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Abstract: This paper investigates the asymptotic synchronization of memristive Cohen-Grossberg
neural networks (MCGNNs) with time-varying delays under event-triggered control (ETC). First,
based on the designed feedback controller, some ETC conditions are provided. It is demonstrated
that ETC can significantly reduce the update times of the controller and decrease the computing cost.
Next, some sufficient conditions are derived to ensure the asymptotic synchronization of MCGNNs
with time-varying delays under the ETC method. Finally, a numerical example is provided to verify
the correctness and effectiveness of the obtained results.

Keywords: asymptotic synchronization; memristive Cohen-Grossberg neural network; event-triggered
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1. Introduction

In the past few decades, complex systems including neural networks (NNs) have been
extensively studied due to their wide applications [1–5]. Based on the excellent characteris-
tics of memristor [6–8], a variety of chaotic circuits and systems based on memristor are
proposed. Memristive neural network (MNN), which simulates synaptic connection with
memristor, has attracted much attention owing to its application in logic operation and
image processing [9–16].

The Cohen-Grossberg neural network is a generalized neural network model, which
can take famous neural networks and systems such as the Hopfield neural network and
Lotka–Volterra system as its special cases [17–19]. In recent years, memristive Cohen-
Grossberg neural network (MCGNN) and its dynamical characteristics have attracted
increasing attention [20–23]. In [21], there exist exponentially stable equilibrium points
in n-dimensional MCGNNs with piecewise linear activation functions via the fixed point
theorem. Global exponential stability of delayed and perturbed MCGNNs was investigated
in [22]. Paper [23] studied multistability of MCGNNs with mixed delays and acquired
multiple almost periodic solutions. Synchronization as one of the most important dynami-
cal characteristics has been researched extensively and many papers on synchronization
of MCGNNs have been published [24–28]. In [24], Yang et al. investigated global expo-
nential synchronization of MCGNNs with time-varying discrete delays and unbounded
distributed delays. Wei et al. studied fixed-time synchronization of MCGNNs with impul-
sive effects [25]. Ren et al. investigated finite-time synchronization and quasi fixed-time
synchronization of MCGNNs with reaction-diffusion term in [27,28], respectively. Achiev-
ing the synchronization of MCGNNs means that synchronization of multiple classes of
neural networks can be acquired, thus being highly important for achieving the synchro-
nization of MCGNNs.
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At present, network control schemes include the state-feedback control method and
nonlinear control method, which have been widely used in many fields due to their advan-
tages of reliability and high efficiency [29–32]. However, these network control schemes for
MNN synchronization are based on continuous-time feedback controllers [29–32], thus they
require high computing power. As an important sampling control scheme, event-triggered
control (ETC) [33–41] can effectively reduce computing costs and communication resources
on the basis of ensuring system performance by reducing controller update times. There-
fore, ETC schemes for MNN synchronization have been extensively studied [33–41]. In [36],
the stability of MNNs with communication delays was addressed via the event-triggered
sampling control method. Using event-triggered impulsive control, quasi-synchronization
of delayed MNNs was investigated [37]. In [38], static or dynamic ETC methods were
designed to achieve synchronization of delayed MNNs. Some different static or dynamic
ETC methods were provided to further realize the synchronization of inertial MNNs [39].
In [40], exponential mean-square stability of delayed discrete-time stochastic MNNs was
achieved by an event-triggered H∞ state estimation. However, these ETC schemes were
considered in the traditional MNN system [33–41]. In other words, the existing ETC
methods cannot be directly used in the synchronization of MCGNNs which increases the
difficulty of control and analysis on account of the amplification function of MCGNNs. To
the best our knowledge, there is scarce literature regarding synchronization of MCGNN
via ETC scheme.

Inspired by the discussion above, this paper investigates the synchronization of
MCGNNs with time-varying delays via ETC scheme for the first time. We summarize the
main contributions as follows.

(1) This paper designs a state-feedback controller, and some ETC conditions were pro-
vided based on the state-feedback controller.

(2) Some sufficient conditions are presented to guarantee asymptotic synchronization of
MCGNNs with time-varying delays under ETC condition.

(3) Furthermore, the MCGNNs under ETC schemes can effectively reduce the update
times of controllers and decrease computing cost.

The rest of the paper is organized as follows. In Section 2, MCGNNs with time-varying
delays are introduced. Some sufficient conditions are obtained to achieve asymptotic
synchronization of MCGNNs in Section 3. Section 4 presents a numerical simulation
to verify the effectiveness of the obtained results. Finally, conclusions are provided in
Section 5.

2. Preliminaries

Notations: For a given vector a = (a1, a2, . . . , al)
T , ‖a‖1 =

l
∑

m=1
|am|. For a given matrix

x = [xmn]l×l , ‖x‖1 = max
1≤n≤l

l
∑

m=1
|xmn|.

