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Abstract: This paper presents an extensive experimental investigation to identify the influence of
signal parameters on a piezoelectric harvester’s performance. A macro-fibre composite energy
harvester was studied as an advanced, flexible, high-performance energy material. Gaussian white
noise, and single-frequency and multi-frequency excitation were used to investigate nonlinearity
and multiple-frequency interactions. Using single low and high frequencies, we identified the
nonlinearity of the harvester’s vibration. Multi-frequency excitation with a series of low-to-high-
frequency harmonics mimicked the practical vibration signal. Under such multi-frequency excitation,
the harvester’s nonlinear behaviour was studied. Finally, the interaction effects among multiple
frequencies were identified. The results show that under pure resonant excitation, high-level vibration
led to high-level mechanical strain, which caused nonlinear vibration behaviour. Moreover, it was
shown that the different harmonics excited the various structure bending modes, which caused
the nonlinearity of multi-frequency excitation. The first four harmonics of the real-time signal
were important. The experimental results emphasise the resonant nonlinearity and interactions of
multi-frequency excitation effects.

Keywords: piezoelectric; real-time vibration; random signal; white noise; nonlinearity

1. Introduction

Piezoelectric materials with electrical-to-mechanical conversion abilities are alterna-
tives to power electronic devices, as they utilise the often-wasted electrical energy. Piezo-
electric Vibration Energy Harvesting (PVEH) has found industrial [1] and bio-related [2]
applications. By moving toward self-powered electronics with PVEH, electronic devices
and biomedical sensors/actuators can be installed in inaccessible areas, such as in vivo or
remote areas, using the often-wasted available energy [3].

Practical vibration signals from machines or the environment are often random, multi-
frequency signals. Despite extensive PVEH from practical vibrations [4,5], a laboratory-
controlled sinusoidal input is typically used as an excitation signal, which is different
from real-time vibration systems, as real-time vibration signals are stochastic. Real-time
randomness may affect the efficacy of piezoelectric harvester optimisation practices [6],
emphasising the importance of multi-frequency vibration analysis of piezoelectric energy
harvesters (PEHs). Some studies have analysed PEHs using random vibration methods,
such as white noise [7] and Gaussian-coloured noise [8]. Moreover, PVEH using wind
force, as another familiar environmental energy source, entails randomness, which has
been experimentally investigated [9]. These studies often focus on the PEH output without
properly focusing on different excitation frequencies and multi-modal beam models. In
PVEH, the frequency and amplitude of the vibration source are prominent parameters of
the output power of a PEH [10,11]. The PEH maximum voltage is a vibration signal with
an excitation frequency close to the natural frequency [12]. This process is called frequency
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matching [13,14], and many studies have presented good frequency matching [15] or
broadband frequency matching [16] techniques. The vibration amplitude is another vital
element that impacts the output power. According to the typical linear models, PEH power
depends on the square of the amplitude of the external sinusoidal vibration [17,18].

Mechanical strain is directly linked to the electrical charge flow in a piezoelectric
material. In other words, piezoelectric strain corresponds to electrical energy generation.
Previous studies have pointed to the nonlinearity of PEH performance under high-level
single-frequency resonant excitation [19]. The nonlinear effect is more significant when
the beam is more flexible due to specific boundary conditions [20]. In the clamped–free
beam, the most used PVEH configuration, the strain is non-uniform, and the clamped-end
region has the maximum strain over the whole volume [16]. Thus, the piezoelectric beam
experiences large strain in this configuration. A high strain level, especially under resonant
clamped–free excitation, causes a nonlinear effect on the PEH; however, previous studies
have not presented a comprehensive frequency-spectrum analysis of high-level vibrations.

PVEH is a multidisciplinary research area closely connected to vibration character-
istics. Yet, many vibrational phenomena, such as nonlinearity and multi-frequencies,
should be addressed. Modelling literature studies typically use single-frequency and lin-
ear assumptions [3,21]. In contrast, there is a lack of practical and nonlinear vibration
signal analysis. The unmet goals include comprehensively analysing PEHs subjected to
multi-frequency vibration signals, the interaction effects of different frequencies, the signal
vibration randomness, and high-level vibrations. Such comprehensive analysis would
provide an accurate energy estimation of the practical vibration sources and assess the cur-
rent linear methods regarding real-time vibration signals. The present study introduces a
deep experimental work on vibration signals with randomness and multi-frequencies. The
effects of increasing the vibration level of different single-frequency and multi-frequency
signals were studied. Moreover, the interaction effects of the different vibration modes
were analysed. These innovative investigations significantly enrich the PVEH knowledge
of modelling and output power estimation.

