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Abstract: The Chua corsage memristor (CCM) is considered as one of the candidates for the realization
of biological neuron models due to its rich neuromorphic behaviors. In this paper, a universal model
for m-lobe CCM memristor is proposed. Moreover, a novel small-signal equivalent circuit with one
capacitor is derived based on the proposed model to determine the edge of chaos and obtain the
zero-pole diagrams and analyze the frequency response and oscillation mechanism of the m-lobe
CCM system, which are discussed in detail. In view of existence of the edge of chaos, the frequency
response and the oscillation mechanism of the simplest oscillator is analysed using the proposed
model. Finally, the proposed model has exhibited some essential neural oscillation, including the
stable limit cycle, supercritical Hopf bifurcation, spiking and bursting oscillation. This study also
reveals a previously undiscovered behavior of bursting oscillation in a CCM system.

Keywords: chua corsage memristor; small-signal equivalent circuit; edge of chaos; neural oscillation

1. Introduction

The development and complexity analysis of biological emotion-/memory-like mod-
els, especially the neural oscillation and design of the related mimicking electronic units,
have become the hot topics in the fields of neuromorphic engineering and neuroergonomics.
Due to their nature of unique memory, the memristors and memristive devices have become
one of the strong candidates to achieve, simultaneously, scalability and biological flexibility,
which push forward the next generation of neuromorphic computing. Therefore, as one
of the general memristors, Chua corsage memristor (CCM) has been considered the key
element to imitate the nonlinear biological behaviors and construct the neural network [1].
In 2016, the small-signal equivalent circuit and the simplest electronic oscillator consisting
of only one CCM in parallel with a battery was presented [2]. Subsequently, a series of
studies was conducted to investigate the complex characteristics of CCMs, such as Hopf
bifurcation [2], the locally active [3,4], the edge of chaos [5], pinched hysteresis loops [6,7],
basin of attraction [8,9], phase portraits basin of attraction, phase portraits [10], etc.

Hereby, some conclusions in the existing research literature could be reviewed as
follows: (i) the theoretical studies and dynamics analysis on 2-/4-/6-lobe CCM sys-
tems [7,11–14] have been implemented by H. Kim and his team. Subsequently, the global
dynamics, locally active, phase portraits, basin of attraction, pinched hysteresis loops,
switching kinetics, physical realization, oscillation, and their emulator circuits [15,16] were
analyzed. However, most of these research focused on several specific CCM systems.
When the more lobes are needed, some important questions might be asked. For example,
whether these typical nonlinear behaviors still occur in the other family of CCM, such
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as 12- or 14-lobe, even 20-lobe ones. What are the differences between commonality and
individuality for different m-lobe CCMs? Since the small-signal equivalent circuit and
the admittance function with one inductor has been designed in 2015, has other types of
equivalent circuits with one capacitor and their impedance functions been developed and
considered? Whether more than one similar oscillator could be built; (ii) the neural oscil-
lation phenomenon have been found in some memristors and memristive systems, such
as memristive synaptics, memristor-based neurons [17–20] and neural networks [21–24].
Then, the following studies should be worth pondering: whether most of existing models
could be constructed based on the m-lobe CCM? When the biological neurons and neural
networks needed to be simulated, why the m-lobe can be thought one of the powerful
candidates? (iii) the applications, design, and physical implement of the CCM have also
been carried out, such as the memristive self-learning logic circuit [25], in-memory com-
puting [26], bistable nonvolatile [27], tri-stable locally-active, neuromorphic dynamics [28],
neural oscillation dynamics [29,30], etc., but still in their infancy.

Based on the above literature review, the following topics with the aims of furthering
research on the CCM are presented in this paper: (i) the universal model of the m-lobe
CCM is introduced, which is helpful to answer the differences between commonality and
individuality for all the families of CCMs; (ii) in order to investigate the versatility and
flexibility for the proposed model, universal impedance function, and a novel small-signal
equivalent circuit with one capacitor is designed, which is helpful for understanding
the electronic circuit theory and analyzing dynamics behaviors; (iii) based on the existing
theory, the nonlinear dynamics and neural oscillation on the proposed model are illustrated,
such as the edge chaos, neural oscillation (i.e., supercritical Hopf bifurcation, spiking and
bursting oscillation.), nonvolatile, coexisting pinched hysteresis loops, etc.

The remainder of this paper is organized as follows: in Section 2, the universal model
of m-lobe Chua corsage memristor is introduced. We also summarize several natural
characteristics of the proposed model, such as pinched hysteresis loops, DC V − I curves,
and multiple locally-active domains. In Section 3, the universal impedance function is
derived. Then, the novel small-signal equivalent circuit with a single capacitor is designed.
The existence of the edge of chaos, zero-pole diagrams, and frequency response are dis-
cussed and summarized. Moreover, in Section 4, the distributed rules on the external
positive inductance are desmonstrated. The oscillation mechanism, supercritical Hopf
bifurcation, limit cycle, spiking and bursting oscillation of the simplest oscillator circuit is
demonstrated based on the relationship between the model parameters and the excitation
voltage. Finally, the paper is summarized in Section 5.

2. The Universal Model of m-Lobe Chua Corsage Memristor

The universal model of m-lobe CCM can be introduced as follows:
i = G(x)v, G(x) = G0x2

dx
dt = A− x +

N
∑

j=1

(∣∣x− nj
∣∣− ∣∣x− hj

∣∣)+ v ∆
= fm(x, v)

where A =


AFS AFS < AM

AM = 1
m

N
∑

j=1

(
nj + hj

)
+ a A = AM

AFL AFL > AM.