We consider memristive Cohen-Grossberg neural networks (MCGNNs) with time-
varying delays as follows.

ṙm(t) = am(rm(t))
{
−bmrm(t) +

l
∑

n=1
cmn(rm(t)) fn(rn(t)))

+
l

∑
n=1

dmn(rm(t)) fn(rn(t− τmn(t))) + Im

}
, m = 1, 2, . . . , l,

(1)

where rm(t) represents the state of the mth neuron; am(rm(t)) and bm > 0 are the amplifi-
cation function and behaved function, respectively; fn(·)is the activation function; τmn(t)
denotes time-varying delay and satisfies 0 ≤ τmn(t) ≤ τ, where τ is a positive constant;
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Im is external input; cmn(rm(t)) and dmn(rm(t)) denote memristive connection weights
satisfying the following conditions

cmn(rm(t)) =

{
c(1)mn, |rm(t)| ≤ χm,
c(2)mn, |rm(t)| > χm,

(2)

dmn(rm(t)) =

{
d(1)mn, |rm(t)| ≤ χm,
d(2)mn, |rm(t)| > χm,

(3)

where c(1)mn, c(2)mn, d(1)mn and d(2)mn are constants, χm > 0 is the switching jump.
Set ĉmn = max{|c(1)mn|, |c

(2)
mn|}, c̄mn = max{c(1)mn, c(2)mn}, c̃mn = min{c(1)mn, c(2)mn}, , d̂mn =

max{|d(1)mn|, |d
(2)
mn|}, d̄mn = max{d(1)mn, d(2)mn}, d̃mn = min{d(1)mn, d(2)mn}, Ĉ = [ĉmn]l×l and D̂ =

[d̂mn]l×l .
The following assumptions will be used in this paper.

Assumption 1. Amplification function am(x) is continuous and bounded, namely, there exist two
positive constants a(1)m and a(2)m , such that 0 < a(1)m ≤ am(x) ≤ a(2)m for ∀x ∈ <.

Assumption 2. Time-varying delay τmn(t) satisfies

τ̇mn(t) ≤ θ < 1. (4)

where θ is a positive constant.

Assumption 3. Activation function fn(·) is bounded and satisfies Lipschitz condition, which
means there exist constants Mn, Ln such that | fn(s1)| ≤ Mn for ∀s1 ∈ <, and | fn(s2)− fn(s3)| ≤
Ln|s2 − s3| for any s2, s3 ∈ <.

From Assumption 1, there exists the antiderivative of 1
am(rm)

. Choose such an an-

tiderivative hm(rm)which satisfies hm(0) = 0. Then d
drm

hm(rm) =
1

am(rm)
. Using the deriva-

tive theorem for inverse function, the inverse function h−1
m (rm) of hm(rm) is differentiable

and d
dxm

h−1
m (xm) = am(rm), where xm = hm(rm). Set pm(t) = hm(rm(t)), then we can get

ṗm(t) =
ṙm(t)

am(rm(t)) , where rm(t) = h−1
m (pm(t)). Substituting these equalities into system (1),

we can obtain the MCGNN with time-varying delays as follows.

ṗm(t) = −bmh−1
m (pm(t)) +

l
∑

n=1
cmn(h−1

m (pm(t)))

× fn(h−1
n (pn(t))) +

l
∑

n=1
dmn(h−1

m (pm(t)))

× fn(h−1
n (pn(t− τmn(t)))) + Im, m = 1, 2, . . . , l.

(5)

For a given set γ ⊂ <, co[γ] represents the closure of the convex hull for set γ.
According to the theory of differential inclusion [42], it can be gained from (5) that

ṗm(t) ∈ −bmh−1
m (pm(t)) +

l
∑

n=1
co[c̃mn, c̄mn] fn(h−1

n (pn(t)))

+
l

∑
n=1

co[d̃mn, d̄mn] fn(h−1
n (pn(t− τmn(t)))) + Im, m = 1, 2, . . . , l,

(6)
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or equivalently, by the measurable selection theorem in [42], there exist measurable func-
tions c∗mn(t) ∈ co[c̃mn, c̄mn], d∗mn(t) ∈ co[d̃mn, d̄mn], such that

ṗm(t) = −bmh−1
m (pm(t)) +

l
∑

n=1
c∗mn(t) fn(h−1

n (pn(t)))

+
l

∑
n=1

d∗mn(t) fn(h−1
n (pn(t− τmn(t)))) + Im, m = 1, 2, . . . , l,

(7)

Let system (1) as the drive MCGNNs, then the response system can be described as

żm(t) = am(zm(t))
{
−bmzm(t) +

l
∑

n=1
cmn(zm(t)) fn(zn(t))

