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Abstract: A resonator with an appropriate electromechanical coupling coefficient (K2
t ) is crucial for

filter applications in radio communication. In this paper, we present an effective method to tune
the K2

t of resonators by introducing different materials into a lithium niobate (LiNbO3) piezoelectric
matrix. The effective piezoelectric coefficients ee f f

33 and ee f f
15 of composite materials with four different

introduced materials were calculated. The results show that the ee f f
15 of SiO2/LiNbO3 composite

piezoelectric material was mostly sensitive to an increase in the width of introduced SiO2 material.
Simultaneously, the simulation of a laterally excited bulk wave resonator (XBAR) with SiO2/LiNbO3

composite material was also carried out to verify the change in the K2
t originating from the variation in

ee f f
15 . The achievable n79 filter using the SiO2/LiNbO3 composite material demonstrates the promising

prospects of tuning K2
t by introducing different materials into a LiNbO3 piezoelectric matrix.

Keywords: composite piezoelectric material; electromechanical coupling coefficient K2
t ; laterally

excited bulk wave resonator (XBAR); filter

1. Introduction

To balance the needs of wide-area coverage and high data rates, 5G new radio (NR) has
been proposed [1,2]. Laterally excited bulk acoustic wave resonators (XBAR) are promising
candidates for application in fifth-generation mobile communication due to their high
frequency, large electromechanical coupling coefficient (K2

t ), low cost and complementary
metal oxide semiconductor (CMOS) compatibility [3–7]. Victor Plessky realized a XBAR
based on Z-cut lithium niobate (LiNbO3) thin plate with a resonance frequency of approxi-
mately 4.9 GHz [8]. Ruochen Lu presented first-order antisymmetric (A1) mode resonators
in thin 128◦ Y-cut LiNbO3 films with a K2

t of 46.4% [9]. Bohua Peng designed and fabricated
a solid-mounted-type XBAR on ZY-LiNbO3, operating at 5 GHz [5]. The K2

t of XBAR has
a significant influence on the bandwidth of filters. However, delicate control of the K2

t of
XBARs is crucial for designing filters; for example, the K2

t of LiNbO3-based XBARs is too
large for specific n79 filters (4.4 GHz–5.0 GHz) [10].

The K2
t of XBAR can be adjusted by structural optimization and tuning the piezoelectric

coefficients. Gianluca Piazza found that the K2
t can be tuned by changing the electrical

boundary conditions imposed by the excitation electrodes, obtaining a range varying from
3% to 7% [11]. Jie Zou investigated the influence of the Euler angle and thickness of LiNbO3
film on the K2

t of the resonator. It was found that the K2
t of the A1 mode acoustic wave

varied rapidly with changes in the Euler angle [12]. V. Plessky analyzed the influence of
pitch and duty factor on frequency and K2

t [13]. Using piezoelectric composite materials is
another feasible method for K2

t tuning. In our previous work, we adopted a ScAlN/AlN
composite piezoelectric film to achieve a Lamé Mode resonator with a high K2

t of 7.83% [14].
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In this paper, we propose an effective method for tuning the K2
t of XBARs by applying

composite film consisting of LiNbO3 piezoelectric material and other materials. The tuning
range was as high as 62%, which is efficient compared with other studies, as shown
in Table 1. We used FEM to analyze the effective piezoelectric coefficients ee f f

33 and ee f f
15

of composite piezoelectric films with different volume fractions of different materials
embedded in LiNbO3 piezoelectric material. FEM simulative analysis of XBAR utilizing
those composite piezoelectric films was also carried out. Finally, an n79 filter was designed
using SiO2/LiNbO3 composite thin film-based XBARs with an adjustable K2

t . The proposed
XBAR with LiNbO3-based composite piezoelectric film shows promising prospects for
constructing filters with different bandwidths at high frequency.

Table 1. Comparison of the tuning effectiveness between our work and previous works.