(1)

G(x) is the memductance function and G0 (G0 = 0.1) is a real constant; i, v and x
are denoted as the current, voltage and state variable of the CCM, respectively. A and
a = (N − 1)2 + 1, (N is an integer, N = 2, 3, 4, . . . ) are the real parameters; AM is called
the midpoint briefly; both nj and hj are the appropriate integers (hj > nj); m = 2, 4, 6, . . .
represents the number of the lobe. Then, the coexisting pinched hysteresis loops are shown
in Figure 1.
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(a) (b)

(c)

Figure 1. The coexisting pinched hysteresis loop: (a) A = AM; (b) A = AFS < AM; (c) A = AFL > AM.

Proposition 1. For the proposed universal model, the parameter A exhibits three cases, which
imply the quite different conditions and negative slope domains (namely, locally active regions), the
related statement as follows:

Case 1: When the parameter A = AM is fixed, only one negative slope domain exists in the
first stable branch, which is located over the negative range of the voltage;

Case 2: When the parameter A = AFS < AM is chosen, only one negative slope domain could
be observed in the first branch, which is located over the positive range of the voltage;

Case 3: When the parameter A = AFL > AM is obtained, two the negative slope domains
could be obtained in the first and second stable branch.

Proposition 2. Several natural characteristics of the proposed models in both v vs. i and dx/dt vs.
x are shown as follows:

(1) m+ 1 equilibrium (i.e., Q0, Q1, Q2, . . . , Qm) and m turning points (namely., T1, T2, T3, . . . ,
Tm) could be observed in their dynamic route maps (DRMs);

(2) Substitute the x-axis coordinate of the first DC operating point (T1) into f (x), then
f (T1) < 0;

(3) Substitute the x-axis coordinate of the last DC operating point (Tm) into f (x), then
f (Tm) > 0;

(4) The properties and nonlinear phenomena (i.e., the location of DC operating points, local
stability, active and locally active regions, oscillation, etc.) would not disappear as the number of
lobes increase;

(5) Edge of chaos can occur in the first lobe, but do not change and disappear as the number of
lobes increase;

(6) Similar neural oscillation dynamical behaviors might emerge. However, they are not
identical phenomena in all the m-lobe CCMs.
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Notably, before analyzing the proposed universal CCM model, some statements need
to be elaborated:

(i) the above features (4)–(6) would be verified via Figures 2–7. Observed from these
Figures 3–9, the negative slopes are mainly concentrated in the first lobe;

(ii) there are plenty of ways to set the values of the parameters nj and hj. In this
paper, one method is chosen to obtain the m-lobe CCM, i.e., nj = (j + 1)(j + 2), hj = nj+1,
(j = 1, 2, . . .);

(iii) since the complexity and dynamics oscillation are mainly concentrated in the
first lobe, a 2-lobe CCM as an example can be considered an example, the verification and
discussion on the above characteristics are given as follows.

(a) (b)

Figure 2. DRM of the proposed model, A = AM: (a) the DRM for v = 0 V (power-off plot), (b) the
DRM for v = 0 V, ±5 V, ±10 V.

(a) (b)

Figure 3. Graphs of current against state variable and DC V − I curve: (a) Ivs.X with only one
negative slope domain in the first stable branch over the variable range 0 < x < 2; (b) Ivs.V with
only one negative slope domain over the variable range −3 V < v < −0.99 V.

When driven by one periodic input voltage/current excitation with a zero DC com-
ponent, the frequency-dependent pinched hysteresis loops become a signature. Next,
the Lissajous figures of the proposed model in the i− v plane with a sinusoidal input signal
are exhibited in Figure 1.

As expected, from Figure 1, the pinched hysteresis loop for amplitude, Am = 1, exists
for all frequencies, ω = 0.1 rad/s, 5 rad/s, 10 rad/s, 90 rad/s, and 100 rad/s. All pinched
hysteresis loops pass through the origin. Besides, the lobe areas of the pinched hysteresis
loops shrink as the frequency increases [31], thereby their fingerprints are confirmed.
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(a) (b)

Figure 4. The DRM of 2-lobe CCM, A = AFS < AM: (a) DRM for the POP, v = 0; (b) DRM for
v = 0, 5, 10.

(a) (b)

Figure 5. Graphs of current against state variable and DC V − I curve: (a) Ivs.X with only one
negative slope domain in the over the range −4.7 < x < 0; (b) Ivs.V with the negative slope domain
over the variable range 2.3 V < v < 7.0 V.

(a) (b)

Figure 6. The DRM of 2-lobe CCM, A = AFL > AM: (a) DRM for the POP; (b) DRM for v = 0, 5, 10.

2.1. Parametric Representation and DC V − I Curve

According to the description on the obove natural characteristics, the number and
location of locally active domains are determined by the parameter A. Herein, the there
cases (i.e., A = AM, A = AFS < AM, and A = AFL > AM) are discussed and their DC
V − I curves be drawn as follows:

Case 1: A = AM
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when N = 1, m = 2, a = 0, n1 = 6, h1 = 12, A = AM = 9, the simplest 2−lobe CCM can
be obtained and rewritten as:{

i = G0x2 · v
dx
dt = 9− x + |x− 6| − |x− 12|+ v.

(2)

Then, the dynamic route maps (DRM) of the model (2) are shown in Figure 2.

(a) (b)

Figure 7. Loci of Ivs.X and DC V − I curves: (a) Ivs.X with only one negative slope domain in the
over the variable range 0 < x < 2.75 and 22 < x < 24.11; (b) Ivs.V with the negative slope domain
over the variable range −4.0 V < v < −1.33 V and −14.0 V < v < −12.0 V.