The work of this manuscript is categorised as follows: Section 2 discusses the need
for multi-frequency analysis with a real-time vibration signal demonstration. A linear
modelling technique is presented in Section 3 for natural frequency estimation. Moreover,
the model for natural frequency estimation was validated with experimental tests, as shown
in Section 4. Section 5 deals with the results and discussion, including the randomness
effect, the effects of increasing the vibration level of single-frequency and multi-frequency
vibrations, and the interaction effects of multi-modal vibrations on a PEH. Section 6 presents
the concluding remarks and the proposed future works. The comparisons of high-level
vibrations of single-frequency and multi-frequency vibration signals show the high-strain-
level nonlinearity of the PEH. In addition, the interaction effects among different vibration
modes can be significant.

2. The Need for Multi-Frequency Harmonic Analysis

Practical vibration sources are random vibration signals comprising a series of har-
monic signals. The Fourier Transform (FT) of a time-domain vibration signal demonstrates
the frequency information of the vibration source. Therefore, a full-range frequency analy-
sis is required for energy harvesting power estimation. As a practical example, the water
pump acceleration signal of a running water pump with rotation speed Ω = 2970 rpm
(Ω ≈ 49.5 Hz) is shown in Figure 1a [22]. This acceleration signal is influenced by the roller
bearing elements and structural elements, which affect the FT peak amplitudes due to
factors such as bearing ball diameter and number of balls [23,24]. This acceleration signal is
not purely harmonic and consists of harmonic multipliers of Ω, according to the FT signal
shown in Figure 1b. In the zoomed-in view of the FT signal, the four dominant frequencies
are shown and marked with 1 × Ω, 2 × Ω, 3 × Ω, and 4 × Ω.
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vibration frequencies is difficult due to different vibration mode shapes. 

  

Figure 1. Real example of vibration from an operation machine: (a) acceleration and (b) frequency
spectra of vibration signal from a water pump during operation.

A common assumption in piezoelectric harvester analysis is the single-mode as-
sumption, which simplifies modelling by only considering a frequency range around
the fundamental harvester frequency. Analytical modelling studies are often simplified
for single-frequency harmonic vibrations, but practical vibration signals are not single-
frequency harmonics. High-frequency harmonics may excite a harvester’s high-vibration
modes. Since an electrode covers the whole piezoelectric surface, electrical charge can-
cellation may be experienced in multi-vibration modes. Therefore, a full-range frequency
analysis is needed to assess the high-frequency harmonics and interaction effects among
high frequencies.

Moreover, most analytical models present a linear model for energy harvesting power
estimation. The linear model assumes a linear relationship between input acceleration and
output voltage. Nevertheless, assessing linearity under conditions of multiple vibration
frequencies is difficult due to different vibration mode shapes.
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3. Closed-Form Solutions for Mechanical and Electrical Responses

an are the sampled acceleration signal measurements of acceleration function a(t). To
obtain the closed-form solutions under this general load, the acceleration is represented by
a series of harmonic functions using the Fast Fourier Transform (FFT).

Ai =
N−1

∑
n=0

ane−j 2πin
N (1)

where Ai is the external acceleration FFT and N is the number of sampled measurement data.
For the vibration solution of the harvester, the piezoelectric beam deformation is

denoted by

w(x, t) =
∞

∑
r=1

φr(x) ηr(t) (2)

where φr(x) is the displacement-dependent function (beam mode shapes) and ηr(t) is the
time-dependent mechanical deformation function.

The electromechanical equations of a piezoelectric unimorph without tip mass are
given by [15]

..
ηr(t) + 2ζrωr

.
ηr(t) + ω2

r ηr(t) + YrVR(t) = σr an (3)

CP
.

VR(t) + (1/R)VR(t)−Λr
.
ηr(t) = 0 (4)

where the parameters are given in Table 1. The unimorph parameters are shown in Figure 2.

Table 1. Parameters of the unimorph harvesting model.

