output weights. All codes were implemented
in Python.

3.3.2. Results

By training the ESN on the data obtained from the experiment, The network can
predict the 3D position of the actuator’s tip with reasonable accuracy. Several training
experiments were conducted with different network parameters.

At first, the basic implementation of the ESN is used to train a network with different
reservoir sizes ranging from 1000 to 10,000 neurons. The network is trained to predict
the tip’s position in the three axes x, y, and z simultaneously. Other network parameters
were fixed, with a spectral radius of 0.95, a sparsity of 0.97, a regularization of 0.1, and
a random seed of 42 for the initialization of the non-trainable weights. The network with
10,000 neurons achieved a training error of 1.85 x 10~!3 and a testing error of 11.

However, the predictions for some test sequences, particularly for the x position, are
less accurate. Thus, to improve the results, the network’s parameters need to be optimized.
To achieve this, the Bayesian optimization approach described in [30] is used to optimize
7 parameters: reservoir size, input scaling, feedback scaling, leaking rate, spectral radius,
sparsity, and regularization.
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In addition, to achieve more accurate results for each position, the training and op-
timization process is performed on each axis individually, to get three separate sets of
optimized parameters, one for each of the 3D positions, as seen in Table 1. In compari-
son, the network achieved improved testing errors than the network with manually set
hyperparameters. The errors are 5.72162, 4.63309, and 15.74720 for x, y, and z, respectively.
The network’s results are shown in Figure 5.

By inspecting the network’s error, some outlier results can be observed in three test
sequences, which were omitted from the testing subset. The prediction error plot and error
range are shown in Figure 6. The maximum prediction error happens in the x-axis, up
to 22 mm. For the y and z axes, the maximum error is about 16 and 20 mm, respectively.
The average error for the 3 axes ranges between 3 and 4 mm.

g oqs
P vs X & Y Positions P vs X & Z Positions
0-e
N 50 -
> e
= \ _§¥
S £-10 o ® ~8-Ground Truth = 40 +® ¥
n E \ —Prediction E - -
v £
M c @ -
s s e~ "
@ B ‘e
) IS § 10 == -8-Ground Truth
< >0 N g e —Prediction
[~ % e ° :
- - 10
“» “ e
B - . - . 06
Xp, 60 = - 50 - - - 04 05
Osigi i 40 - 03 :
Sitions 0 4g 04 02 ) 0.4 05 06 OSitiop i Py 02
'm) : Pressure (MPa) mm) Pressure (MPa)
10
20
) g " ~#-Ground Truth 15 P IR
o £ —Prediction £
CRE g &
b 2 . ~e-Ground Truth
5 8" G L — Prediction
é E =t
Q > 30 ~N ©
R 5
-40
75} 60 = — 60 -
55 = - - 05 06 55 2 - 06
50 — 04 - 50 - 05
S 4 oq 02 03 s 02 03 4
X Positions (mm! Pressure (MPa| - 0.1 N
) tE2) X Positions (mm) Pressure (MPa)
0y [
= 10 = ~e-n
3 \ E 10 o -®-Ground Truth
°° E 5 £ o= —Prediction
2 20\ . S 2 20
(q\] K] ~-Ground Truth §
G 30 —Prediction =4
- S 8 30,
o o
[wa > 40, N ou"
e .
< %, 60 < 60
[~ %, - —oee %,
) s, w0 \ e % 40 =
% - - — s . . : <
%, 0.1 02 03 0.4 05 0.6 % 01 02 03 0.4 0.5 0.6
3/ Pressure (MPa) = Pressure (MPa)
0
© = Q 0
n € £
E-10 -8-Ground Truth £ -®-Ground Truth
hl Py —Prediction - 20 —Prediction
520 2
i 2 ]
= 2
D | B 3
> N
< =0 60
A - 06 L
80 - 05 : 60 ) 06
Xp,. . 0.4 - 0.5
%) OSitions % ) “02 03 Xp°sifia,, i~ ] 0z 04
() 40 041 i MPa) s(m,,,) 20 04 0.2
BasUrg (Ng Pressure (MPa)

Figure 5. Prediction results of the ESN network after optimizing the 8 hyperparameters. 4 test
samples, one from each 0 angle, are plotted. The plots show the network’s predictions for the SPA
tip’s motion plotted against the input pressure.
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Table 1. Optimized Parameters of ESN for the 3 individual axes.