(a) (b)

Figure 8. The DRM and phase locus with AFS, AM, and AFL: (a) DRMs along v = 0; (b) phase
trajectory in Ivs.V.

From Figure 2a, when 2-lobe CCM is short-circuited (v = 0), the direction of motion of
the state variable x from any initial state x(0) is indicated by the arrowheads on the power-
off-plot (POP). The features of two turning points (namely, T1, T2) and three equilibrium
points (i.e., Q0(x = 3), Q1(x = 9), Q2(x = 15)) are identical with the description in
Proposition 2 (1)∼(3). Both Q0 and Q2 are stable equilibrium points, whereas Q1 is unstable
due to the state variable x(t) diverges away from Q1. The dynamic routes for v = 0,±5,±10
are depicted in Figure 2b. Each DRM route is divided into 3 segments by breakpoints at
x = 6 and x = 12, which has two asymptotically stable and one unstable equilibrium
points. Moreover, two enclosed areas can be observed from Figure 2a, i.e., areas ∆011 and
∆122 formed by points Q0, T1, and Q1 and Q1, T2, Q2 respectively.

Generally, the DC V − I curve is used to make sure the basic parameters for the
proposed CCM. Therefore, the explicit formula is obtained from Equation (2), which equals
zero and computes G0 = 0.1, x = X as the functions of v = V and i = I,{

I = G0X2 ·V
f2(X, V) = 9− X + |X− 6| − |X− 12|+ V.

(3)
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(a) (b) (c)

(d) (e) (f)

Figure 9. Phase trajectory in Ivs.V: (a) m = 4; (b) m = 6; (c) m = 8; (d) m = 10; (e) m = 12; (f) m = 14.

The corresponding DC V − I curves are drawn in Figure 3 over the input variable
range x ∈ [−10, 20] and voltage range V ∈ [−10, 5].

In Figure 3, abserved from between Figure 3a,b, the DC V − I curve emerges only one
negative slope domain in the first stable branch over the positive variable ranges 0 < x < 2
and the negative voltage range −3 V < v < −1.0 V, which lies in the third quadrant of the
Vm − Im coordinates and implies the existence of the locally active region. It satisfies the
description in case (1). Besides, in Figure 3b, the slope at Vp = −2.5 V is −2.245 (calculated
from the coordinates at Vp = −2.49 V and Vp = −2.51 V) in purple; the slope Vb = −2.99 V
is −70 (given from the coordinates at Vb = −2.98 V and Vb = −3.0 V) in blue; the slope
Vr = 2.9 V is 10 (got from the coordinates at Vr = 2.91 V and Vr = 2.89 V) in red.

Observed from Equation (1) and Figure 3, when the parameters A = 30, nj = 20,
hj = 40 are chosen, the proposed universal model is equivalent to the classical CCM
model, which satisfies the rule A = AM and conforms to the description on its natural
features. That means their DC V − I curves have two stable branches and one unstable
branch, and only one negative slope domain in the first branch over the negative voltage
range; both upper left lobe and lower right lobe have similar shapes and areas (called a
symmetrical “Corsage ribbon”). Hence, they could be considered as belonging to the same
family of universal 2-lobe CCM.

Case 2: A = AFS < AM
In this case, we choose a new group of parameters (nj = 6, hj = 22, m = 2, A = AFS <

AM = 9), the proposed model is restated as follows:{
i = G(x)v = G0x2 · v
dx
dt = 9− x + |x− 6| − |x− 22|+ v.

(4)

The DRM for the POP and v = 0, 5, 10 are plotted in Figure 4. Comparing Figure 4a
with Figure 2a, the area ∆011 enclosed by three points (i.e., Q0, T1, and Q1) is much larger
than ∆122 by three points (i.e., Q1, T2, and Q2), which implies the different shapes and areas
of the corsage ribbon.

With the new parameters, the graphs of Ivs.X and DC V − I are redrawn and shown
in Figure 5. There is only one negative slope domain in the first branch over the positive
voltage ranges 2.3 V < v < 7.0 V in Figure 5b, which lies in the first quadrant of the Vm − Im
coordinates and implies the existence of locally active regions. It satisfies the description
in case (2) of Proposition 1. Then, several certain slopes are calculated, such as Vp = 4.0 V
is −150 in the purple point, Vg = 5.0 V is −16 in the green point, Vb = −3.0 V is 35 in the
blue point, and Vr = 13.0 V is 190 in the red point.
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Observed from Figure 5, the upper left lobe becomes much bigger than the lower right
one, which is called the asymmetrical “Corsage ribbon”.

Case 3: A = AFL > AM.
The third group of parameters (nj = 6, hj = 22, m = 2, and A = AFL = 20 > AM) are

given for showing the more active and locally active domains clearly, the proposed model
is recast as follows: {

i = G(x)v = G0x2 · v
dx
dt = 20− x + |x− 6| − |x− 22|+ v.

(5)

The DRM for the POP and v = 0, 5, 10 are plotted in Figure 6.
Comparing Figure 6a with Figure 2a, the area ∆011 enclosed is much smaller than the

area ∆122, which is also different from the previous cases. It is not only multi-valued, very
unusually, but resembles an asymmetrical phenomenon. Moreover, the graphs of the Ivs.X
and DC V − I curves are depicted in Figure 7.