Ref. Method K2
t (%) Frequency Tuning Effect

[12] Change electrical
boundary conditions 19% 484 MHz 10% to 19%

[13] Change the Euler angle of LiNbO3 55% 3.3 GHz 0% to 55%
[14] Tuning structural parameters 25% 5 GHz 23% to 25%

This work Composite piezoelectric material 32% 6 GHz 12% to 32%

2. Theoretical Calculation of Piezoelectric Coefficient

The theory of linear piezoelectricity couples the interaction between the electric and
elastic variables via the following constitutive equations [15]:

σij = Cijklεkl − elijEi (1)

Di = eiklεkl + κikEk (2)

where εkl and σij are the components of the elastic strain and the components of the stress
tensor, respectively; Ei and Di are the components of the electric field and the components
of the electric displacement, respectively; Cijkl is the components of the fourth-order elastic
stiffness tensor obtained in the absence of an applied electric field; elij is the components
of the piezoelectric modulus tensor obtained without an applied strain; and κik is the
components of the dielectric modulus obtained without an applied strain.

It is convenient to treat the elastic and the electric variables in a similar fashion
when modeling the piezoelectric behavior. This is accomplished by employing a notation
introduced by Barnett and Lothe [16] and a generalized Voigt two-index notation [17].
Therefore, the constitutive equations can be represented as:[

σ
D

]
=

[
C eT

e −κ

][
ε

−E

]
(3)

The calculation of the effective properties of composite films is then realized utilizing
the homogenization method, which relates the volume-averaged strain, stress, electric field,
and electric displacement to the effective properties of the composite film. The composite
films can thus be modeled as homogenized media. Using FEM, volume averages can be
calculated as follows [18]:

σij =
1
V

SσijdV =
1
V ∑nel

n=1 σ
(n)
ij V(n) (4)

εij =
1
V

SεijdV =
1
V ∑nel

n=1 ε
(n)
ij V(n) (5)

Di =
1
V

SDidV =
1
V ∑nel

n=1 D(n)
i V(n) (6)
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Ei =
1
V

SEidV =
1
V ∑nel

n=1 E(n)
i V(n) (7)

where V is the volume of the representative volume elements (RVE). σij, εij, Di, and
Ei are the volume-averaged values of stress, strain, electric displacement, and electric
field, respectively.

In terms of these average values, the constitutive equations of linear piezoelectricity
for composite material can be expressed in matrix form as follows:



σ11
σ22
σ33
σ23
σ13
σ12
D1
D2
D3


=



Ce f f
11 Ce f f

12 Ce f f
13 Ce f f

14 0 0 0 −ee f f
22 ee f f

31
Ce f f

12 Ce f f
11 Ce f f

13 −Ce f f
14 0 0 0 ee f f

22 ee f f
31

Ce f f
13 Ce f f

13 Ce f f
33 0 0 0 0 0 ee f f

33
Ce f f

14 −Ce f f
14 0 Ce f f

44 0 0 0 ee f f
15 0

0 0 0 0 Ce f f
44 Ce f f

14 ee f f
15 0 0

0 0 0 0 Ce f f
14 Ce f f

66 ee f f
22 0 0

0 0 0 0 ee f f
15 ee f f

22 −κ
e f f
11 0 0

−ee f f
22 ee f f

22 0 ee f f
15 0 0 0 −κ

e f f
11 0

ee f f
31 ee f f

31 ee f f
33 0 0 0 0 0 −κ

e f f
33





ε11
ε22
ε33

2ε23
2ε13
2ε12
−E1
−E2
−E3


(8)

As shown in Figure 1, the RVE consisted of Z-cut LiNbO3 and other materials. Other
materials were embedded in the thin LiNbO3 film, and the width of the other materials
is expressed as P. Here, four different materials commonly used in MEMS were taken
under consideration, including SiC, Al2O3, AlN and SiO2. The boundary conditions
applied to the six surfaces of the RVE are in the form of prescribed displacements and
prescribed electric potentials. For calculation of the piezoelectric coefficients ee f f

33 and

ee f f
15 , the boundary conditions applied to the six surfaces and the postprocessing steps for

assessing the piezoelectric coefficients ee f f
33 and ee f f

15 are listed in Table 2. In Table 2, u, v, and
w are the displacement components along the x-, y-, and z-coordinate axes, respectively,
and V0 is the applied electric potential.
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Table 2. Boundary conditions for evaluating the effective properties of the composite.

