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Abstract: Laser detection technology has manypromising applications in the field of motor speed
and position measurement. Accurate and fast measurement of position information of spherical rotor
is very important for motor control. In this paper, we propose a method for non-contact measurement
of the angular velocity of a multi-DOF spherical motor using the Doppler effect of the laser, and
further obtain the position information of the motor rotor. The horizontal laser beam from the laser
generator is divided into a reference beam I and a measurement beam II through a beam splitter,
and the measurement beam II reflects and undergoes Doppler effect after irradiating the rotating
motor. The two beams pass through the photoelectric conversion module to obtain the corresponding
frequency difference signals to derive the angular velocity and position information of the motor
rotor. The correctness of the method is verified experimentally. The results show that the coordinate
error of Z and Y axes is less than 2 mm, thatthe error of Z-axes is less than 0.2 mm, and that the
method can better measure the spherical rotor position information of the motor.

Keywords: position detection; Doppler effect; laser measurement; multi-DOF spherical motor

1. Introduction

With the continuous development of modern industrial technology, robotic arms [1]
and other devices capable of accomplishing complex spatial motions have been widely used
in industrial manufacturing. Traditional multi-degree-of-freedom space motion usually
requires the cooperation of multiple motors as well as mechanical actuators. However, the
use of actuators causes large system size, low transmission efficiency, and slow dynamic
response. To simplify the structure of mechanical systems and improve their dynamic
performance and economic efficiency [2], research on spherical motors has been increased
in recent years. Various forms of spherical motors such as permanent magnet type [3,4],
induction type [5], variable reluctance type [6], and ultrasonic type [7] have been developed
one after another. The complex multi-DOF space motion cannot be controlled without
the operating system, and fast and accurate rotor position detection is a prerequisite for
accurate motor control. The complex structure of the spherical motor makes rotor position
detection more difficult to achieve, which has become one of the problems restricting the
development and application of the spherical motor. The rotor position detection is divided
into contact and non-contact detection according to whether it is connected to the motor
rotor or not. The contact detection method usually adds a mechanical connection device
between the rotor and the detection mechanism [8–10], which has a high detection accuracy,
but the use of the mechanical connection device increases friction and inertia moment, and
the cost is high and the structure is complicated. The non-contact detection method, on
the other hand, has become a research hotspot in recent years sinceit has no direct contact
with the motor rotor, has a lower impact on the motor operation, and is more reliable. In
the literature [11,12], a MEMS-based detection method for spherical motors was proposed,
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and the detection of rotor position was achieved by error compensation, but the error
parameters of MEMS devices change with time, making the detection require multiple
measurements and repetitions to obtain accurate results. In the literature [13], a dual optical
sensor was used to acquire images of the continuous variation of the spherical rotor to
obtain the rotor position. In [14], a grid map was generated by pseudo-coding and the rotor
position was localized using a vision sensor. It is difficult to keep the rotor clean or the
painted grid clear after a long period of motor operation, making it difficult to maintain the
accuracy of the optical and vision sensor-based detection methods. A method based on
linear Hall elements to achieve rotor position detection was proposed in [15], but the Hall
elements are susceptible to the rotor magnetic field as well as the geomagnetic field, which
causes large measurement errors [16,17].

In this paper, we propose a method of rotor position detection using a laser, which
generates the Doppler effect when the laser beam is directed at the moving object. The rotor
angular velocity can be measured by calculating and analyzing the reference beam and the
measurement beam. Finally, the rotor attitude information can be accurately obtained by
integrating the time. The detection method is a non-contact detection method, which avoids
direct contact with the rotor and is not affected by the rotor motion and the environmental
magnetic field, and has significant advantages such as high sensitivity and fast detection
speed.