It can be seen from Figure 7, there are two negative slope domains in the stable
branches over the ranges of −4.0 V < v < −1.33 V and −14.0 < v < −12.0 V via the red
and blue solid lines, which indicate the existence of two locally active regions and both lie
in the third quadrant of the Vm − Im coordinates. This situation satisfies the description of
the case 3 in the above section. Additionally, several important slopes can be calculated
at Vp = −3.5 V is –3.245 in the purple point, Vg = −13.6 V is –100 in the green point,
Vb = −14.0 V is −150 in the blue point, and Vr = 2.0 V is 12 Siemens in the red point.
Therefore, the asymmetrical “Corsage ribbon” can emerge.

To summarize, the curves of DRMs and phase portraits with different cases (i.e., AFS,
AM, and AFL) are illustrated in Figure 8.

Based on the previous description, the following conclusion can be drawn. When the
other parameters (such as m, nj, and hj) are fixed: (1) the shape and symmetry of the lobes,
stability, locally active domains depend on the value of parameter A; (2) in order to obtain
the negative slope domains, the ranges of the variables x and v at the equilibrium point (Q)
obey the condition: xv < 0.

2.2. The Generation of Multiply Lobes for the Universal CCMs

The proposed m-lobe CCM can be implemented by model (1). The number of lobes
can be captured and their parameters are listed in Table 1.

Additionally, the generation of m-lobe CCMs are shown in Figure 9. According to
the above description, it can be seen that the local active domain (LAD) in the first stable
branch lobes might be impacted but will not disappear with the increase of the number of
lobes. Moreover, for any m-lobe CCM, the feature of parameter A will not change as the
number of lobes increases, which is in line with statements on the natural characteristics of
the CCM.
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Table 1. The relationship between parameters and the number of the lobes for the m-lobe CCM.

Parameters N m a A = AM
nj = (j + 1)(j + 2),

hj = nj + 1, (j = 1, 2, 3, . . . ) f (x, v) Figure

2-lobe 1 2 0 9 n1 = 6, h1 = 12 9− x + |x− 6| − |x− 12| Figure 3b

4-lobe 2 4 2 17 n1 = 6, h1 = 12, n2 = 20, h2 = 30 19− x + |x− 6| − |x− 12|+
|x− 20| − |x− 30| Figure 9a

6-lobe 3 6 5 28 n1 = 6, h1 = 12, n2 = 20, h2 = 30,
n3 = 42, h3 = 56

33− x + |x− 6| − |x− 12|+
|x− 20| − |x− 30|+ |x− 42| −

|x− 56|
Figure 9b

8-lobe 4 8 10 41 n1 = 6, h1 = 12, n2 = 20, h2 = 30,
n3 = 42, h3 = 56, n4 = 72, h4 = 90

51− x + |x− 6| − |x− 12|+
|x− 20| − |x− 30|+ |x− 42| −
|x− 56|+ |x− 72| − |x− 90|

Figure 9c

10-lobe 5 10 17 57
n1 = 6, h1 = 12, n2 = 20, h2 = 30,
n3 = 42, h3 = 56, n4 = 72, h4 = 90,

n5 = 110, h5 = 132

74− x + |x− 6| − |x− 12|+
|x− 20| − |x− 30|+ |x− 42| −
|x− 56|+ |x− 72| − |x− 90|+

|x− 110| − |x− 132|

Figure 9d

12-lobe 6 12 26 75

n1 = 6, h1 = 12, n2 = 20, h2 = 30,
n3 = 42, h3 = 56, n4 = 72, h4 = 90,

n5 = 110, h5 = 132, n6 = 156,
h6 = 182

101− x + |x− 6| − |x− 12|+
|x− 20| − |x− 30|+ |x− 42| −
|x− 56|+ |x− 72| − |x− 90|+
|x− 110| − |x− 132|+ |x−

156| − |x− 182|

Figure 9e

14-lobe 7 14 37 97

n1 = 6, h1 = 12, n2 = 20, h2 = 30,
n3 = 42, h3 = 56, n4 = 72, h4 = 90,

n5 = 110, h5 = 132, n6 = 156,
h6 = 182, n7 = 210, h7 = 240

134− x + |x− 6| − |x− 12|+
|x− 20| − |x− 30|+ |x− 42| −
|x− 56|+ |x− 72| − |x− 90|+
|x− 110| − |x− 132|+ |x−

156| − |x− 182|+ |x− 210| −
|x− 240|

Figure 9f

. . . . . . . . . . . . . . . . . . . . . . . .

3. Small-Signal Equivalent Model and Edge of Chaos
3.1. Small-Signal Equivalent Model with One Capacitor

In order to predict the response of a memristor to a small-signal input applied at
an equilibrium point, the small-signal equivalent of the CCM has been designed by L.O
Chua and his coworkers in 2015. They have also pointed out that adding at least one
energy storage element across the Chua Corsage Memristor could make sure the circuit
oscillates. In these papers, the analysis on an inductance and two resistances were elab-
orated. Moreover, they have verified that a positive inductance is needed to compensate
for the imaginary part of admittance Y(iω, V) as well as to make the total impedance to
zero. As standard electronic circuit theory, some conclusion can be directly obtained via
impedance function instead of admittance, which is our focus in this subsection.

The small-signal impedance (Z(s, V)) at the equilibrium points can be summarized
and uncovered as follows:

Z(s, V) =
1

a12(V)
· s− b11(V)

s− b11(V) +
a11(V)
a12(V)

b12(V)
, (6)

where a11, a12, b11, b12 express the parameters of the Laplace transformation for δim(t) and
δvm(t), which neglects the higher-order terms by |δi| � 1 and |δv| � 1. Then,

a11(V) = v ∂G(x)
∂x

∣∣Q = 2XV, a12(V) = G(x) ∂v
∂v

∣∣Q = X2

b12(V) =
∂g(x,v)

∂v

∣∣Q = 1

b11(V) =
∂g(x,v)

∂x

∣∣Q =

{
−1 i f X < nj or X > hj
1 i f nj ≤ X ≤ hj unstable.