+
l

∑
n=1

dmn(zm(t)) fn(zn(t− τmn(t))) + Im

}
+ Wm(t), m = 1, 2, . . . , l,

(8)

where Wm(t) is the controller.
Furthermore, similar to the analysis of (5)–(7), we can obtain from (8) that

q̇m(t) = −bmh−1
m (qm(t)) +

l
∑

n=1
c∗∗mn(t) fn(h−1

n (qn(t)))

+
l

∑
n=1

d∗∗mn(t) fn(h−1
n (qn(t− τmn(t)))) + Im

+ Wm(t)
am(h−1

m (qm(t)))
, m = 1, 2, . . . , l,

(9)

where qm(t) = hm(zm(t)), c∗∗mn(t) ∈ co[c̃mn, c̄mn], d∗∗mn(t) ∈ co[d̃mn, d̄mn].
Consider the initial conditions of systems (1) and (8) as rm(s) = Υm(s) and zm(s) =

Θm(s), respectively, where −τ ≤ s ≤ 0. Then, the initial conditions of systems (7) and (9)
are pm(s) = hm(Υm(s)) and qm(s) = hm(Θm(s)), respectively, where −τ ≤ s ≤ 0.

Set errors Em(t) = zm(t)− rm(t), em(t) = qm(t)− pm(t). It can be obtained from (7)
and (9) that

ėm(t) = −bm[h−1
m (qm(t))− h−1

m (pm(t))] +
l

∑
n=1

c∗∗mn(t) fn(h−1
n (qn(t)))

−
l

∑
n=1

c∗mn(t) fn(h−1
n (pn(t))) +

l
∑

n=1
d∗∗mn(t) fn(h−1

n (qn(t− τmn(t))))

−
l

∑
n=1

d∗mn(t) fn(h−1
n (pn(t− τmn(t)))) +

Wm(t)
am(h−1

m (qm(t)))

= −bm[h−1
m (qm(t))− h−1

m (pm(t))] +
l

∑
n=1

c∗∗mn(t)gn(h−1
n (en(t)))

+
l

∑
n=1

[c∗∗mn(t)− c∗mn(t)] fn(h−1
n (pn(t))) +

l
∑

n=1
d∗∗mn(t)gn(h−1

n (en(t− τmn(t))))

+
l

∑
n=1

[d∗∗mn(t)− d∗mn(t)] fn(h−1
n (pn(t− τmn(t)))) + vm(t)

(10)

where gn(h−1
n (en(t))) = fn(h−1

n (qn(t)))− fn(h−1
n (pn(t))), gn(h−1

n (en(t− τmn(t)))) =
fn(h−1

n (qn(t− τmn(t))))− fn(h−1
n (pn(t− τmn(t)))) and vm(t) = Wm(t)

am(h−1
m (qm(t)))

. Moreover,

the vector form of system (10) can be written as

ė(t) = −B(H−1(q(t))− H−1(p(t))) + C∗∗(t)g(H−1(e(t)))
+(C∗∗(t)− C∗(t)) f (H−1(p(t)))
+D∗∗(t)g(H−1(e(t− τ(t))))
+(D∗∗(t)− D∗(t)) f (H−1(p(t− τ(t)))) + v(t)

(11)
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where e(t) = (e1(t), e2(t), . . . , el(t))T , B = diag{b1, b2, . . . , bl}, H−1(q(t)) = (h−1
1 (q1(t)),

h−1
2 (q2(t)), . . . , h−1

l (ql(t)))T , H−1(p(t)) = (h−1
1 (p1(t)), h−1

2 (p2(t)), . . . , h−1
l (pl(t)))T ,

g(H−1(e(t))) = (g1(h−1
1 (e1(t))), g2(h−1

2 (e2(t))), . . . , gl(h−1
l (el(t))))T , f (H−1(p(t))) =

( f1(h−1
1 (p1(t))), f2(h−1

2 (p2(t))), . . . , fl(h−1
l (pl(t))))T , C∗∗(t) = [c∗∗mn(t)]l×l , C∗(t) =

[c∗mn(t)]l×l , D∗∗(t) = [d∗∗mn(t)]l×l , D∗(t) = [d∗mn(t)]l×l , v(t) = (v1(t), v2(t), . . . , vl(t))T .
Set measured errors between system (1) and system (8) as MEm(t) = Em(ti)− Em(t),

∀t ∈ [ti, ti+1), m = 1, 2, . . . , l. In the ETC strategy, the state-dependent threshold needs
to be set. When the measured errors exceed the threshold, the control will be updated
under a new triggering event. It is worth noting that limt→t+i

MEm(t) = MEm(ti) = 0,
limt→t−i

MEm(t) = limt→t−i
Em(ti−1)− Em(t) 6= 0. Therefore, MEm(t) are discontinuous at

t = ti. The schematic of ETC is shown in Figure 1.

