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Abstract: Due to the complexity of the 2D coupling effects in AlGaN/GaN HEMTs, the charac-
terization of a device’s off-state performance remains the main obstacle to exploring the device’s
breakdown characteristics. To predict the off-state performance of AlGaN/GaN HEMTs with ef-
ficiency and veracity, an artificial neural network-based methodology is proposed in this paper.
Given the structure parameters, the off-state current–voltage (I–V) curve can therefore be obtained
along with the essential performance index, such as breakdown voltage (BV) and saturation leakage
current, without any physics domain requirement. The trained neural network is verified by the
good agreement between predictions and simulated data. The proposed tool can achieve a low
average error of the off-state I–V curve prediction (Ave. Error < 5%) and consumes less than 0.001‰
of average computing time than in TCAD simulation. Meanwhile, the convergence issue of TCAD
simulation is avoided using the proposed method.

Keywords: artificial neural network; off-state I–V curve; breakdown performance; AlGaN/GaN HEMT

1. Introduction

AlGaN/GaN devices have gained successful application in high-power fields due
to their better than silicon performance [1,2]. One of the most essential performance
parameters for a GaN-based power device is its capability to handle a high voltage in its
off state [3]. The success of the designing and exploration of Si-based power devices in the
past few decades has mainly relied on the mature combination of technology computer-
aided design (TCAD) tools and analytical models. This combined tool is currently not that
applicable in the exploration of AlGaN/GaN HEMTs, who have much more complicated
device physics. The simulations using commercial TCAD tools not only require the users for
their abundant experience in physics and simulations. These time difference (TD) method-
or Monte Carlo (MC) method-based simulations are also time-consuming and poor in
convergence. Moreover, due to the complicated coupling effects resulting from the stacked
structure and 2D distribution of charges, considering the influence of background carriers,
traps, and interface states in AlGaN/GaN HEMT, such a defect of the conventional TCAD
method is therefore amplified [4,5]. For the same reason, the physical analytical models
which are expected to be capable of effectively characterizing the correlation between
structure parameters and off-state performance are yet to be presented, demonstrating the
difficulty of characterizing the off-state performance.

However, the machine learning (ML) techniques that have emerged in recent years
provide a potential means to effectively predict these devices’ performance without using
physical-based models [6–8]. By using an artificial neural network (ANN), the ML-based
methods can explore the latent relationship between input and output data via training
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a neural network that is constructed by several hidden-layer. Once the neural network is
trained adequately by using enough valid data, the output data can therefore be predicted
correctly and efficiently [9,10]. In this case, one group of input data consists of a set
of device structure parameters and bias conditions. Nowadays, ML-based methods are
employed to predict one or several core parameters such as breakdown voltage (BV)
and on-resistance (Ron) [11]. Yet, the answer to the more complicated question of how
the structure parameters of an AlGaN/GaN HEMT affect the off-state I–V curve and
breakdown performance remains unclear.

In this paper, an efficient numerical method using a multi-layer ANN framework
is proposed to characterize the off-state performance of AlGaN/GaN HEMTs. The pro-
posed method features its capability to predict the complicated off-state performance of
AlGaN/GaN HEMTs swiftly. The effectiveness and veracity of the ANN-based numeri-
cal methodology are effectively verified by their good agreement with calibrated TCAD
simulations. The average error of the off-state I–V curve between the predictions and
simulations is less than 5%. Meanwhile, since no physical models are employed in the
proposed numerical approach, the average computing time using the proposed method is
only 10−6 of that using the TCAD tool.