(7)
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The following equivalent circuit form is rewritten from Equation (6):

Z(s, V) =
s+[−b11(V)]

s+
[
−b11(V)+

a11(V)b12(V)
a12(Q)

] · 1
a12(V)

κ = 1
/

X2, p = −(1 + 2V/X), z = −1.
(8)

Then, the small-signal equivalent circuit with one capacitor and two equivalent resis-
tors can be designed, 

Z(s, V) = s+1/RmCm
s+1/[(Rm+Rn)Cm ]

· RnRm
Rm+Rn

Cm = −2XV, Rm = −1/2XV
Rn = 1

/(
X2 + 2XV

)
.

(9)

Besides, the schematic diagram of the small-signal equivalent circuit of the impedance
function with a capacitor (Cm) and two resistors (Rm and Rn) is drawn in Figure 10. Then,
the curves defining the parameters of this novel small-signal circuit model are shown in
Figure 11. Both Cm and Rm are positive and Rn is negative.

Figure 10. The schematic diagram of one novel small-signal equivalent circuit.

(a) (b)

(c) (d)

Figure 11. Plot of the small-signal inductance Cm and resistances Rm and Rn over the negative slope
domains: (a) A = AM; (b) A = AFS; (c) A = AFL in LAD1; (d) A = AFL in LAD2.
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Since the small-signal impedance Z(s, V) at v = V has only a real zero s = b11(V),
which is necessary to add at least one capacitor (or inductor) across the Chua Corsage
Memristor in order to make the circuit oscillate at some frequency ω0 > 0. Its universal
impedance function can be expressed as follows

Z(s, V) = κ
s− z
s− p

=
RnRm

Rm + Rn
·

s + 1
RmCm

s + 1
(Rm+Rn)Cm

(10)

where, k = RmRn/(Rm + Rn) is represented as the gain of impedance, p = −1/[(Rm +
Rn)Cm] is denoted the only real pole, and z = −1 is only real zero for the proposed
universal m-lobe CCM.

To determine the type of energy-storage element (inductor or capacitor), the follow-
ing frequency response Z(iω, V) should be derived and plotted by substituting s = iω.
The frequency response of impedance function, Re[Z(iω, V)] and Im[Z(iω, V)] are given
in Equation (11):  Re[Z(iω, V)] = Rn

(Rm+Rn)RmC2
mω2+1

[(Rm+Rn)Cmω]2+1

Im[Z(iω, V)] = ω
(2Rm+Rn)RnCm

[(Rm+Rn)Cmω]2+1
.

(11)

Observed from Figure 11, we can clearly see that the configured small-signal equivalent
circuit and the analysis on its impedance function verify the oscillation theory and the
existence of oscillators from another perspective.

3.2. Edge of Chaos

Based on the representation of zeros and poles in the impedance function, the proposed
model clearly exhibit the edge of chaos as shown on the zero-pole diagrams. Observed
from Figures 3, 5 and 7, different negative slopes regions can be captured by adjusting
parameter A. The relationship of parameters x and v conforms to the rule xv < 0.

Besides, the feature of parameter A can be summarized as: when A ≤ AM, there exists
only one negative slope region; when A > AM, there are two.

Next, the gain, zero and pole of the Equation (9) are calculated and the diagrams are
plotted in Figure 12 to exhibit the edge of chaos.

κ = X−2, p = −(1 + 2V/X), z = −1. (12)

(a) (b) (c)

Figure 12. The zeros z and pole p of the model (1): (a) A = AM, v ∈ (−3,−0.99) in LAD; (b) A = AFS,
v ∈ (2.3, 7.0) in LAD; (c) A = AFL, v1 ∈ (−4.0,−1.33) in LAD1 and v2 ∈ (−14.0,−12.0) in LAD2.

From Figure 12, the distribution of LADs are identical with the DC V − I curves in
Figures 3, 5 and 7. There is also one energy storage element that is indeed required for
generating an oscillator, which could be an inductor or capacitor in serial/parallel with
the resistor.

Based on the edge of chaos and Figures 11 and 12, Re[Y(iω, V)] < 0 could occur for
ω ∈ (−∞,+∞). That is, the conditions can be satisfied with components Cm > 0, Rm > 0,
Rn < 0, |Rn| > Rm.



Micromachines 2022, 13, 1330 12 of 20

4. The Simplest Oscillator and Its Neural Oscillation

In light of the concepts and techniques of both electric circuit and nonlinear dynamics
theory, there is a pair of complex-conjugate poles on the imaginary axis at some frequency
ω > 0 in one oscillator circuit. According to [1–3,11,14], one external inductance (L∗) can
be chosen to present plenty of nerual oscillation. In this section, the discussion on the
properties and rules for this positive inductance are given as well as its frequency response
and neural dynamics behaviors.

In Figure 13, L∗ is an external positive inductance, vM is considered the voltage of the
proposed universal m-lobe CCM; V represents a DC voltage source.

Figure 13. Oscillator circuit of universal m-lobe CCM oscillator.

4.1. The External Positive Inductance

Based on the frequency response of the derived impedance function (Z(iω, V)) and
the relationship between admittance and impedance (Y(iω, V) = 1/Z(iω, V)), the external
inductances (L∗) can be calculated in three cases.