Effective Property B1 B2 B3 B4 B5 B6 Formula

ee f f
15

u = 0 u = 0 v = 0
ϕ = 0

v = 0
ϕ = V0 w = 0 w = 0 ee f f

15 = − σ23
E2

ee f f
33

u = 0 u = 0 v = 0 v = 0 w = 0
ϕ = 0

w = 0
ϕ = V0 ee f f

33 = − σ33
E3
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The calculated effective piezoelectric coefficients ee f f
33 and ee f f

15 of LiNbO3 composites
using all four kinds of materials are presented as a function of the width of material (P)
in Figure 2. The P of the other material ranged from zero to a maximum of 19 µm. It is
shown that the effective piezoelectric coefficients ee f f

33 and ee f f
15 declined predictably with an

increase in P for all four kinds of LiNbO3-based composite film. Among the four different
composite materials, the effective piezoelectric coefficients ee f f

33 and ee f f
15 of the SiO2/LiNbO3

composite material had the largest variation. The ee f f
33 of AlN/LiNbO3 composite film

changed the most gradually, while the ee f f
15 of SiC/LiNbO3 composite film had the smallest

variation. The effective piezoelectric coefficient ee f f
15 of SiO2/LiNbO3 composite material

varied from 3.65 to 1.31 as P increased from 0 to 19 µm, for which the tuning range could
reach as high as 64.1%.
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Figure 2. Effective piezoelectric coefficients ee f f
33 (a) and ee f f

15 (b) of four different LiNbO3-based
composite materials as function of the width of nonpiezoelectric materials (P).

3. FEM Simulation of XBAR

FEM simulation of an XBAR with LiNbO3 composite material was also carried out
to demonstrate tuning of the K2

t . As illustrated in Figure 3a, the XBAR consisted of a
suspended 300 nm-thick LiNbO3 composite platelet and a set of 100 nm-thick Mo electrodes
on top. The electrical potentials were alternatingly applied to adjacent electrodes, as
illustrated by the “+” and “−” signs in Figure 3b, creating a lateral electric field along the X
axis. Due to the strong piezoelectric coefficient ee f f

15 of LiNbO3, the alternating lateral electric
field could excite vertical shear vibration in A1 mode within the platelet [19]. Structural
optimization was implemented by adjusting the P of the SiO2 embedded in the thin LiNbO3
film within a range from 0 to 15 µm, while the thickness of SiO2 (t) remained 150 nm, as
shown in Figure 3c.

The series frequency of XBAR with thin LiNbO3 film (p = 0) is approximately 6.14 GHz
and the parallel frequency is 7.25 GHz. As the value of p increased, the parallel frequency of
XBAR declined consistently, while the series frequency remained almost the same, as shown
in Figure 4. The parallel frequency declined from 7.25 GHz to 6.52 GHz as P increased from
0 to 15 µm. The series frequency of XBAR can be expressed as the following formula [20]:

fs =

√( vz

2h

)2
+
( vx

2G

)2
(9)

where h is the thickness of the piezoelectric thin film and G is the gap between two
adjacent electrodes. In our simulations, the thickness of the piezoelectric thin film and
the gap between two adjacent electrodes remained the same; therefore, it is reasonable to
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assume that the series frequency remained almost constant. The effective electromechanical
coupling coefficient (K2

t ) can be calculated using the following formula [21,22]:

K2
t =

K2

1 + K2 =
π2

4
× fs

fp
×
(

fp − fs
)

fp
(10)

K2 =
e2

15
εrε0C44

(11)
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Figure 3. (a) Schematic drawing of laterally excited bulk acoustic wave resonator using composite
piezoelectric material. (b) Sectional view of the resonator cut across the dashed line. (c) 2D schematic
of the effective working area along the dashed line.
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Figure 4. The impedance curves of XBARs with different widths of nonpiezoelectric materials (P)
ranging from 0 to 15 µm.