2. Principle of Speed Measurement and Method of Position Detection
2.1. Laser Speed Measurement Principle

The schematic diagram of the measurement optical path of the laser vibrometer is
shown in Figure 1. The laser beam is divided into a reference beam I and a measurement
beam II through beam splitter BS1. The measurement beam II is directly irradiated on
the measured object and reflected on its surface to produce the Doppler effect frequency
shift [18], then guided by beam splitter BS2 and superimposed on the reference beam I
at BS3 to the photoelectric conversion device. The electric field intensity of the two light
waves is given by the following equation:

Er = Er0ei(ωt+φr) (1)

Em = Em0ei(ω′′ t+φm) (2)

where, Er, Em are the electric field intensity of reference beam I and measurement beam II
at the photoelectric conversion device; Er0, Em0 are the amplitudes of reference beam I and
measurement beam II; ω, ω” are the angular frequencies of light waves; and φr, φm are the
phases of reference beam I and measurement beam II at t = 0.
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The intensity of light reaching the photoelectric conversion device is:

I ∝ (Er + Em)(Er + Em)∗ (3)



Micromachines 2022, 13, 662 3 of 11

I = Ir + Im + 2
√

Ir Im cos((ω′′ −ω)t + φm − φr) (4)

where, Ir and Im are the light intensity of the reference beam I and the measurement beam
II at the photoelectric conversion device, respectively.

The light intensity I is a periodic function on the amplitude angle of the cosine function
in Equations (3) and (4) with the following range:

Ir + Im − 2
√

Ir Im 6 I 6 Ir + Im + 2
√

Ir Im (5)

The light intensity reaches its maximum when Ir = Im. As shown in Figure 2.
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Figure 2. Diagram of light intensity waveform.

The time interval of the peaks in Figure 2 is given by the beat frequency period
Tb = 2π/|ω” − ω|, which gives:

I = Ir + Im + 2
√

Ir Im cos[2kv(cos α)t + φm − φr] (6)

Therefore, the beat frequency period becomes:

Tb = 2π/|2kv cos α| (7)

The beat frequency period Tb is measured, and the velocity component of the object in
the direction of the measured beam is obtained by Equation (6).

According to Equation (6), it can be seen that the beat frequency period is only related
to the velocity gain modulus, and thus the direction of the velocity cannot be distinguished.
To solve this problem, the acousto-optic modulator in the reference optical path I to achieve
this frequency shift, the principle is to reduce the angular frequency of the reference beam
by a consistent angular frequency ω0.

Thus, for reference beam I, the following equation holds:

Er = Er0ei(ωt−ω0t+φr) (8)

where, ω0 is the fixed angular frequency shift of the reference beam.
As shown in Equations (3) and (4), the light intensity of this reference beam can be

derived as:
I = Ir + Im + 2

√
Ir Im cos[2kv(cos α)t + ω0t + φm − φr] (9)

The beat frequency period is:

Tb = 2π/|2kv cos α + ω0| (10)

The relationship between velocity component vcosα and angular frequency ωb for the
two cases of Equations (7) and (10) is shown in Figure 3. From the figure, it is clear that
the direction of velocity cannot be determined for a given beat angular frequency ωb when
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the case of ω0 = 0. And for the case when ω0 6= 0 it is possible to introduce the direction of
velocity.

v cos α > −ω0/(2k) (11)
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In practice, the typical value of the cross-frequency shift is ω0 = 2.5 × 108 rad/s. From
Equation (11) and the optical wavelength of the laser beam λ = 663 mm, the measurable ve-
locity component in the direction of the measured beam IIvcosα > −12.7 m/s. Considering
the further processing of the angular beat frequency vibration signal, the velocity range
that can determine the direction is usually specified as follows:

0 6|v cos α|6 ω0/(2k) (12)

The range of angular beat frequencies ωb = 2k vcosα + ω0 derived from Equation (11)
is 0 ≤ ωb ≤ 2ω0. The signal from the frequency-modulated photoelectric converter is
demodulated to produce a signal proportional to the velocity component vcosα.