Case 1: A = AM
The frequency response for the model (2) are illustrated in Figure 14. The admittance

Y are shown in Figure 14a over the frequency range −50 rad/s ≤ ω∗ ≤ 50 rad/s.

(a) (b)

Figure 14. The frequency response, A = AM: (a) Re[Y(iω, V)] and Im[Y(iω, V)] over the ranges
−10 < ω∗ < 10; (b) Re[Y(iω∗, V)] vs. Im[Y(iω∗, V)].

From Figure 14a, the Re[Y(iω∗)] = 0 at ω∗ = ±6.37 rad/s whereas Im[Y(iω∗)] =
±0.1533 with the inductance of L∗ are calculated via Chua’s formula as follows:

L∗ =
1

ω∗Im[Y(ω∗)]
=

1
6.37× 0.1533

= 1.024H. (13)

From Figure 14b, it is noted that L∗ could compensate the imaginary part of impedance
when the voltage lies in the LAD. Then, several important points are computed as:
Im[Y(iω∗)] = 0, Re[Y(iω∗)] = −1.037 at ω∗ =0 rad/s; Im[Y(iω∗)] = ±0.1533, Re[Y(iω∗)]
= 0. at ω∗ = ±6.37 rad/s, respectively. When these points lie in the open right-half
plane (RHP), and the destabilization of the oscillator circuit could be demonstrated by the
inductor (L∗).
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Case 2: A = AFS < AM
In this case, the frequency response of the model is illustrated in Figure 15. The com-

plex admittance Y(iω∗, V) are plotted in Figure 15a over the frequency range of −50 rad/s
≤ ω∗ ≤ 50 rad/s. The Re[Y(iω∗)] = 0 at ω∗ = ±9.51 rad/s whereas Im[Y(iω∗)] = ±0.1046
with the external L∗ are calculated as follows:

L∗ =
1

ω∗Im[Y(ω∗)]
=

1
9.51× 0.1046

= 1.005H. (14)

Observed from Figure 15b, when L∗ = 1.005H is chosen and the voltage lies in the
LAD, the imaginary part can be compensated. Some parts of the loci shown in Figure 15b
are located in the open RHP, which implies that the circuit can be destabilized by varying
the inductance L∗ to generate the desired nonlinear behaviors.

(a) (b)

Figure 15. The frequency response (A = AFS < AM): (a) Re[Y(iω, V)] and Im[Y(iω, V)] for −20 <

ω∗ < 20; (b) Re[Y(iω∗, V)] vs. Im[Y(iω∗, V)].

Case 3: A = AFL > AM
In this case, the frequency response curves obtained from both LAD1 and LAD2 are

shown in Figure 16. For v in LAD1, the oscillation occurs when ω∗ = 7.27 rad/s with
Y1 = 0± 0.1356i and ω∗ = 1.83 rad/s with Y2 = 0± 0.5463i, respectively. The correspond-
ing inductance L∗ for both LADs can be calculated by the following formulas:

(a) (b)

Figure 16. The frequency response, A = AFL > AM, Re[Y(iω, V)] and Im[Y(iω, V)]: (a) v ∈LAD1;
(b) v ∈LAD2.

{
L∗1 = 1

ω∗Im1[Y(ω∗)]
= 1

7.27×0.1356 = 1.0144H
L∗2 = 1

ω∗Im2[Y(ω∗)]
= 1

1.83×54.63 = 10.0027mH.
(15)
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According to Equations (13)–(15), the following conclusion can be reached: in the
simplest oscillator circuit, in order to compensate for the imaginary part of admittance and
capture the nonlinear behaviors, the external positive inductance (L∗) always need to be
connected in series with all types of the small-signal equivalent circuits. The number and
distribution of L∗ is determined by the parameter A and the LAD(s).

Subsequently, it is summed up as follows: when the parameter A ≤ AM, only one
external inductor (L∗) is needed to compensate the imaginary part of admittance and
generate the neural oscillation. Whereas, when the parameter A > AM, more than one
inductance value can be used to design the oscillator.

4.2. Oscillation Mechanism

The state equations of the simplest oscillator circuit in Figure 13 can be written
as follows: 

dx
dt = A− x +

N
∑

j=1

(∣∣x− nj
∣∣− ∣∣x− hj

∣∣)+ i
G0x2

di
dt =

1
L∗

(
V − i

G0x2

)
,

(16)

where A, nj, and hj denote the parameters; x and i are the state variable and the current of
the inductor (L∗); L∗ is a positive inductance, and G0 = 0.1. Then, the output voltage (vout)
is set as the voltage of the universal m-lobe CCM, that is, vout = −vM.

To ease the demonstration of local activity and edge of chaos, from which we can
identify the mechanism of the action potential in this circuit, the following universal
equation of Y2(s, V) at the equilibrium point Q for the oscillator circuit is formulated:

Y2(s, V) =
1

Z2(s, V)
=

1
L∗
·

s + 1
(Rm+Rn)Cm

s2 + RnRmCm+L∗
(Rm+Rn)Cm L∗ s + Rn

(Rm+Rn)Cm L∗
= κ2

s− z2

(s + p21)(s− p22)
, (17)

where the impedance of an external positive inductance (L∗) is represented as ZL∗ = L ∗ s.
The zeros and pole of Y2(s, V) are solved as follows: p21,22 = z2

2L∗

[
RnRmCm + L∗ ∓

√
(RnRmCm + L∗)2 + 4RnL∗

/
z2

]
κ2 = 1

/
L∗ > 0, z2 = −1

/
(Rm + Rn)Cm.