As shown in Figure 5, when P increased to 1 µm, K2
t decreased sharply from 32% to

20.7%, and K2
t then declined slowly with the increase in P from 2 to 11 µm. When P increased

beyond 11 µm, K2
t no longer changed. The variation trend of K2

t is highly consistent with
the change in the calculated effective piezoelectric coefficient ee f f

15 , which demonstrates that
introducing other materials to a LiNbO3 piezoelectric matrix is an effective method for
tuning the K2

t of XBARs.
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Here, we provide a possible fabrication process flow for our devices, as shown in
Figure 6. The substrate wafer consists of a thin Z-cut LiNbO3 film and a Si substrate. Firstly,
the thin LiNbO3 film is etched via electron beam lithography; the depth is controlled by the
etching time. A 150 nm-thick layer of SiO2 is deposited on the surface of the LiNbO3 film
and then polished to a smooth plate. Then, molybdenum (Mo) electrodes are deposited
on the surface of the thin SiO2/LiNbO3 film and patterned by lithography and reactive
ion etching technology. Subsequently, the release holes are realized via electron beam
lithography, which enables formation of the cavity by removing the Si substrate with Xef2.
By exactly controlling the release time, resonators with only a suspended working area
are realized.
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4. Design of N79 Filters

As discussed in Section 3, the K2
t of XBAR can be adjusted by introducing other

materials into the LiNbO3 piezoelectric film, which enables the construction of different
bandwidth filters for 5G. For example, the K2

t of an XBAR based on pure LiNbO3 film is
calculated as being approximately 35% and the −3 dB bandwidth of the corresponding
filter is 1050 MHz, as shown in Figure 7a,c, which exceeds the bandwidth requirements
of the n79 filter. As seen from Figure 5, the K2

t of XBARs decreased to approximately 21%
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when the P of the SiO2 in the SiO2/LiNbO3 composite film was 1 µm, which is suitable for
the bandwidth requirement of the n79 filter. Therefore, we designed a filter based on thin
SiO2/LiNbO3 composite film with a P of 1 µm. The resonant and anti-resonant frequencies
of the series resonator were 4.71 GHz and 5.17 GHz, respectively, and those of the parallel
resonator were 4.35 GHz and 4.7 GHz, respectively, as shown in Figure 7b. As shown in
Figure 7d, the transmission response of the filter showed a −3 dB bandwidth of 600 MHz,
ranging from 4.4 GHz to 5.0 GHz, which satisfies the requirements of the n79 very well.
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Figure 7. (a) The impedance curves of an XBAR with pure LiNbO3 film for the n79 filter. (b) The
impedance curves of an XBAR with SiO2/LiNbO3 composite film for the n79 filter. (c) The response of
the proposed filter with pure LiNbO3 film. (d) The response of the proposed filter with SiO2/LiNbO3

composite film.

5. Conclusions

In summary, an effective method for tuning the K2
t of XBARs, by using composite

piezoelectric materials combining LiNbO3 piezoelectric material with other materials, is
demonstrated in this work. The effective piezoelectric coefficients ee f f

33 and ee f f
15 of the

four kinds of LiNbO3-based composite materials were calculated through FEM simulation.
Among the four different composite materials, the effective piezoelectric coefficients ee f f

33

and ee f f
15 of the SiO2/LiNbO3 composite material had the largest variation. The ee f f

15 of
SiO2/LiNbO3 composite material declined from 3.65 to 1.31 as P increased from 0 to 19 µm.
The ee f f

33 of SiO2/LiNbO3 composite material declined from 1.72 to 0.19 as P increased
from 0 to 19 µm. Simultaneously, we also carried out the simulation of an XBAR using
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SiO2/LiNbO3 composite material to verify the change in the K2
t , owing to the variation in

ee f f
15 . The K2

t decreased from 34% to approximately 11% as P increased from 0 to 17 µm,

which was highly consistent with the change in ee f f
15 . Finally, we designed a filter made

with SiO2/LiNbO3 composite material, which satisfied the bandwidth requirement of the
n79 very well, demonstrating that XBARs with LiNbO3-based composite piezoelectric film
show fascinating prospects for fabricating different bandwidth filters at high frequencies in
the future.
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