2.2. Determine the Rotor Position Principle

In the study of position detection of multi-DOF spherical motors, obtaining the exact
spatial coordinates of the rotor at a given moment is a prerequisite for motor control
technology. In order to get accurate position data, it is necessary to choose to establish a
reference coordinate system and a moving coordinate system [19]. This section determines
the position detection method of the multi-DOF spherical motor by establishing two
coordinate systems and deriving the conversion method between the coordinate systems.

As shown in Figure 4, firstly, the geometric center of the inner cavity of the spherical
motor housing is taken as the origin, noted as point O, and a reference coordinate system
O-XYZ is established, where the plane XOY is parallel to the horizontal plane and the
Z-axis is perpendicular to the horizontal plane vertically upward. This coordinate system
is used as the reference coordinate system in the position detection system [20–22].

As shown in Figure 4, in the initial state of the motor, the dynamic coordinate system
o-xyz coincides with the reference coordinate system O-XYZ, and the three coordinate axes
are axially identical. The position of the coordinate system changes with the rotor motion
and the z-axis is always kept through the top point of the spherical shell.
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Due to the special structure of the spherical rotor, the rotor position information can
be obtained by determining the angular offset of the spherical rotor at three positions. In
which, using the linear xo direction as the laser irradiation direction, the rotor attitude
angle is defined as follows:

1. Roll angle θ: the angle between the y-axis of the dynamic coordinate system O-xyz and
the XOY plane of the reference coordinate system O-XYZ, positive when the y-axis is
above the XOY plane, negative when the opposite is true;

2. Pitch angle ψ: the angle between the x-axis of the dynamic coordinate system o-xyz
and the XOY plane of the reference coordinate system O-XYZ, when the x-axis is
located above the XOY plane takes positive, and vice versa takes negative;

3. Yaw angle γ: the angle between the x-axis of the dynamic coordinate system o-xyz and
the XOZ plane of the reference coordinate system O-XYZ, positive when the x-axis is
on the right side of the XOZ plane, negative when the opposite is true.

According to this definition, the following rotation matrix is obtained.
When rotating around the X-axis, the rotation change matrix is:

Cx =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 (13)

When rotating around the Y-axis, the rotation change matrix is:

Cy =

 cos ψ 0 − sin ψ
0 1 0

sin ψ 0 cos ψ

 (14)

When rotating around the Z-axis, the rotation change matrix is:

Cz =

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 (15)

By changing the rotation of X, Y, and Z axes, the following equation is obtained: X
Y
Z

 = CzCyCx

 x
y
z

 (16)
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Bringing Equations (13)–(15) into Equation (16), the rotation matrix CR is obtained as:

CR = CzCyCx =

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 cos ψ 0 − sin ψ
0 1 0

sin ψ 0 cos ψ

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 (17)

Simplify (17) to get (18):

CR =

 cos ψ cos γ sin θ sin ψ cos γ− cos θ sin γ − cos θ sin ψ cos γ− sin θ sin γ
cos ψ sin γ sin θ sin ψ sin γ + cos θ cos γ − cos θ sin ψ sin γ + sin θ cos γ

sin ψ − cos θ cos ψ cos θ cos ψ

 (18)

Let the point on the rotor illuminated by measurement beam II be p. The coordinates of
the motor before rotation are [xp yp zp]T and the coordinates after rotational transformation
are [Xp Yp Zp]T. The coordinates can be calculated by taking into account Equations (16)–(18)
as follows:  Xp

Yp
Zp

 = CR

 xp
yp
zp

 (19)

Therefore, for any point on the rotor, as long as the three-axis angular velocity compo-
nents ωx, ωy, and ωz of the rotor motion are measured by the position detection device, the
position coordinates of any point on the rotor after motion can be obtained by performing
the corresponding calculation with the above formula.