Definition Formula Parameter

ωr Natural frequency (λr L)2
√

YI
m∗L4

L Beam length (m)
b Beam width (m)

YI
Beam stiffness
b
3
[
Ys
(
Z3

b −Z
3
a
)
+ Yp

(
Z3

c −Z3
b
)] h Layer thickness (m)

ρ Density (kg/m3)
m∗ Mass per unit length b

(
ρphp + ρshs

)
Y Elastic modulus (Pa)

λr Natural frequency coefficient, 1.875, 4.694, 7.885 ζr Damping coefficient

Yr
Piezoelectric energy conversion

modal coefficient
P
(

dφr(x)
dx

∣∣∣
x=L

)
ε33 Permittivity (F/M)
R Electrical load (Ω)

P − e31b
2hp

[
Z2

c −Z2
b
]

Za Z-distance of neutral axis

Λr
Piezoelectric reverse energy
conversion modal coefficient

− e31(hp+hs)b
2

(
dφ(x)

dx

∣∣∣
x=L

) Zb
Z-distance: piezo-bottom to

neutral axis
Zc Z-distance: neutral axis to the top

CP Piezoelectric capacitance ε33bL
hp

Subscript
p Piezoelectric layer

φr(x) Harvesting beam mode shapes χr[cosh(λrx)− cos(λrx)
+αi(sinh(λrx)− sin(λrx))]

Subscript
s Substrate layer
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Assuming a linear framework, mechanical displacement ηr(t) and output voltage
VR(t) are the summation of the outputs from each harmonic Ωi, starting from i = 0 to +∞.
Individual harmonic components are denoted with ηr, Ωi

and VR,Ωi , respectively. Therefore,
the overall mechanical vibration and electrical responses are

ηr(t) ∼= ∆Ω
N−1

∑
i=0

ηr, Ωi
.ejΩit (5.a)

VR(t) ∼= ∆Ω
N−1

∑
i=0

VR,Ωi .e
jΩit (5.b)

where ηr, Ωi
is the mechanical response and VR,Ωi is the piezoelectric voltage response

due to a nominal excitation harmonic with Ωi frequency. Note that the over-bar indicates
the magnitude.

For obtaining ηr, Ωi
and VR,Ωi , the harmonic solution analysis of the piezoelectric

energy harvester differential is carried out [25], as the steady-state relationships can be
given by (

ω2
r −Ω2

i + j2ζrωrΩi

)
ηr, Ωi

+ γrVR,Ωi = σr Ai (6.a)(
1
R
+ jCPΩi

)
VR,Ωi =

∞

∑
r=1

jΩiΛr ηr, Ωi
(6.b)

Eliminating mechanical response ηr, Ωi
between Equations (6.a) and (6.b), the output

voltage can be expressed as

VR,Ωi = Ai

∣∣∣∣∣∣
1

m∗ jΩi ∑∞
r=1 Λrσr

1
ω2

r−Ω2
i +j2ζrωrΩi

1
R + jCPΩi + jΩi ∑∞

r=1
Λrγr

ω2
r−Ω2

i +j2ζrωrΩi

∣∣∣∣∣∣ (7)

Finally, the total voltage generation is calculated as

VR ∼= ∆Ω

∣∣∣∣∣N−1

∑
i=0

VR,Ωi

∣∣∣∣∣ = ∆Ω

∣∣∣∣∣∣
N−1

∑
i=0

Ai

1
m∗ jΩi ∑∞

r=1 Λrσr
1

ω2
r−Ω2

i +j2ζrωrΩi

1
R + jCPΩi + jωi ∑∞

r=1
Λrγr

ω2
r−Ω2

i +j2ζrωrΩi

∣∣∣∣∣∣ (8)

The output power is calculated as

PR =
VR

2

R
∼=

∆Ω2

R

∣∣∣∣∣∣
N−1

∑
i=0

Ai

1
m∗ jΩi ∑∞

r=1 Λrσr
1

ω2
r−Ω2

i +j2ζrωrΩi

1
R + jCPΩi + jωi ∑∞

r=1
Λrγr

ω2
r−Ω2

i +j2ζrωrΩi

∣∣∣∣∣∣
2

(9)

This power conversion term is frequency and load dependent, in addition to being
dependent on the material and geometrical properties.

Equation (9) contains essential information:

(1) The total output power is calculated using two series over the frequency range and
the modal mode shapes for general input acceleration. Therefore, parameters such as
Yr and Λr are mode-shape dependent, in addition to being dependent on the external
frequency, which is Ωi. The interaction between the external excitation frequency and
the mode shapes is a complex research object, specifically when an electrode covers
the piezoelectric layer.