Actuator

Network Network

Plant

Controller

Sensor
E(t)

E(ti)W(ti)

ETC

Figure 1. The block diagram of ETC scheme.

Next, the definition of asymptotic synchronization of MCGNNs with time-varying
delays is presented as follows.

Definition 1. If
lim

t→+∞
‖z(t)− r(t)‖1 = 0, (12)

then MCGNN systems (8) and (1) can achieve asymptotic synchronization, where z(t) = (z1(t),
z2(t), . . . , zl(t))T , r(t) = (r1(t), r2(t), . . . , rl(t))T .

3. Synchronization of Memristive Cohen-Grossberg Neural Networks

In this section, we will discuss the asymptotic synchronization problem of the MCGNN
systems.

We consider the state-feedback controller as follows.

W(t) = −ΛE(ti)− Γsign(E(ti)), t ∈ [ti, ti+1) (13)

where W(t) = (W1(t), W2(t), . . . , Wl(t))T , E(ti) = (E1(ti), E2(ti), . . . , El(ti))
T ; Λ = diag(Λ1,

Λ2, . . . , Λl)
T is positive definite matrix; Γ = diag(Γ1, Γ2, . . . , Γl)

T ; sign(E(ti)) =
(sign(E1(ti)), sign(E2(ti)), . . . , sign(El(ti)))

T represents sign function; and ti is a release
instant. Then,

vm(t) =
Wm(t)

am(h−1
m (qm(t)))

= − ΛmEm(ti)

am(h−1
m (qm(t)))

− Γmsign(Em(ti))

am(h−1
m (qm(t)))

. (14)

Then, the following Theorem 1 and corollaries 1–2 can be obtained on the basis of the
state-feedback controller (13).
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Theorem 1. MCGNNs systems (8) and (1) can be synchronized asymptotically under Assumptions
1–3 with the state-feedback controller (13) and the following ETC condition

‖ME(t)‖1 ≤
η min

1≤m≤l
(a(1)m )

max
1≤m≤l

(Λm)
(ϑ‖E(t)‖1 + µ) (15)

for t ∈ [ti, ti+1), where
η ∈ (0, 1] (16)

ϑ =

min
1≤m≤l

(Λm)

max
1≤m≤l

(a(2)m )
− λ

min
1≤m≤l

(a(1)m )
≥ 0 (17)

λ = − min
1≤m≤l

(bm) min
1≤m≤l

(a(1)m ) + max
1≤m≤l

(Lm) max
1≤m≤l

(a(2)m )
∥∥Ĉ
∥∥

1

+
max

1≤m≤l
(Lm) max

1≤m≤l
(a(2)m )

1−θ

∥∥D̂
∥∥

1 > 0,

(18)

µ =
l

∑
m=1

{
κm −

l

∑
n=1

[∣∣∣c(1)mn − c(2)mn

∣∣∣+∣∣∣d(1)mn − d(2)mn

∣∣∣]Mn

}
(19)

{
Γm > a(2)m κm, if sign(Em(t))sign(Em(ti)) > 0,
Γm ≤ −a(2)m κm, otherwise,

(20)

and

κm >
l

∑
n=1

[∣∣∣c(1)mn − c(2)mn

∣∣∣+∣∣∣d(1)mn − d(2)mn

∣∣∣]Mn, (21)

hold.

Proof of Theorem 1. Consider a Lyapunov functional as

V(t) = ‖e(t)‖1 +
l

∑
m=1

l

∑
n=1

d̂mn

1− θ

∫ t

t−τmn(t)

∣∣∣gn(h−1
n (en(s)))

∣∣∣ds (22)

For t ∈ [ti, ti+1), we can attain the upper right Dini-derivative of V(t) as

V̇(t) ≤ signT(e(t))ė(t)

+
l

∑
m=1

l
∑

n=1
d̂mn

[
1

1−θ

∣∣gn(h−1
n (en(t)))

∣∣− ∣∣gn(h−1
n (en(t− τmn(t))))

∣∣]
= signT(e(t))

{
−B(H−1(q(t))− H−1(p(t)))

+C∗∗(t)g(H−1(e(t))) + (C∗∗(t)− C∗(t)) f (H−1(p(t)))
+D∗∗(t)g(H−1(e(t− τ(t))))
+(D∗∗(t)− D∗(t)) f (H−1(p(t− τ(t)))) + v(t)

}
+

l
∑

m=1

l
∑

n=1
d̂mn

[
1

1−θ

∣∣gn(h−1
n (en(t)))