However, the gimbal lock phenomenon occurs when using this method, i.e., when
using o-xyz as the basis and using the sequence of rotation around the X-axis, Y-axis, and
Z-axis, once ±90◦ is selected as the angle of the second rotation, it leads to the equivalence
of the first and third rotations, and the whole rotational representation system is limited
to the rotation around the vertical axis only, and a representation dimension is lost. The
motors used in this experiment have less than 90◦ of deflection around the X-axis and
Y-axis, and so the gimbal lock phenomenon has no effect on this experiment [23].

3. Experiment and Error Analysis

The spherical rotor of a multi-DOF spherical motor is the main output component of
this type of motor, which is capable of producing uniform rotation in multiple degrees of
freedom. The experiment uses a piezoelectric driven multi-DOF spherical motor with a
rated voltage of 12 V. The motor speed can be controlled by changing its voltage frequency to
a maximum speed of 30 r/min, and its rotor outer diameter is measured to be 10 cm [24–26].
The experimental setup is shown in Figure 5 in the experiment, referring to Table 1, the
theoretical maximum linear velocity around the Z-axis be achieved as follows:

v = 2π × 30
60
× 5× 10−2 ≈ 0.157 m/s (20)
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Table 1. Motor frequency—speed reference.

Voltage
Frequency/Hz X-Axis Speed/(r/min) Y-Axis Speed/(r/min) Z-Axis Speed/(r/min)

42,250 30 16 16
42,750 22 13 12
43,250 14 7 7
43,750 9 5 5
44,250 4 2 2
44,750 3 3 2
45,500 3 2 2

During the experiment, the motor is idle and the measurement beam is irradiated
at a point on the side of the spherical rotor, and a more stable observed output signal is
obtained by adjusting the measurement beam irradiation position.

After adjusting the experimental equipment, the frequency of the motor input voltage
is adjusted by the PC control system to change the motor speed, as shown in Table 1.

After adjusting the detection position so that α = 0◦, adjust the motor to rotate at a con-
stant speed, and verify the one-dimensional speed detection method through experiments,
as shown in Figure 5. The signal generator controls the sampling frequency to generate a
fixed frequency beam through the laser generator, and the laser is divided into a reference
beam I and a measurement beam II when it passes through the beam splitter. The reference
beam is scattered on the surface of the multi-DOF spherical motor, and then turned into
parallel light by the lens, which is guided to converge on the receiving probe surface of the
photoelectric conversion module. Finally, the optical signal is converted into an electric
signal for processing by photoelectric conversion.

In this experiment, eleven groups of motor data were measured at different rotational
speeds, in which the group data were measured five times to obtain the average value to
ensure the reliability of the data. Figure 6 shows the waveform of the reference beam and
the measurement beam. The experimental data have good repeatability, smooth curve, and
less burr, which means that the data are more stable.
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(b) measurement of beam frequency.

As can be seen from Table 2, the relative error of measurement reaches a maximum of
2.56% at different rotational speeds, indicating that this laser speed measurement system
can measure the motor speedwell and provide a reliable experimental basis for motor
position detection.
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Table 2. Speed measurement.

Motor Speed/(mm/s) Frequency
Deviation/MHz

Average Measurement
Value/(mm/s) Error

150 0.440 146.667 2.22%
140 0.429 143.000 2.14%
130 0.400 133.333 2.56%
120 0.364 121.333 1.11%
110 0.334 111.333 1.21%
100 0.302 100.667 0.67%
90 0.274 91.333 1.48%
80 0.242 80.667 0.83%
70 0.207 69.000 1.43%
60 0.178 59.333 1.11%
50 0.149 49.667 0.67%

