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Abstract: Porous shape memory alloys (SMAs) have been widely used in the aerospace, military,
medical, and health fields due to its unique mechanical properties such as superelasticity, biocom-
patibility, and shape memory effect. In this work, the pore shape was considered in the constitutive
model of the porous SMAs by respectively introducing the parameter of aspect ratio and for different
pore shapes including oblate, sphere, and prolate shapes, so the expression of Young’s modulus for
the porous SMA can be derived. Then, the constitutive model for such a porous shape memory alloy
was established. When the porosity was zero, the model can be degenerated to the dense case. The
stress–strain curves for the porous SMA with a porosity of 13% with different aspect ratio are then
given. Numerical results showed good agreement with the published experimental data that proved
the validation of the model. Based on the proven constitutive model, the properties of porous SMA
with different porosity and pore shapes are discussed. The results showed that the pore shapes and
the porosities had a big effect on the stress–strain curves for the porous shape memory, while with
the increasing porosities, the Young’s modulus and the hysteresis both decreased. With the same
porosities, the Young’s modulus and hysteresis loop of SMA with round pores were the largest, while
the Young’s modulus and hysteresis loop were the smallest when r = 0.1, and they were greater
when r = 0.75 than when r = 10. It can be seen that the closer to the circle, the better the performance
of the material.

Keywords: shape memory alloy; aspect ratio; porosity; constitutive model

1. Introduction

Porous shape memory alloys have been widely used in various fields including
the aerospace, military, medical, and health fields [1–4] due to their unique mechanical
properties including superelasticity, shape memory effect, biocompatibility, low density,
high porosity, and high permeability [5–7].

The mechanical properties of porous SMA have been given much attention [8]. Re-
garding the experiments and simulation work on the porous SMA, the influence of pores
on the mechanical properties such as Young’s modulus and strength of the porous SMA has
been studied in recent years [9]. Xu et al., prepared SMA with different porosities by the mi-
crowave sintering method and studied the effects of porosity on microstructure, hardness,
compressive strength, bending strength, elastic modulus, phase transition temperature, and
superelasticity of porous SMA [10]. The results showed that with the increase in porosity,
the compressive strength, elastic modulus, bending strength, and superelasticity of porous
SMA decreased. Zhao et al., manufactured SMA with constant porosity and pore diameter
and found that its damping performance could be adjusted with the change in porosity
and pore diameters [11]. Zhang et al., successfully prepared porous SMA by combining
one-step spark plasma sintering technology with space retainer technology [12]. It was
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found that the superelastic recovery strain ratio of porous SMA could be increased to more
than 90%, but with the further increase in training periods, the curve presents an obvious
stepped stress platform, indicating the collapse of pores. In addition, with the increase in
porosities and pore sizes, the elastic modulus and compressive strength of porous SMA
decrease. Gur et al., compared the simulation results of nano-porous NiTi with different
pore structures with those of dense NiTi alloys. The simulation results showed that the
martensite phase fraction and phase transition temperature increased significantly with
the increase in porosities; moreover, the stress–strain response changed significantly, and
residual strain and hysteretic energy dissipation capacity increased significantly with the in-
crease in porosity [13]. Kim et al. studied the effect of porosity on the mechanical properties
of the porous stent by the compression test [14]. Galimzyanov et al., used non-equilibrium
molecular dynamic simulation methods to study the influence of the degree of porosity of
porous amorphous titanium nickel ester on mechanical properties under uniaxial tension,
uniaxial compression, and uniform shear loads [15].