∣∣− ∣∣gn(h−1
n (en(t− τmn(t))))

∣∣]
≤ signT(e(t))

{
−B(H−1(q(t))− H−1(p(t)))

+ max
1≤m≤l

(Lm) max
1≤m≤l

(a(2)m )
∥∥Ĉ
∥∥

1‖e(t)‖1 + signT(e(t)){(C∗∗(t)− C∗(t))

× f (H−1(p(t))) + (D∗∗(t)− D∗(t)) f (H−1(p(t− τ(t))))

+v(t)}+
max

1≤m≤l
(Lm) max

1≤m≤l
(a(2)m )

1−θ

∥∥D̂
∥∥

1‖e(t)‖1

(23)
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Since hm(.) and h−1
m (.) are monotonically increasing, that is to say signT(em(t))(h−1

m
(qm(t)) − h−1

m (pm(t))) =
∣∣h−1

m (qm(t))− h−1
m (pm(t))

∣∣ and −signT(e(t))ΛE(t) = −signT

(E(t))ΛE(t). Thus, it can be gained that

signT(e(t))(−B(H−1(q(t))− H−1(p(t))))
≤ − min

1≤m≤l
(bm)

∥∥H−1(q(t))− H−1(p(t))
∥∥

1

≤ − min
1≤m≤l

(bm) min
1≤m≤l

(a(1)m )‖e(t)‖1

(24)

and
−signT(e(t))ΛE(ti) = −signT(e(t))Λ(E(t) + ME(t))
= −signT(E(t))ΛE(t)− signT(e(t))ΛME(t)
≤ − min

1≤m≤l
(Λm)‖E(t)‖1 + max

1≤m≤l
(Λm)‖ME(t)‖1,

(25)

Thus, it can be obtained that

signT(e(t))v(t) =
l

∑
m=1

sign(em(t))
[
− ΛmEm(ti)

am(h−1
m (qm(t)))

− Γmsign(Em(ti))

am(h−1
m (qm(t)))

]
= −

l
∑

m=1
sign(em(t))

Λm(Em(t)+MEm(t))
am(h−1

m (qm(t)))
−

l
∑

m=1
sign(em(t))

Γmsign(Em(ti))

am(h−1
m (qm(t)))

≤ −
l

∑
m=1

Λm |Em(t)|
am(h−1

m (qm(t)))
+

l
∑

m=1

Λm |MEm(t)|
am(h−1

m (qm(t)))m
−

l
∑

m=1
sign(em(t))

Γmsign(Em(ti))

am(h−1
m (qm(t)))

≤ −
min

1≤m≤l
(Λm)

max
1≤m≤l

(a(2)m )
‖E(t)‖1 +

max
1≤m≤l

(Λm)

min
1≤m≤l

(a(1)m )
‖ME(t)‖1 −

l
∑

m=1
sign(Em(t))

Γmsign(Em(ti))

am(h−1
m (qm(t)))

(26)

and
signT(e(t))

{
(C∗∗(t)− C∗(t)) f (H−1(p(t)))

+(D∗∗(t)− D∗(t)) f (H−1(p(t− τ(t))))
}

−
l

∑
m=1

sign(Em(t))
Γmsign(Em(ti))

am(h−1
m (qm(t)))

≤
l

∑
m=1

l
∑

n=1

[∣∣∣c(1)mn − c(2)mn

∣∣∣+∣∣∣d(1)mn − d(2)mn

∣∣∣]Mn

−
l

∑
m=1

sign(Em(t))sign(Em(ti))
Γm

am(h−1
m (qm(t)))

≤ −
l

∑
m=1

{
κm −

l
∑

n=1

[∣∣∣c(1)mn − c(2)mn

∣∣∣+∣∣∣d(1)mn − d(2)mn

∣∣∣]Mn

}
= −µ < 0

(27)

Then, we can get that

V̇(t) ≤ − min
1≤m≤l

(bm) min
1≤m≤l

(a(1)m )‖e(t)‖1

+ max
1≤m≤l

(Lm) max
1≤m≤l

(a(2)m )
∥∥Ĉ
∥∥

1‖e(t)‖1

−
min

1≤m≤l
(Λm)

max
1≤m≤l

(a(2)m )
‖E(t)‖1 +

max
1≤m≤l

(Λm)

min
1≤m≤l

(a(1)m )
‖ME(t)‖1

+
max

1≤m≤l
(Lm) max

1≤m≤l
(a(2)m )