Parameter X Y Z

Reservoir Size 2065 100 100

Input Scaling 1 0.646784 1

Feedback Scaling 1 0.30386 1

Leaking Rate 1 1 1

Spectral Radius 0.5 0.550113 0.855145

Sparsity 0.999 0.999 0.999

Regularization 10 0.07043 0.029732

Random Seed 123 123 123

Trainable Output Weights 2067 102 102

20 =X

=Y

- 15 z
€
E

E 10
W
5 )
it g M Jao® mw {1l
0 g e \ MM WA w U ANy
0 50 100 150 200 250

Actuation Steps

Figure 6. Prediction errors for optimized ESN. The error plot of the test sequences for the 3 motion
axes x, i, and z.

Despite the improvement in the accuracy, the model still exhibits high prediction error
for some test sequences, specifically in the x-axis. This could be due to several factors, such
as the small displacement happening in the x direction compared to the iy and z directions,
and the nature of the SPA system such as its hysteresis effect, causing its current position to
depend on the past inputs and the same output position could be reached through more
than one specific input sequence. This is due to the elastic property of the soft material,
which is hard for the network to fully map. However, the ESN can capture the complex
non-linear dynamic behavior of the soft actuator by relying only on the actuation input
and without any sensory feedback, even when varying design parameters such as the
orientation angle in this case.

3.4. Modeling Using LSTM

The LSTM is another type of RNN that is prominently used for time series predic-
tion [31]. To compare the ESN performance, we train an LSTM network on the SPA data.
However, the temporal irregularity of the data affects the ability of these types of networks
to model the behavior of the system [32]. Two trials were conducted. The first trial used
the irregular data to train an LSTM network consisting of 6 hidden layers with sizes of 512,
256, 128, 64, 32, and 8 units, respectively. The network’s performance is the same as the
ESN network. Despite this, the training requires significantly more time and computational
resources than the ESN, and the model is prone to overfitting, due to the large number of
parameters to train by comparison with the small dataset used.

In the second trial, pre-processing on the data is done to handle the irregularity.
To overcome this, one common approach is the use of an imputation method such as data
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interpolation. The SPA data obtained from the experiment are interpolated to estimate
the intermediate values between the observed time steps. The LSTM architecture used
consists of a hidden layer with 512 units (Table 2). A fully connected layer provides the
final output. The Adam method is used to optimize the network weights. In addition to
the pre-processing previously done on the data, the values were scaled using min-max
normalization. The input data is transformed using the sliding window approach with
a look-back value of 5, to include the input and output data of the previous time steps
alongside the inputs for the current time step. The LSTM performance on the test set
achieved an RMSE of 1.66453, 0.83381, and 0.83234 for x, y, and z, respectively. The results
for four test samples, one for each SPA orientation angle, are shown in Figure 7. The errors
plots (Figure 8) show a maximum error of 11 mm in the x position.
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Figure 7. Prediction results of the LSTM network trained on the interpolated data. The plots are for

4 test samples.
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Table 2. LSTM network parameters.
Parameter Value
Hidden Layers 1
Recurrent Units 512
Look-back 5
Optimizer Adam
Data Scaling Min-max Normalization
Learning Rate 0.01
Batch Size 1
Epochs 500
Trainable Weights 1,085,953
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Figure 8. Prediction errors for the LSTM on the interpolated data. The error plot of the test sequences
for the 3 motion axes x, y, and z.

3.5. Model Validation Using FEA Data

In order to test the models’ ability to learn the general kinematic behavior of the
SPA, The two trained networks are tested using data from SPAs with 22 different 6 angles,
including data for the 4 SPA angles previously used for training, as well as, 18 other
orientation angles, ranging from 35° to 145°, with an interval of 5°. However, due to the
inability to fabricate all the SPAs and perform the experiment on them, the FEA data is used
instead for this validation process. The FEA data was obtained using Ansys Multi-Physics
2019 R2™. The TPU material is identified using the Mooney-Rilivin five parameters
material hyperelastic model and applied to the 22 SPAs with different § angles [24].

The FEA data is then used to test the ESN and the LSTM performance. The ESN
achieved an RMSE of 8.76696, 8.25630, and 11.69436 for x, y, z, respectively. By comparison,
the LSTM errors are 2.5964, 3.3739, and 2.0618. The prediction results are illustrated in the
Supplementary Materials. The errors histograms from both the ESN and the LSTM are
presented in Figure 9.
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Figure 9. Histogram of the prediction errors on the FEA data. (a) ESN predictions. (b) LSTM predictions.