Regarding the theoretical work of the porous SMA, Zhao et al. established a macro-
scopic compression behavior model of porous SMA and predicted the effective elastic
and superelastic behavior of porous shape memory alloys based on the assumption of the
stress–strain curve by using the Eshelby heterogeneous inclusion method [16]. In addition,
they studied two types of pore connectivity and compared the stress–strain curves of
porous shape memory alloys with spherical pores and elliptical pores [17]. Based on the
micromechanical method and thermodynamic theory, a constitutive model of macroscopic
mechanical behavior of porous shape memory alloys was established [18]. According to
the phase transition function of dense SMA, considering the hydrostatic stress of porous
SMA, the phase transition function of porous SMA is given. Olsen et al., proposed a new
constitutive model of porous SMA based on the Gurson–Tvergaard–Needleman formula.
The main results showed that the stress of phase transformation and plastic yield will
decrease, even if the pores are relatively small [19]. In addition, the existence of micropores
leads to a reduction in the area of the stress–strain hysteresis curve, thus affecting the energy
dissipation in hyperelastic cycle. Considering Gibbs free energy, Xu et al. established a phe-
nomenological constitutive model that can be used to predict the mechanical behavior of
FGP-SMA by using thermodynamic theory and a new transformation function considering
the influence of hydrostatic stress was proposed [3]. Zheng et al., studied the effect of a
surface modified porous titanium implant and different porosity and aperture [20].

However, most of the above studies are spherical porous SMA. There is no detailed
theory about the effect of pore shape on the mechanical behavior of porous SMA, especially
in the case of different pore ratios. Although the above practical and theoretical research
work on porous SMA have been carried out, at present, no scholars have considered the
influence of pore shape on the properties of porous SMA, and the constitutive relationship
considering pore shape has not been established. Qiu found that the influence of pore
shape on metal materials is very important and demonstrated the great influence of pore
shape on metal materials [21]. Therefore, it is necessary to study the influence of pore shape
on the properties of SMA materials. In light of this, under the assumption that all pore
shapes in the whole material are consistent and evenly distributed in the material, not only
is the influence of porosity on modulus of porous SMA discussed, but also the influence of
pore shape on the modulus and the stress–strain relationship of porous SMA is established
in this work.

2. Theoretical Model of Porous SMA with Different Pore Shapes
2.1. Modulus

For porous SMA, it is regarded as a uniform porous material with uniform pore shape
and uniform orientation, as shown in Figure 1a, where the pores are evenly distributed in
space, as shown in Figure 1b. In light of this, when analyzing its mechanical properties, the
representative volume unit (RVE), as shown in Figure 1c, can be selected, where the center
of the circle is defined as O, the horizontal axis is the x axis, the vertical direction is the z
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axis, and Lx, Lz represent the diameters of the x axis and z axis of the ellipse, respectively,
then r = Lx/Lz, called the aspect ratio, can be defined to describe the change in pores,
from the Figure 1d oblate shape (Lx > Lz) to the Figure 1e sphere shape (Lx = Lz) to the
Figure 1f prolate shape (Lx < Lz).
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The porous SMA is assumed to be the composite of the SMA matrix and pore inclu-
sions, which can be shown in Figure 1. It is assumed that the matrix and inclusion are
linearly isotropic, and the elastic modulus is C0

ijkl and C1
ijkl , respectively. The subscript 1

indicates the pore inclusion phase, and the subscript 0 indicates the SMA matrix phase. In
order to facilitate the analysis, the material composed only of the matrix with the elastic
modulus C0

ijkl was introduced as the reference. Therefore, the equivalent applied stress σij

and the strain of composite εij and reference material ε0
ij are expressed by

σij = Cijklεkl

σij = C0
ijklε

0
kl

(1)

where σij and ε0
ij represent the average stress and strain of the matrix, respectively.