2. Off State Performance Prediction

As shown in Figure 1, an AlGaN/GaN HEMT is composed of a stacked structure of
the AlGaN barrier layer, GaN channel layer, GaN buffer layer. Among them, a 2D layer
of high-density polarization charge is formed at the AlGaN/GaN interface. This two-
dimensional electron gas (2DEG) not only determines the on-state characteristic but also
plays an important part in off-state behavior. Table 1 gives the basic material properties of
GaN for the simulation. Meanwhile, unlike the conventional Si-based lateral power devices,
the GaN-based power devices’ off-state breakdown performance is influenced by multiple
2D effects simultaneously. Such a collective 2D coupling effect is not only determined by
the value of the devices’ structure parameters, but also the unusual/unclear 2D physical
mechanism, thus resulting in a distinctive off-state characteristic of the AlGaN/GaN HEMT.
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Figure 1. Schematic diagram of AlGaN/GaN HEMT structure. 

Table 1. The basic material properties of GaN. 

Property GaN 

Bandage (eV)  3.4 

Critical electric field (MV/cm) 3.3 

Thermal conductivity (W/(cm·K)) 1.3 

Electron carrier mobility (cm2/(V·s)) 2000 

Electron saturation velocity (107 cm/s) 2.5 

Figure 1. Schematic diagram of AlGaN/GaN HEMT structure.

Table 1. The basic material properties of GaN.

Property GaN

Bandage (eV) 3.4
Critical electric field (MV/cm) 3.3

Thermal conductivity (W/(cm·K)) 1.3
Electron carrier mobility (cm2/(V·s)) 2000

Electron saturation velocity (107 cm/s) 2.5

In particular, as shown in Figure 2, the simulated off-state I–V curve indicates that
the analysis of the off-state characteristics on the device is quite complicated. The three
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plots in Figure 2 are exported from the commercial TCAD tool Sentaurus. The breakdown
can occur under various states, such as partially depleted breakdown and fully depleted
breakdown. When the breakdown occurs, the depletion region may be at different deple-
tion stages, and the current trend will also occur differently. In particular, the condition
can be ascribed to three different types according to the changing trend of leakage current
with drain voltage [12,13]. Especially for the case of type 2, as shown in Figure 2, there
are five different stages in the trend of leakage current, which also demonstrate the supe-
rior difficulty of the off-state characteristics analysis. Yet, the prediction of the off-state
performance is essential to a power device such as an AlGaN/GaN HEMT. Hence, we
propose the ANN-based method to characterize off-state characteristics. The proposed
approach is expected to provide an efficient and accurate prediction tool by using the data
to explore the latent relationship between the device and its off-state performance without
physical requirements.
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Figure 2. The off-state I–V curve of AlGaN/GaN HEMT.

For the ANN architecture used in this paper, the input neurons represent the applied
voltage (i.e., Vgs, Vds) and structure parameter (i.e., t1, t2, tbar et al.). Figure 3 shows
the overall flow of the proposed framework for off-state performance characterization.
The number of hidden layers and the neurons are the training hyperparameters (i.e.,
weight, bias), which are subject to the tuning process to realize the optimal solution
according to the complexity of the prediction task. The neurons of the output layer
represent the current-related features, which are used as the input of the conversion
function. As for the configurations for the proposed ANN, first, ReLU is employed as
the nonlinear activation function [14]. Then, Adam optimizer is used to perform the
error backpropagation process by updating the training parameters [15]. In addition, an
adaptive learning rate is utilized to control the optimization process [16]. Moreover, the
error between the output layer and the targets can be evaluated as the mean square error
(MSE) [17], which can be formulated as:

MSE =
1
N

N

∑
i=0

(
Ii − It

i
)2 (1)

where N is the total training data number and Ii and It
i are the predicted feature and target

value of the ith sample, respectively.
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When the device is under the off-state condition, as the applied drain voltage Vd
increases, the span of the current change will cover several orders of magnitude (i.e., from
10−16 to 10−9), which will hinder the fitting ability between the training dataset and the
neural network. Thus, to optimize the fitting capability, a conversion function (CF) is
introduced. Mathematically, the conversion function in this work can be expressed as:

Ids = I0·10−Ii (2)

where I0 denotes the standardization factor and Ii represents the output features of the
output layer. The components of the conversion function can effectively guarantee that the
range of output features Ii lie within a small range. It can not only eliminate the adverse
effects caused by singular sample data, but also can accelerate the speed of gradient descent
to find the optimal solution, which will improve the prediction accuracy. The dataset for
the model training was generated by TCAD simulation. A total of 950 groups of devices
were collected for off-state characteristics; 80% of the dataset was used to train the model,
while the remaining part was used to evaluate the model. Table 2 shows the variation range
of structural parameters. By combining the applied voltage (i.e., Vgs, Vds) and structure
parameters (i.e., t1, t2, tbar et al.), the dataset for off-state performance characterization
contains 78,595 samples. In addition, the ANN algorithm is established by using the
available algorithms in the standard package Tensorflow and then utilized to characterize
the off-state performance of AlGaN/GaN HEMT.

Table 2. AlGaN/GaN HEMTs structural parameters and their variation ranges.

Structural Parameters Range

GaN channel thickness t1, (µm) [0.2, 0.8]
GaN buffer thickness t2, (µm) [0.6, 5.4]
AlGaN barrier thickness tbar, (µm) [0.005, 0.02]
The length of Gate to Drain, LGD (µm) [5, 25]
Al composition, Al [0.15, 0.25]

3. Results and Discussion
3.1. ANN Model Prediction for Off-State I–V Curve

Figure 4 shows the comparison between the predicted results from the ANN-based
framework and targets simulated by TCAD simulation. As shown in Figure 4, clearly, with
the increase in the drain voltage, the different structures will go through different states
to achieve breakdown. The three different types of off-state I–V curves corresponding to
Figure 2 are given. The red round point line represents the off-state performance obtained
by TCAD simulation, and the blue square point results, representing the predictions of the
proposed ANN-based method, are almost in good agreement with the target simulation
results, demonstrating the capability of the proposed approach. Moreover, all of these I–V
curves can be effectively characterized by the ANN-based framework without physics
domain knowledge.
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Figure 4. The predicted off-state I–V curve of the ANN-based framework.

Figure 5 shows the off-state I–V curve prediction error changes under different training
epochs. In the initial stage of the training process, the prediction error is relatively large, so
the error drastically changes to optimize the loss function by updating the training weights
and bias. As the training epoch increases, the error changes tend to converge, validating
the effectiveness of the model optimization process. In addition, since the ANN-based
model optimization is a dynamic tuning process by updating the training parameters, it is
reasonable to have small fluctuations accompanying the training process. Meanwhile, the
similar changes in training and testing errors indicate that no overfitting occurs during the
model generalization process.

Micromachines 2022, 13, x FOR PEER REVIEW 5 of 8 
 

 

of these I–V curves can be effectively characterized by the ANN-based framework without 

physics domain knowledge. 

 

Figure 4. The predicted off-state I–V curve of the ANN-based framework. 

Figure 5 shows the off-state I–V curve prediction error changes under different train-

ing epochs. In the initial stage of the training process, the prediction error is relatively 

large, so the error drastically changes to optimize the loss function by updating the train-

ing weights and bias. As the training epoch increases, the error changes tend to converge, 

validating the effectiveness of the model optimization process. In addition, since the 

ANN-based model optimization is a dynamic tuning process by updating the training 

parameters, it is reasonable to have small fluctuations accompanying the training process. 

Meanwhile, the similar changes in training and testing errors indicate that no overfitting 

occurs during the model generalization process. 

 

Figure 5. Off-state I–V curve prediction error changes corresponding to different training epochs. 

3.2. The Effectiveness of Introducing Conversion Function 

To examine the effectiveness of introducing the conversion function, we explore the 

prediction results without considering the conversion function (CF). Figure 6 gives the 

results by only using the ANN framework with and without the conversion function. The 

results represent the absolute error between the ANN-based predictions and TCAD sim-

ulation. The closer to zero, the better the results. As the figure shows, the absolute error 

between the predictions and targets of the prediction framework with CF under the three 

types of condition are close to zero. However, those results without CF fail to capture the 

relationship between the input features (i.e., Vds, t1, t2, tbar, etc.) and the drain current. Since 

the drain current covers a wide range of dimensional units, such a case will severely affect 

the convergence behavior of the ANN framework, thereby leading to training failure. 