4. Discussion

Deriving an accurate mathematical model for robots or actuators made from soft
materials is hard to achieve using previously known methods such as the piecewise constant
curvature. Due to the dynamic complexity of such models, the use of data-driven approaches
is suitable to map the input-output relations of these systems and make predictions.

The approach proposed in this study is to use an ESN to model the kinematics of SPAs
with different orientation angles 6. By gathering experimental data from SPAs and training
the ESN to predict the position of the SPA’s tip, the network prediction shows promising
results in the ability of the ESN to model soft robotic systems with non-linear complexity.
In the first training phase, the ESN is trained with fixed hyperparameters, which leads to
poor results. In the second phase, the hyperparameters are optimized using the Bayesian
technique to achieve more accurate predictions. Increasing the training dataset with more
SPA actuation sequences could potentially improve the network’s accuracy.

RNNs are generally used in modeling tasks that require learning spatio-temporal
behavior of complex systems, due to the memory units they contain. In the case of SPAs,
the actuator has a physical memory that exhibits hysteresis. Its position is affected by
the previous actuation forces applied on it and the large deformations caused by them.
Even after removing the actuation pressure, the SPA might not return to its initial state.
The properties of the soft TPU material of the SPA contribute to this behavior, alongside its
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geometrical parameters. The RNN'’s ability to deal with memory makes it a suitable choice
for this modeling task.

In the proposed methodology, the use of the ESN architecture is justified by its reliance
on the concept of reservoir computing. It offers the ability to represent the high-dimensional
dynamic system of the SPA as a reservoir with a small number of internal neurons. It is
easier to train using a small dataset and computing the output weights of the linear
readout layer by simply using linear regression. By comparison, other RNN architectures
would require a large amount of data to exploit the gradient descent method used to
train their large number of weights to obtain accurate models. In addition, the process
of collecting a large amount of data from these types of soft systems would cause their
physical properties and inherent behavior to be altered significantly. It would also shorten
their lifespan, which is undesirable in practical settings. Thus, comes the need for the high
efficiency of the data-driven modeling technique and the small amount of data required
to adjust the network’s parameters to adapt to the changes happening in the soft system
over time.

In addition, the task of proprioceptive sensing for soft robots is a challenging issue.
The embedding of sensory devices within the soft materials could undesirably affect their
deformability. The presented approach doesn’t include any embedded sensors in the SPA.
This requires the used network architecture to be able to learn the system’s behavior using
only the low-dimensional input feature, being the input pressure force in this case.

One of the challenges for this type of experiment is the data acquisition method.
The non-linear nature of the SPA, its soft material memory effects, and the restriction on
the amount of data to collect without damaging the system are taken into account. This
leads to irregular actuation steps as discussed in the data acquisition section. To investigate
the performance of other RNN architectures such as the LSTM and compare it to the ESN’s,
a pre-processing interpolation method needs to be applied to the data, as the irregularity
of the data would affect the LSTM’s ability to accurately learn the kinematics model.
However, the linear interpolation estimation of the intermediate (in-between) actuation
steps is not accurately representative of the actual physical system. By comparison to the
ESN, the LSTM also requires a longer training time. The total number of parameters needed
for the LSTM training is 1,085,953, compared to only 2067 parameters for the ESN training
for the x position, which is the largest reservoir size.

Our methodology also tests the ability of the models to generalize and predict the
kinematics of SPAs with different 6 angles that were not included in the training data.
However, due to fabrication limitations, the data used to test the networks is obtained
from the FEA, which doesn’t account for the actual behavior of the system due to the
lack of biaxial and shear test for the TPU material’s hyperelastic model as illustrated
in [24], but it provides a close estimation for the bending behavior trend. The test errors
for both the ESN and LSTM networks on the experimental and FEA data are presented in
Table 3. It would be beneficial to investigate more network architectures and collect more
experimental data from various SPAs. A real-time end-to-end model capable of adapting to
the system’s changes over time would require an accurate real-time visual sensing system
and continuous online training.

Table 3. Test errors for ESN and LSTM networks on experimental and FEA data.

Test X Y z
ESN on Experimental Data 5.72162 4.63309 15.74720
LSTM on Experimental Data 1.66453 0.83381 0.83234
ESN on FEA Data 8.76696 8.25630 11.69436

LSTM on FEA Data 2.5964 3.3739 2.0618
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