When the inclusion with volume fraction fv is inserted into the reference material of
the pure matrix, the average stress of matrix will have a disturbance of σ̃ij, resulting in the
strain disturbance of ε̃ij on the basis of ε0

ij, which can be expressed by

σij + σ̃ij = C0
ijkl(ε

0
kl + ε̃kl) (2)
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For the average stress of pore inclusions, because the specific orientation of pores will
produce a certain amount of stress–strain disturbance σ

pt
ij and ε

pt
ij , it can be obtained by

Eshelby’s equivalence principle

σ1
ij = σij + σ̃ij + σ

pt
ij

= C1
ijkl(ε

0
kl + ε̃kl + ε

pt
kl )

= C0
ijkl(ε

0
kl + ε̃kl + ε

pt
kl − ε∗kl)

(3)

where ε∗kl is the equivalent transformation strain of the pore inclusion.
From Equations (2) and (3), σ

pt
ij can be expressed as

σ
pt
ij = C0

ijkl(ε
pt
kl − ε∗kl) (4)

The stress of thee matrix and pore inclusion shall be balanced with the external stress
σij, that is

σ̃ij = − fvσ̃
pt
ij (5)

In addition, σ̃ij also satisfies the following equation

σ̃ij = C0
ijkl ε̃kl (6)

where ε̃ij is given by

ε̃ij = − fv(ε
pt
ij − ε∗ij) (7)

which has also been derived by Takao et al. [22]. Then, it could be obtained that

εij = ε0
ij + ε̃ij + fvε

pt
ij = ε0

ij + fvε∗ij (8)

Which is substituted into Equation (1) to obtain the following relation

Cijkl(ε
0
kl + fvε∗kl) = C0

ijklε
0
kl (9)

Since the matrix and inclusion are isotropic, their elastic modulus can be expressed by
the bulk modulus, shear modulus, and Kronecker delta δij, as follows

C0
ijkl = κ0δijδkl + µ0(δikδjl + δilδjk − 2δijδkl/3)

C1
ijkl = κ1δijδkl + µ1(δikδjl + δilδjk − 2δijδkl/3)

(10)

Then, combine Equation (7) to obtain

ε∗11 =
[
a1(ε

0
11 + ε̃11)− a2(ε

0
22 + ε̃22 + ε0

33 + ε̃33)
]
/a

ε∗22 =
[
2a3(ε

0
11 + ε̃11) + (a4 + a5a)(ε0

22 + ε̃22) + (a4 − a5a)(ε0
33 + ε̃33)

]
/2a

ε∗22 =
[
2a3(ε

0
11 + ε̃11) + (a4 − a5a)(ε0

22 + ε̃22) + (a4 + a5a)(ε0
33 + ε̃33)

]
/2a

ε∗12 = − ε0
12+ε̃12

2S1212+µ0/(µ1−µ0)

ε∗23 = − ε0
23+ε̃23

2S2323+µ0/(µ1−µ0)

ε∗13 = − ε0
13+ε̃13

2S1313+µ0/(µ1−µ0)

(11)
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where components of Eshelby’s Sijkl are

S1111 = 1
2(1−ν0)

{
1− 2ν0 +

3r2−1
r2−1 −

[
1− 2ν0 +

3r2

r2−1

]
g
}

S2222 = S3333 = 3
8(1−ν0)

r2

r2−1 + g
4(1−ν0)

[
1− 2ν0 − 9

4(r2−1)

]
S2233 = S3322 = 1

4(1−ν0)

{
r2

2r2−1 −
[
1− 2ν0 +

3
4(r2−1)

]
g
}

S2211 = S3311 = − 1
2(1−ν0)

r2

r2−1 + g
4(1−ν0)

{
3r2

r2−1 − (1− 2ν0)
}

S1122 = S1133 = 1
2(1−ν0)

{
g
[
1− 2ν0 +

3
2(r2−1) )

]
−
[
1− 2ν0 +

1
r2−1

]}
S2323 = S3232 = 1

4(1−ν0)

{
r2

2(r2−1) + g
[
1− 2ν0 − 3

4(r2−1)

]}
S1212 = S1313 = 1

4(1−ν0)

{
1− 2ν0 − r2+1

r2−1 −
g
2

[
1− 2ν0 − 3(r2+1)

r2−1

]}

(12)

where v0 is the Poisson’s ratio of the SMA matrix, and g corresponding to r is given by

g =



r

(r2−1)
3
2

[
r(r2 − 1)