(18)

From Equation (18), both poles p21 and p22 are the functions of the external positive
inductance (L∗). When the condition (RnRmCm + L∗)2 + 4RnL∗/z2 < 0 is satisfied, an os-
cillator emerges. Correspondingly, the frequency response can be moved from the open
LHP to the open RHP by increasing the inductance L∗ ∈ [0,+∞).

The frequency response Y2(iω, V) is derived by substituting s = iω in Equation (19):

Y2(iω, V) = Re[Y2(iω, V)] + iIm[Y2(iω, V)]
Re[Y2(iω, V)] = −z2 ·

(ω2RmCm−z2)Rn L∗

(L∗ω2+z2Rn)
2
+(z2RnRmCm+z2L∗)2ω2

Im[Y2(iω, V)] = −ωL∗ L∗ω2+Rnz2+z2
2(RnRmCm+L∗)

(L∗ω2+z2Rn)
2
+(z2RnRmCm+z2L∗)2ω2

.

(19)

Notably for the second-order oscillator circuit with the CCM, the loci of Re[Y2(s, V)],
Im[Y2(s, V)] and frequency response of Y2(iω, V) have been analyzed [1,2,10–13,28], which
could exhibit the commonality of the universal m-lobe CCM. Therefore, they are omitted in
this paper.

According to the admittance function and frequency response of Figure 13, Hopf
bifurcation, stable, and destabilized phenomena might exist, as well as the spiking and
neural dynamics, which are the main focus in the next subsection.

4.3. Oscillation and Neural Dynamics

(1) Limit cycle and supercritical Hopf bifurcation.
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Hopf bifurcation gives birth to a limit cycle to change the nonlinear system stabil-
ity [2,13]. A stable limit cycle could lead to the supercritical Hopf bifurcation. Therefore,
for the proposed universal CCM, its oscillators can exhibit the supercritical Hopf bifurcation
as shown in Figure 17 for A = AM, Figure 18 for A = AFS, Figures 19 and 20 for A = AFL.

(a) (b)

(c) (d)

Figure 17. The supercritical Hopf bifurcation over the range vε[−2.4,−1.6] and initial condition
[x(0), iL(0)] = [0.01, 0] for A = AM: (a) x(t) and iL(t) for v = −2.41 V; (b) stable limit cycle converges
to Q1

0 (0.59, –0.839) for v = −2.41; (c) stable limit cycle corresponding to the periodic waveforms for
v = −2.39; (d) stable limit cycle converges to Q3

0 (1.408, –3.153) for v = −1.5906.

(a) (b)

(c) (d)

Figure 18. vε[3.6, 5.725] and initial condition [x(0), iL(0)] = [−0.01, 0] for A = AFS: (a) x(t) and iL(t)
for v = 5.73 V; (b) stable limit cycle converges to Q1

0 (9.229, –1.267) for v = 5.73; (c) stable limit cycle
corresponding to the periodic waveforms for v = 5.72; (d) stable limit cycle converges to Q3

0 (44.25,
–3.586) for v = 3.4.
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(a) (b)

(c) (d)

Figure 19. v1ε[−2.155,−1.5] and initial condition [x(0), iL(0)] = [0.1, 0] for A = AFL: (a) x(t) and
iL(t) for v = −2.17 V; (b) stable limit cycle converges to Q1

0 (1.06, −7.237) for v1 = −2.17 V; (c) stable
limit cycle corresponding to the periodic waveforms for v1 = −2.0 V; (d) stable limit cycle converges
to Q3

0 (4.202, −58.24) for v = −1.4.

(a) (b)

(c) (d)

Figure 20. v2ε[−13.42,−13.05] and initial condition [x(0), iL(0)] = [10, 0] for A = AFL: (a) x(t)
and iL(t) for v = −13.5 V; (b) stable limit cycle converges to Q1

0 (22.48, −0.8077) for v1 = −13.5 V;
(c) stable limit cycle corresponding to the periodic waveforms for v1 = −13.3 V; (d) stable limit cycle
converges to Q3

0 (22.49, –0.8366) for v = −12.8.
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Observed from Figures 17–20, the limit cycle lies in the open RHP of its pole plot
between two Hopf bifurcation points. Therefore, it can be confirmed that the stable limit
cycle does appear.

(2) Neural oscillation
When the memristive emulator is utilized to mimic one biological neuron, spiking os-

cillation can be considered one of the most prominent phenomena. During the supercritical
Hopf bifurcation intervals, the large-amplitude non-sinusoidal periodic waveform can be
discovered in three cases, which is shown in Figure 21.

(a) (b)

(c) (d)

Figure 21. The oscillation behaviors: (a) Non-sinusoidal periodic waveforms at v = −1.65 V for
A = AM in LAD is drawn by blue dotted solid line, at v = 5.62V for A = AFS in LAD is drawn by
red dotted line, at v = −1.62 V for A = AFL in LAD1 is drawn by yellow solid line, at v = −13.1 V
for A = AFL in LAD2 is drawn by purple solid line; (b) Periodic oscillation waveforms v = −1.48 V
for A = AM in LAD is drawn by blue dotted solid line, v = 3.55 V for A = AFS in LAD is drawn
by red dotted line, v = −1.62 V for A = AFL in LAD1 is drawn by yellow solid line, v = −13.045 V
for A = AFL in LAD2 is drawn by purple solid line; (c) Multiplex-oscillator waveforms v = −2.39 V
for A = AM in LAD is drawn by blue dotted solid line, v = 5.4 V for A = AFS in LAD is drawn by
red dotted line, v = −2.145 V for A = AFL in LAD1 is drawn by yellow solid line, v = −13.4 V for
A = AFL in LAD2 is drawn by purple solid line; (d) Non-periodic oscillation waveforms v = −2.5 V
for A = AM in LAD is drawn by blue dotted solid line, v = 6.0 V for A = AFS in LAD is drawn by
red dotted line, v = −2.2 V for A = AFL in LAD1 is drawn by yellow solid line, v = −12.3 V for
A = AFL in LAD2 is drawn by purple solid line.