1−θ

∥∥D̂
∥∥

1‖e(t)‖1 − µ

=
max

1≤m≤l
(Λm)

min
1≤m≤l

(a(1)m )
‖ME(t)‖1 −

min
1≤m≤l

(Λm)

max
1≤m≤l

(a(2)m )
‖E(t)‖1 + λ‖e(t)‖1 − µ

≤
max

1≤m≤l
(Λm)

min
1≤m≤l

(a(1)m )
‖ME(t)‖1 −

 min
1≤m≤l

(Λm)

max
1≤m≤l

(a(2)m )
− λ

min
1≤m≤l

(a(1)m )

‖E(t)‖1 − µ

≤ (η − 1)(ϑ‖E(t)‖1 + µ)
≤ 0

(28)
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It can be obtained that lim
t→+∞

‖e(t)‖1 = 0 according to (22). Then, we have 1
max

1≤m≤l
(a(2)m )

×

lim
t→+∞

‖z(t)− r(t)‖1 = 1
max

1≤m≤l
(a(2)m )

lim
t→+∞

‖E(t)‖1 ≤ lim
t→+∞

‖e(t)‖1 = 0, that is to say

lim
t→+∞

‖z(t)− r(t)‖1 = lim
t→+∞

‖E(t)‖1 = 0, where z(t) = (z1(t), z2(t), . . . , zl(t))T , r(t) =

(r1(t), r2(t), . . . , rl(t))T .
Thus, the system (8) and system (1) can achieve asymptotic synchronization with the

state-feedback controller (13) under the ETC condition (15) on the basis of Definition 1. The
proof is finished.

Remark 1. At present, the ETC scheme for synchronization of MNNs continues to be widely
studied [33–41] owing to low computing costs and communication resources of ETC. Accordingly,
synchronization of some types of MNNs are achieved, such as quasi-synchronization of delayed
MNNs [37], synchronization of delayed MNNs [38], and synchronization of inertial MNNs [39].
However, these ETC schemes were considered in the traditional MNN system [37–39], not the
MCGNN system. In fact, the amplification function of MCGNNs will increase the difficulty of
control and analysis. In this paper, asymptotic synchronization of MCGNNs under the ETC scheme
is studied, and it is subsequently demonstrated that ETC can effectively reduce computing costs.

Corollary 1. MCGNNs systems (8) and (1) can be synchronized asymptotically under Assump-
tions 1–3 with the state feedback controller (13) and the following ETC condition.

‖ME(t)‖1 ≤
min

1≤m≤l
(a(1)m )

max
1≤m≤l

(Λm)
(ηϑ‖E(t)‖1 + µ) (29)

for t ∈ [ti, ti+1), if Γ satisfies (20) and (21), and η, ϑ, λ and µ are same as Theorem 1.

Proof of Corollary 1. Consider a Lyapunov functional shown in (22). Furthermore, for
t ∈ [ti, ti+1), we can get the upper right Dini-derivative of V(t) as

V̇(t) ≤ − min
1≤m≤l

(bm) min
1≤m≤l

(a(1)m )‖e(t)‖1

+ max
1≤m≤l

(L(1)
m ) max

1≤m≤l
(a(2)m )

∥∥Ĉ
∥∥

1‖e(t)‖1

−
min

1≤m≤l
(Λm)

max
1≤m≤l

(a(2)m )
‖E(t)‖1 +

max
1≤m≤l

(Λm)

min
1≤m≤l

(a(1)m )
‖ME(t)‖1

+
max

1≤m≤l
(L(1)

m ) max
1≤m≤l

(a(2)m )

1−θ

∥∥D̂
∥∥

1‖e(t)‖1 − µ

=
max

1≤m≤l
(Λm)

min
1≤m≤l

(a(1)m )
‖ME(t)‖1 −

min
1≤m≤l

(Λm)

max
1≤m≤l

(a(2)m )
‖E(t)‖1 + λ‖e(t)‖1 − µ

≤
max

1≤m≤l
(Λm)

min
1≤m≤l

(a(1)m )
‖ME(t)‖1 −

 min
1≤m≤l

(Λm)

max
1≤m≤l

(a(2)m )
− λ

min
1≤m≤l

(a(1)m )

‖E(t)‖1 − µ

≤ (η − 1)ϑ‖E(t)‖1
≤ 0

(30)

Corollary 2. MCGNNs systems (8) and (1) can be synchronized asymptotically under Assump-
tions 1–3 with the state-feedback controller (13) and the following ETC condition

‖ME(t)‖1 ≤
min

1≤m≤l
(a(1)m )

max
1≤m≤l

(Λm)
(ϑ‖E(t)‖1 + ηµ) (31)
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for t ∈ [ti, ti+1), if Γ satisfies (20) and (21), and η, ϑ, λ and µ are same as Theorem 1.