1
2 − arccoshr

]
r < 1

2
3

r = 1

r

(1−r2)
3
2

[
arccosr− r(1− r2)

1
2

]
r > 1

(13)

The constants a, a1, a2,a3, a4, a5, depending on κ1, κ0, µ1, µ0, which are the bulk modulus
and shear modulus of pore inclusion and matrix, respectively,

a1 = 6(κ1 − κ0)(µ1 − µ0)(S2222 + S2233 − 1)− 2(κ0µ1 − κ1µ0) + 6κ1(µ1 − µ0)

a2 = 6(κ1 − κ0)(µ1 − µ0)S1133 + 2(κ0µ1 − κ1µ0)

a3 = −6(κ1 − κ0)(µ1 − µ0)S3311 − 2(κ0µ1 − κ1µ0)

a4 = 6(κ1 − κ0)(µ1 − µ0)(S1111 − 1) + 2(κ0µ1 − κ1µ0) + 6µ1(κ1 − κ0)

a5 = 1/[S3322 − S3333 + 1− µ1/(µ1 − µ0)]

a = 6(κ1 − κ0)(µ1 − µ0)[2S1133S3311 − (S1111 − 1)(S3322 + S3333 − 1)]

+2(κ0µ1 − κ1µ0)[2(S1133 + S3311) + (S1111 − S3322 − S3333)]

−6(κ1 − κ0)(µ1 − µ0)(S1111 − 1)− 6µ1(κ1 − κ0)(S2222 + S2233 − 1)− 6κ1µ1

(14)

When inclusions are uniformly distributed in three-dimensional space, it is assumed
that the composite, as a whole, is macroscopically isotropic. The stress or strain can be
decomposed into hydrostatic and deviatoric parts, resulting in the effective bulk modulus
and shear modulus, respectively.

From Equation (7), the hydrostatic and deviatoric parts can be found by

ε̃kk = (1/p1 − 1)ε0
kk

ε̃12 = (1/q1 − 1)ε0
12

(15)

Then
ε∗kk = pε0

kk

ε∗12 = qε0
12

(16)
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where
p = p2/p1
q = q2/q1

p1 = 1 + fv

 2(S1122 + S2222 + S2233 − 1)(a3 + a4)

+(S1111 + 2S2211 − 1)(a1 − 2a2)

/3a

p2 = [a1 − 2(a2 − a3 − a4)]/3a

q1 = 1− fv



2
5

2S1212−1
2S1212+µ0/(µ1−µ0)

+ 1
3

2S2323−1
2S2323+µ0/(µ1−µ0)

− 1
15a


(S1122 − S2233)(2a3 − a4 + a5a)

+2(S1111 − S2211 − 1)(a1 + a2)

+(S1122 − S2222 + 1)(2a3 − a4 − a5a)




q2 = − 2

5
1

2S1212+µ0/(µ1−µ0)
− 1

3
1

2S2323+µ0/(µ1−µ0)

+ 1
15a[2(a1+a2−a3)+a4+a5a]

(17)

Combined with Equation (12), the average disturbance stress in the matrix is obtained by

σ̃kk = (1/p1 − 1)σkk

σ̃12 = (1/q1 − 1)σ12
(18)

Then, the effective bulk modulus κ and shear modulus µ of the porous composite can
be obtained from Equation (9)

κ
κ0

= 1
1+ fv p

µ
µ0

= 1
1+ fvq

(19)

κ0 and µ0 of the SMA matrix can be determined, respectively, by

κ0 =
E0

SMA
3(1− 2ν0)

(20)

µ0 =
E0

SMA
2(1 + ν0)

(21)

where v0 is the Poisson’s ratio of the SMA matrix and E0
SMA is the Young’s modulus of the

SMA matrix. For the porous SMA with different specified pore shape, its Young’s modulus
can be obtained from the following expression,

Ep
SMA =

9κµ

3κ + µ
(22)