According to the correspondence in Table 1, the voltage frequency is adjusted to
change the rotational speed to obtain several different trajectories, and the position of the
experimental device is adjusted to measure the velocity components on the X, Y, and Z axes,
and the rotor motion data collected by the photoelectric sensor is received and processed
and calculated by the position detection algorithm. Finally, the measured trajectory of the
detection point on the rotor during this experiment is obtained and the theoretical trajectory
is derived based on the set rotational speed as a reference, as shown in Figure 7.
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The motion trajectory of the measurement point obtained from the theoretical deriva-
tion data is used as the reference trajectory, and by comparing the position coordinates of
the measurement point on the rotor at the same moment obtained from the laser detection
experiment, the following error graph can be obtained, and the error calculation formula is:

error_X = X1 − X2
error_Y = Y1 −Y2
error_Z = Z1 − Z2

(21)

where, X1, Y1, Z1 are the coordinates of the measured points in the motion trajectory
derived from the experiments of the proposed laser position detection method, and X2, Y2,
Z2 are the coordinates of the theoretically derived motion trajectory.

The relative error curve can be derived from the above error calculation formula.
As shown in Figure 8, the error of Z coordinate in the sampling point fluctuates around
0.1 mm~0.2 mm, which is much smaller compared with X coordinate and Y coordinate,
mainly since the range of motion of this type of motor in Z-axis is relatively limited. the
maximum forward and reverse error of X and Y axis is about 2 mm. This shows that this
laser position detection method can reflect the motor position information better.
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There are more sources of experimental errors. The hardware system itself has certain
errors, such as laser optical path planning errors, measurement circuit design errors, etc.
At the same time, the experimental environmental conditions constraints can also cause
errors, such as interference from other light sources, the instability of the circuit connection,
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etc. Analysis of these errors can help the experiment to further improve the measurement
accuracy.

The errors in the laser system mainly originate from the laser emitter, the optical
mirror, and the photoelectric conversion device. Firstly, the light generated by the laser
generator is not strictly monochromatic red light with a single frequency, which leads to
errors in the frequency shift process when the Doppler effect is produced. Secondly, the
optical mirror is not the ideal mirror, inevitably lost some scattered light, resulting in a
certain deviation. At the same time, external interference light source is also a major cause
of the impact of the optical path system. The optical conversion module is the main device
to obtain the electrical signal, it is the main noise thermal noise, scattered grain noise,
low-frequency noise, etc. These noises, after the amplifier amplification of the detection
signal, producesome interference.

Thus, to reduce the error in the laser system, one should try to achieve a stable power
supply for the laser generator, and preheat it in advance to make its output stable when in
use; optimize the optical path, reduce the impact of scattering on light propagation, ensure
the darkroom experimental environment; and reduce the impact of other light sources on
the experiment.

The motor and the measurement circuit are also the main sources of error. In this
experiment, as the motor speed increases, the motor vibration also increases, and the
impact on the measurement will not be negligible, producing a large error. In addition, this
measurement module needs to process the signal at about 40 MHz, so the electromagnetic
interference between circuit components will also affect the measurement results and
produce errors.

Therefore, fasteners should be added and the motor properly installed, choosing an
appropriate speed to reduce the error brought by motor vibration on the measurement.
One can try to use patch electronic components to reduce the impact of electromagnetic
interference on the results.

4. Conclusions

This work uses a laser to measure the position information of a multi-DOF spherical
motor. First, the feasibility of laser velocimetry is derived using the principle of the Doppler
effect and verified through experiments, from which the velocity components of the multi-
DOF spherical motor in three dimensions are derived to provide the basis for the next
position detection part. On this basis, the theoretical formula of the position of the spherical
rotor is derived and verified through experimental data to derive the position information
of the multi-DOF. Based on this, the theoretical formula of the spherical rotor position
is derived and verified by experimental data to derive the position information of the
multi-degree of freedom motor detection points and compared with the theoretical value.
The experimental results show that the accuracy of this method is high. Compared with
the traditional position detection technique that requires attachment to the surface of the
object to be measured, the laser detection technique uses a laser beam as the medium for
information acquisition and transmission, and only requires the laser beam to irradiate the
surface of the object to be measured, which is convenient to measure and does not affect
the operating state of the motor to be measured and is more reliable. In the field of object
vibration and position measurement, laser detection technology has a broad application
prospect.
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