From Figure 21a, the non-sinusoidal periodic oscillation occurs in an open region
v ∈ [−2.35,−1.60] for A = AM as depicted by the blue solid line (or v ∈ [5.25, 5.669] for
A = AFS as depicted by red dotted line or v1 ∈ [−2.151,−2.352] as depicted by yellow
solid line and v2 ∈ [−13.385,−13.286] as depicted by purple solid line for A = AFL) on the
RHP. Then, the periodic oscillation exists in an open region v ∈ [−1.45,−1.60) for A = AM
as depicted by blue solid line (or v ∈ [3.22, 3.25) for A = AFS as depicted by red dotted
line or v1 ∈ (−1.33,−2.03) as depicted by yellow solid line and v2 ∈ (−13.049,−13.042)
as depicted by purple solid line for A = AFL) on the LHP in Figure 21b. However,
in Figure 21c, the spiking oscillation is observed in A = AFS in LAD and A = AFL in
LAD2 domains whereas the periodic oscillation can be observed in A = AM in LAD
and A = AFL in LAD1 with all the input voltages are chosen in the limit cycles ranges.
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It is evident that the domain of spiking periodic oscillation could occur depending on
the parameters of the proposed universal CCM model, which is not mentioned in the
supercritical Hopf bifurcation theory. Finally, the non-periodic oscillation with a small
amplitude could exist on the open LHP that that is far away from the Hopf bifurcation
points in Figure 21d. In other words, the non-sinusoidal “spiking” periodic oscillation,
periodic and non-periodic oscillation can coexist in the proposed universal model (1);

(3) Bursting oscillation
From above figures, the distributions of the spiking oscillation (i.e., action potential)

has been analyzed, which resemblance to biologically-generated action potentials at the
same time, it verifies the Chua’s theory on “local activity” is the origin of action potential
(spikes). In this subsection, in order to further observe the neural dynamics for the proposed
CCM-based second-order circuit, the other significant nonlinear behavior is presented, such
as bursting oscillation and their distributions, which are illustrated in Figure 22.

(a) (b)

(c) (d)

Figure 22. The bursting oscillation behaviors in the LAD for the proposed model: (a) at v = −2.485 V
for A = AM over v ∈ [−2.49,−2.472] is graphed by blue solid line, at v = −3.82 V for A = AFL in
LAD1 is graphed by green solid line, at v = −13.241 V for A = AFL in LAD2 is graphed by pink
solid line; (b) at v = 5.9 V for A = AFL over v ∈ [5.722, 5.901]; (c) The bursting region of A = AM;
(d) The bursting region A = AFL.

Observing all the bursting regions. They lie on the open LHP with a non-periodic
small-amplitude oscillation, but unstable, and rapidly transition into a stable (oscillating)
motion as V increases in LAD(s). Among them, the widest region is the case of A = AFL,
and the narrowest one is A = AM. There are two regions that have been found in the
case of A = AFL. In other words, more complex nonlinearity and neural dynamics exist
in the case of A = AFL, such as edge of chaos, local active domain, the compensated
positive inductance (L∗), limit cycle, supercritical Hopf bifurcation, spiking and bursting
oscillation, and so on. As the essential of the bursting which implies a series of neural
behaviors, which is one of the most important topics in the research of neuromorphic, such
as biological adaptive behavior, long-short-term memory, biological emotion-/memory-like
models, etc. Although all the bursting oscillations are distributed in a tiny-region(s), they
still could be used to construct the emulated electronic neuron or neural network circuits.
Clearly, the bursting phenomenon agrees with the engineering requirement in the field of
biomimetic neurology, and is our primary contribution for the proposed CCM.
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5. Conclusions

In order to gain in-depth understanding of the nonlinear characteristics of the Chua
corsage memristor and explore the applications in the field of biomimetic neurology, the uni-
versal model and generation rules of the m-lobe Chua corsage memristor are introduced,
as well as their natural characteristics. The novel small-signal equivalent circuit with one
positive capacitance and two resistors is proposed and its impedance function is presented
and analyzed to verify the related theory. Moreover, the zero-pole diagrams and frequency
response of the admittance functions for the simplest oscillator are discussed in detail,
according to the existence of the edge of chaos. Furthermore, the features and distribution
of the compensated positive inductance (L∗) are discussed and summarized. In addition,
the oscillation mechanism of the proposed CCM-based simplest oscillator is analyzed.
Finally, the neural dynamics are demonstrated, such as the limit cycle, supercritical Hopf
bifurcation, spiking and bursting oscillation, respectively. This study provided a theoretical
foundation for application in the field of biomimetic neurology.
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The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals
CCM the Chua corsage memristor
G0 a real constant
A one real parameter
AM the midpoint
AFS the first segment
AFL the last segment
Qm the equilibriums (m = 0, 1, 2, . . . )
Tm the turning points (m = 0, 1, 2, . . . )
V the voltage
I the current
Vm the voltage of the proposed memristor
Im the current of the proposed memristor
Rm and Rn the resistance of two resistors
Cm the capacitance of one capacitor
POP the power-off-plot
DRM the dynamic route maps
LAD the local active domain
RHP and LHP right-half plane and left-half plane
Y and Z the equivalent asmittance and impedance
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