2.2. Constitutive Model

For the uniaxial loading case, the one-dimensional unified constitutive model de-
graded from three-dimensional model of Lagoudas is applied here [23],

.
ε =

.
σij : Mp + Λij

.
ξ + αp∆

.
T (23)

Λij =


3
2 Hp(σij

)−1
σ′ ,

.
ξ > 0

Hp(εt)−1
εt

ij ,
.
ξ < 0

(24)
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where Hp is the maximum phase transformation strain and Mp = (Ep
SMA)

−1
is the elastic

flexibility tensor; and Ep
SMA is the Young’s modulus of porous SMA, which is expressed as

follows
Ep

SMA = Ep
A + ξ p(Ep

M − Ep
A) (25)

where ξ p is the martensitic volume fraction of porous SMA, which is related to the critical
stresses of porous SMA.

ξ p =


0 σe ≤ σ

p
s

σe−σ
p
s

σ
p
f −σ

p
s

σ
p
s ≤ σe ≤ σ

p
f

1 σ
p
f ≤ σe

(26)

where σe is the effective stress, which is expressed as follows:

σe =
√

3J2 (27)

where J2 represents the invariant of the second deviation of stress, which is expressed by

J2 =
1
2

σ′ : σ′ (28)

σ′ = σij −
1
3

σkk (29)

For the uniaxial loading,

σij =

 σ11 0 0
0 0 0
0 0 0

 (30)

αp is the thermal expansion coefficient, which can be expressed as follows:

αp = α
p
A + ξ p(α

p
M − α

p
A)

where α
p
M and α

p
A represent the thermal expansion coefficients of martensite and austenite,

respectively. ∆
.
T is the increment of temperature difference, σ

p
s , σ

p
f (the lower corner

marks s and f represent the starting point and the ending point of phase transformation,
respectively.)

The critical stress of porous SMA is affected by porosity, fv, can be assumed as a linear
relationship with the critical stress of solid SMA, and σD

s or σD
f , which could be assumed

and expressed as follows
σ

p
s = (1− 2 fv)σ

D
s (31)

σ
p
f = (1− 2 fv)σ

D
f (32)

3. Numerical Analysis Results
3.1. Young’s Modulus of SMA with Different Pore Shapes and Porosities

In order to analyze the influence of pores including the volume fraction and aspect
ratio on the mechanical properties of SMA, the mechanical parameters of solid SMA in the
references are quoted here [17], as shown in Table 1. It is assumed that the temperature and
the Poisson’s ratio of the material remains constant (i.e., νM = νA = ν = 0.3).

Table 1. Mechanical parameters of solid SMA.

Es
M Es

A σs
Ms σs

As σs
Mf σs

Af H v

31 75 400 600 920 140 0.02 0.3
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The influence of pore aspect ratio on the Young’s modulus of porous SMA under
different porosity is shown in Figure 2. Figure 2a–e show the influence of pore aspect ratio
on the Young’s modulus of porous SMA at different phase transformation stages. It can
be seen from the figure that when the aspect ratio was between 0 and 0.25, the Young’s
modulus changed greatly with the increase in aspect ratio, while when the aspect ratio
exceeded 0.25, the aspect ratio had little effect on the Young’s modulus and the modulus
was the largest when r = 0.75. For the same aspect ratio, the Young’s modulus decreased
with the increase in porosity.
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Figure 2. Relationship between Young’s modulus in different phase states and the aspect ratio of
porous SMA at porosities of 0%, 13%, and 25%: (a) pure austenitic phase, (b) mixed martensite and
austenite phase at ξ= 20%, (c) mixed martensite and austenite phase at ξ= 50%, (d) mixed martensite
and austenite phase at ξ= 80%, and (e) pure martensite phase.