However, by utilizing the conversion function to exponentially process the output results, 

0 100 200 300 400 500
10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

I D
 (

A
)

VD (V)

 TCAD simulation

 ANN-based prediction 

Type 2
Type 1

Type 3

0 1000 2000 3000 4000 5000
0.001

0.01

0.1

1

E
rr

o
r

Epoch 

 Train process

 Test process

Figure 5. Off-state I–V curve prediction error changes corresponding to different training epochs.

3.2. The Effectiveness of Introducing Conversion Function

To examine the effectiveness of introducing the conversion function, we explore the
prediction results without considering the conversion function (CF). Figure 6 gives the
results by only using the ANN framework with and without the conversion function.
The results represent the absolute error between the ANN-based predictions and TCAD
simulation. The closer to zero, the better the results. As the figure shows, the absolute error
between the predictions and targets of the prediction framework with CF under the three
types of condition are close to zero. However, those results without CF fail to capture the
relationship between the input features (i.e., Vds, t1, t2, tbar, etc.) and the drain current.
Since the drain current covers a wide range of dimensional units, such a case will severely
affect the convergence behavior of the ANN framework, thereby leading to training failure.
However, by utilizing the conversion function to exponentially process the output results,
the magnitude range of the data can be narrowed to a small range, making the network
training more accurate and efficient.
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Figure 6. The predicted results with and without the conversion function (CF).

Moreover, Figure 7 shows the results considering the conversion function without
the standardization factor I0, as in Equation (1). The red circular points represent the
results considering the standardization factor, while the purple square ones represent the
result when the standardization factor is not considered. It can be observed that a better
agreement between the targets and predictions can be achieved with the standardization
factor. Obviously, especially for the case of type 2, compared to the results with the
standardization factor, there is still a slight diversion from the target using the ANN-based
prediction without the standardization factor. Thus, to further improve the prediction
ability, the standardization factor I0 is introduced to narrow the range of the output features,
thereby optimizing the model training process.
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3.3. Breakdown Voltage Extraction

Figure 8 shows the breakdown voltage prediction results from the off-state I–V curve.
The points represent the results obtained by the various machine learning algorithms,
including support vector regression (SVR), Gaussian process regression (GPR), and the
proposed ANN-based method. The solid black line represents the results where the
targets are equal to the predictions. The closer the points are to the line, the higher the
prediction accuracy of the results is. It is important to note that almost all predicted points
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representing breakdown voltage are located on the target line with these machine learning
approaches. Yet, by means of the numerical calculation, the use of the proposed ANN
method allows an average prediction error of around 5%, which shows superior capability
for the prediction task.
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3.4. Time Comparison

To exhibit the efficiency of the proposed method, the time taken to predict the off-state
I–V curve is also analyzed. By using the simulation tool to obtain the off-state performance,
the average time for the various collected test structures is about 8 h or even longer due to
convergence issues. However, for all different device structures, the time to predict such
performance remains at 0.01 s with the ANN-based method. The computing time speeds
up by more than 106 times compared to the TCAD tools. Moreover, the convergence issue
which is associated with the TCAD tools is totally avoided by the proposed method.

4. Conclusions

In this paper, we propose an ANN-based predictive framework to predict the off-state
curve of AlGaN/GaN HEMTs. By employing the proposed method, the complicated off-
state performance can be accurately predicted without utilizing time-consuming TCAD
simulation tools. The numerical results show that the proposed method is not only capable
of tracing off-state I–V curves, but also appliable for predicting the critical parameter
based on the structural parameters. Significantly, the average error of off-state I–V curve
prediction is less than 5%. Moreover, since no physical equations and models are employed
in the proposed approach, the convergence issue that easily occurs in TCAD tools is
absolutely avoided. Meanwhile, by using the proposed method, the average computing
time is only 10−6 of that using the TCAD tool.
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