Proof of Corollary 2. Consider a Lyapunov functional shown in (22). Furthermore, for
t ∈ [ti, ti+1), we can obtain the upper right Dini-derivative of V(t) as

V̇(t) ≤ − min
1≤m≤l

(bm) min
1≤m≤l

(a(1)m )‖e(t)‖1

+ max
1≤m≤l

(L(1)
m ) max

1≤m≤l
(a(2)m )

∥∥Ĉ
∥∥

1‖e(t)‖1

−
min

1≤m≤l
(Λm)

max
1≤m≤l

(a(2)m )
‖E(t)‖1 +

max
1≤m≤l

(Λm)

min
1≤m≤l

(a(1)m )
‖ME(t)‖1

+
max

1≤m≤l
(L(1)

m ) max
1≤m≤l

(a(2)m )

1−θ

∥∥D̂
∥∥

1‖e(t)‖1 − µ

=
max

1≤m≤l
(Λm)

min
1≤m≤l

(a(1)m )
‖ME(t)‖1 −

min
1≤m≤l

(Λm)

max
1≤m≤l

(a(2)m )
‖E(t)‖1 + λ‖e(t)‖1 − µ

≤
max

1≤m≤l
(Λm)

min
1≤m≤l

(a(1)m )
‖ME(t)‖1 −

 min
1≤m≤l

(Λm)

max
1≤m≤l

(a(2)m )
− λ

min
1≤m≤l

(a(1)m )

‖E(t)‖1 − µ

≤ (η − 1)µ
≤ 0

(32)

Remark 2. In recent years, many papers on synchronization of MCGNNs have emerged [24–28].
It can be observed that achieving the synchronization of MCGNNs is extremely important due to
the meaning synchronization of multiple classes of neural networks. However, to date there are no
studies that employ the ETC scheme to achieve synchronization of MCGNNs, as far as we know.
Indeed, the amplification function of MCGNNs will increase the difficulty of control and analysis. In
this paper, asymptotic synchronization of MCGNNs is realized via ETC, and ETC is demonstrated
to effectively reduce computing costs through decreased update times of the controller.

4. Numerical Simulations

In this section, we provide an example to verify the validity of the obtained results.
Consider a drive MCGNN system as

ṙ1(t) = (1 + 0.02 sin(r1(t)))
{
−8.6r1(t) +

2
∑

n=1
c1n(r1(t)) fn(rn(t)))

+
2
∑

n=1
d1n(r1(t)) fn(rn(t− τ1n(t)))

}
,

ṙ2(t) = (1 + 0.01 cos(r2(t)))
{
−9r2(t) +

2
∑

n=1
c2n(r2(t)) fn(rn(t)))

+
2
∑

n=1
d2n(r2(t)) fn(rn(t− τ2n(t)))

}
,

(33)

where τmn(t) = (et − 1)/(et + 1), fn(w) = (|w + 1| − |w− 1|)/2 , m, n = 1, 2; memristive
connection weights:

c11(r1(t)) =
{

0.18, |r1(t)| ≤ 2.5,
0.45, |r1(t)| > 2.5,

c12(r1(t)) =
{
−0.23, |r1(t)| ≤ 2.5,
−0.96, |r1(t)| > 2.5,

c21(r2(t)) =
{

0.09, |r2(t)| ≤ 2.5,
0.26, |r2(t)| > 2.5,

c22(r2(t)) =
{

1.06, |r2(t)| ≤ 2.5,
0.76, |r2(t)| > 2.5,

d11(r1(t)) =
{

0.85, |r1(t)| ≤ 2.5,
1.61, |r1(t)| > 2.5,

d12(r1(t)) =
{

1.52, |r1(t)| ≤ 2.5,
0.34, |r1(t)| > 2.5,

d21(r2(t)) =
{

0.86, |r2(t)| ≤ 2.5,
1.63, |r2(t)| > 2.5,

d22(r2(t)) =
{
−1.03, |r2(t)| ≤ 2.5,
−0.59, |r2(t)| > 2.5,
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Furthermore, the response system can be described as

ż1(t) = (1 + 0.02 sin(z1(t)))
{
−8.6z1(t) +

2
∑

n=1
c1n(z1(t)) fn(zn(t)))

+
2
∑

n=1
d1n(z1(t)) fn(zn(t− τ1n(t)))

}
−Λ1E1(ti)− Γ1sign(E1(ti)), t ∈ [ti, ti+1)

ż2(t) = (1 + 0.01 cos(z2(t)))
{
−9z2(t) +

2
∑

n=1
c2n(z2(t)) fn(zn(t)))

+
2
∑

n=1
d2n(z2(t)) fn(zn(t− τ2n(t)))

}
−Λ2E2(ti)− Γ2sign(E2(ti)), t ∈ [ti, ti+1)

(34)