Then, similar to Figure 2, when the aspect ratio was constant, the relationship between
the Young’s modulus and porosity in different phase states were plotted in Figure 3. For
porous SMA in any phase transformation state, the Young’s modulus of porous SMA with
round pores (r = 1) was always the largest, followed by r = 0.75, r = 10, r = 0.1, and
r = 0.01. When r = 0.1 and r = 10, the Young’s modulus was close. It can be seen that
the closer to the round hole, the greater the Young’s modulus of the material. In addition,
when the porosity was between 0 and 0.1, the Young’s modulus decreased rapidly with
the increase in porosity fv, while when fv exceeded 0.1, the effect of porosity on Young’s
modulus decreased. Furthermore, for the case of r = 0.1 and r = 10, which actually
had the same shape in appearance but were situated in different orientations in uniaxial
compression test, it can be observed that the Young’s modulus of porous SMA for the
former was smaller than the latter.

The change in Young’s modulus of porous SMA under different loads is shown in
Figure 4. It can be seen from Figure 4 that in the phase transition stage, the Young’s modulus
decreased with the increase in load, but remained unchanged in the complete elastic stage.
For different pore shapes, the Young’s modulus was the largest when r = 1 was the largest,
followed by r = 0.75, r = 0.1, r = 10, and the smallest when r = 0.01.
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Figure 3. Relationship between Young’s modulus in different phase states and the porosity of porous
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3.2. Stress–Strain Relationship of SMA with Different Pore Shapes and Porosities

In order to verify the correctness of the theoretical model in this paper, it is necessary
to compare the theoretical results with the experimental results. However, it is difficult to
prepare porous SMA with different pore shapes, and there have been few experimental
reports on the mechanical behavior of porous SMA with different pore shapes. Due to the
lack of experimental data, it is difficult to compare the theoretical curve of stress and strain
of porous SMA with the different pore shapes in the experimental results. Therefore, in
order to verify the correctness of this model, the constitutive model of porous SMA with
spherical pores in this paper was compared with the experimental data of porous SMA
with spherical pores [17], as shown in Figure 5. The solid line represents the published
experimental result, and the dotted line represents the simulation result in this paper.
Obviously, the comparison results of the two cases showed a certain degree of consistency
between the theory and the experiment, which verifies the correctness of the model in this
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paper. In contrast, the warping angle at the top of the hysteretic curve depends on the
selected theoretical model.
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Figure 5. Comparisons of the theoretical and experimental results of (a) solid SMA and (b) porous
SMA with a porosity of 13%.

Next, the influence of various pore shapes on the mechanical properties of porous SMA
is further discussed. The stress–strain curves can be obtained when the porosity is 13% and
25%, respectively, as shown in Figure 6. It can be seen from Figure 6 that the hysteresis curve
was the largest when r = 1, the smallest when r = 0.75, and the maximum strain was the
largest when r = 0.1, but there was little difference in the other three cases. Thus, the pore
shape had a great impact on the stress–strain relationship of the porous SMA.
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When the pore shape is determined, the stress–strain curves of SMA with different
porosities are shown in Figure 7. It can be seen from Figure 7 that with the increase in
porosity, the phase transformation stresses of the porous SMA gradually decreased, the
hysteretic curve gradually moved down and shrank, and the degree of change was the
largest when r = 0.1.
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4. Conclusions

1. The Young’s modulus of porous SMA is related to porosity and pore shape. With
the increase in porosity fv, the Young’s modulus decreased; when fv was between
0 and 0.1, the influence degree was the largest, and when fv was between 0.1 and 1,
it had little impact on the Young’s modulus. When the pore aspect ratio r gradually
increased in the range of 0–0.25, the Young’s modulus increased significantly. When r
exceeded 0.25 and increased gradually, the Young’s modulus first increased slowly
and then decreased slowly, reaching the maximum at about r = 0.75.

2. The pore shape and porosity had a great influence on the stress–strain relationship
of porous SMA, and the pore shape had an irregular influence on the stress–strain
relationship. With the increase in porosity, the critical stresses decreased and the area
of the hysteretic curve of the stress–strain relationship decreased.
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