Then 0.98 ≤ a1(x) ≤ 1.02, 0.99 ≤ a1(x) ≤ 1.01 for ∀x ∈ <.τ̇mn(t) ≤ 0.5; | fn(s1)| ≤ 1
and | fn(s2)− fn(s3)| ≤ |s2 − s3| for ∀s1, s2, s3 ∈ <. Thus, we can set a(1)1 = 0.98, a(2)1 = 1.02,

a(1)2 = 0.99, a(2)2 = 1.01, θ = 0.5; Mn = 1; Ln = 1. Moreover, we can get Ĉ =

[
0.45 0.96
0.26 1.06

]
D̂ =

[
1.61 1.52
1.63 1.03

]
and

∥∥Ĉ
∥∥

1 = 2.02,
∥∥D̂
∥∥

1 = 3.24. Further, we can gain λ = 0.242.

Moreover, we choose Λ = diag(0.90, 0.95)T , such that ϑ = 0.635 ≥ 0.
Combining with

2

∑
n=1

[∣∣∣c(1)1n − c(2)1n

∣∣∣+∣∣∣d(1)1n − d(2)1n

∣∣∣]Mn = 2.94 (35)

and
2

∑
n=1

[∣∣∣c(1)1n − c(2)1n

∣∣∣+∣∣∣d(1)1n − d(2)1n

∣∣∣]Mn = 2.94. (36)

We can choose κ1 = 2.95, κ2 = 1.70, µ = 0.03. Furthermore, the following relations
can be obtained. {

Γ1 = 3.1 > 3.009, if sign(E1(t))sign(E1(ti)) > 0,
Γ1 = −3.1 ≤ −3.009, otherwise,

(37)

and {
Γ2 = 1.8 > 1.717, if sign(E2(t))sign(E2(ti)) > 0,
Γ2 = −1.8 ≤ −1.717, otherwise,

(38)

Thus, we can have the following ETC condition

‖ME(t)‖1 ≤ 1.03η(0.635‖E(t)‖1 + 0.03) (39)

for t ∈ [ti, ti+1), η ∈ (0, 1] .
From the conditions of Theorem 1, we can identify that the drive MCGNN system (33)

and the response system (34) can achieve asymptotic synchronization under the ETC
condition (39). Consider the initial conditions of systems (33) and (34) as r(s) = (0.85, 1.24)T

and z(s) = (1.83, 0.46)T , respectively, η = 0.5, then the simulation results are shown in
Figures 2–9. As shown in Figures 2, 3, 8 and 9, MCGNNs systems (33) and (34) can
be synchronized asymptotically under the ETC condition (39). Sample error Em(ti) and
measured error MEm(t) are shown in Figures 4 and 5, respectively. When the measured
error MEm(t) breaches the ETC condition, that is 1-Norm ||ME(t)||1 exceeds the threshold
1.03η(0.635‖E(t)‖1 + 0.03) under the ETC condition (39), the event is triggered, as shown
in Figure 6. From Figure 7, it can be found that the ETC scheme can effectively reduce the
update times of the controller.
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Figure 2. State trajectories of r1(t) and z1(t) with controller and ETC.
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Figure 3. State trajectories of r2(t) and z2(t) with controller and ETC.
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Figure 4. Sample errors E1(ti) and E2(ti) between systems (33) and (34) under ETC condition (39)
with η = 0.5.
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Figure 5. Measured errors ME1(t) and ME2(t) between systems (33) and (34) under ETC condition
(39) with η = 0.5.
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1.03η(0.635‖E(t)‖1 + 0.03) under ETC condition (39) with η = 0.5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.2

0.4

0.6

0.8

1

1.2

Time/s

E
v
e
n

t

Figure 7. Event-triggered instants under ETC condition (39) with η = 0.5.
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Figure 8. Synchronization errors E1(t) and E2(t) between systems (33) and (34) under ETC condition
(39) with η = 0.5.
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Figure 9. Synchronization errors ||E(t)||1 between systems (33) and (34) under ETC condition (39)
with η = 0.5.

5. Conclusions

In this paper, a type of state-feedback controller and several ETC conditions are
designed. Under ETC conditions and the state controller, we obtain some sufficient con-
ditions to achieve the asymptotic synchronization of MCGNNs. The results show that
MCGNNs under the ETC scheme can effectively reduce the update times of controllers and
computing costs.

Although there exist many papers on synchronization of MCGNNs [24–28] and net-
work control schemes including ETC [43–48], there is no work yet that has employed the
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ETC scheme to achieve synchronization of MCGNNs, as far as we know. In this paper,
asymptotic synchronization of MCGNNs is realized via ETC for the first time. Therefore, the
obtained result can extend upon the existing results [24–28,43–48]. In future research, other
types of MNN synchronization [49,50] via the ETC scheme will be considered to investigate.
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