(2) Moreover, there is a linear relationship between the output power and the external
square acceleration amplitude. This linear dependency over different frequencies
needs to be researched, since excitation and modal mode interactions can be nonlinear.

This paper tackles the above two research questions.
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4. Experimental Setup and Initial MFC Harvester Characterisation
4.1. Experimental Setup

Figure 3a shows the test rig for all the experimental measurements. Two aluminium
base plates connected a B&K shaker to the piezoelectric sample, tightened with four bolts.
The amplifier was controlled with a National Instruments NI 9263 module, which generated
analogue voltage signals. A KEPCO BOP 100-10MG amplifier amplified the signals and
powered the shaker. The piezoelectric harvester output wires were connected across a
resistive load of resistance R. A Data Acquisition (DAQ) system, an 8-channel National
Instruments NI 9201 module, was employed for reading the voltage across the resistive
load (which was also the voltage across the harvester). The NI modules were placed in an
NI cDAQ 9172 chassis connected with a USB cable to the computer.
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The shaker input voltage signal, y(t), was varied in frequency and amplitude, and the
piezoelectric voltage was measured. The shaker input voltage was a single-frequency or
multiple-frequency harmonic.

The piezoelectric sample comprised a macro-fibre composite (MFC) of 0.3 mm in
thickness, an aluminium substrate shim of 0.12 mm, and an epoxy rapid 332 bonding
layer of ~0.4 mm in thickness. The bonding layer has little effect on the natural frequency,
but it is a significant source of damping [26]. Therefore, the bonding layer was neglected
in the structural modelling of the natural frequency; however, its effect was considered
by extracting the damping coefficient experimentally, so the bonding layer influence was
observed. The bonding layer joined the MFC and substrate shim. The MFC was the M-
8528-P2 type from Smart Material GmbH (Dresden, Germany) [27], a piezoelectric bending
energy harvester. The MFC had seven sub-layers: two Kapton outer layers, two acrylic
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layers, two electrodes, and one central active piezoelectric layer. More information about
the MFC can be obtained from Smart Material Inc. [27]. Figure 3b shows the MFC sample.

4.2. PVEH Device Optimum Characterisation

The piezoelectric sample was primarily analysed and characterised with the model and
experimental tests presented in this subsection. The material properties for modelling were
as follows: Young’s moduli of MFC and aluminium layers were 15.85 [28] and 68.9 GPa,
and the corresponding densities were 5540 and 2700 kg/m3. The damping coefficient was
5% [29]. The relative permittivity coefficient and piezoelectric constant d31 were 1800 and
−170 × 10−12 C/N, respectively.

For this energy harvester, the first undamped natural frequencies obtained with the
current model were compared with those of the experimental tests, as reported in Table 2.
The natural frequency difference was 1.3 Hz. The higher-mode natural frequencies are also
given in Table 2 and were employed in the multi-modal analysis. This difference in the
natural frequencies can be linked to the non-uniform piezoelectric MFC; in practice, the
commercial MFC sample had an active area where the piezoelectric material was placed,
and on the outer areas, there were only Kapton layers. Including this non-uniformity would
have required advanced piezoelectric beam modelling, which was beyond the scope of this
paper. For detailed demonstration and modelling of an MFC, one can refer to [16].

Table 2. Comparison of undamped natural frequencies between the presented method and the experiment.

Undamped Natural Frequencies ωr (Hz)

Experiment Current Method
(Presented in Section 2) Error (Hz)

First bending mode 20.4 21.7 1.3 Hz
Second bending

mode — 136.3 —

Third bending mode — 381.5 —
Fourth bending mode — 747.7 —
Fifth bending mode — 1235.9 —

Piezoelectric unimorph harvesters are characterised by a natural frequency and op-
timum power generation. The studied harvester was first evaluated over a frequency
range to obtain these conditions. Figure 4a shows power with load resistances over fre-
quency. The resonant frequency was constant for all the load resistances and was equal to
ωr=1 = 20.4 Hz. This frequency was the first resonant frequency of the harvester. Moreover,
there was another resonant frequency, ωpc = 31.0 Hz, associated with the piezoelectric
structural effects, here called piezoelectric-coupled frequency. Second, output power versus
load resistances were evaluated for optimum load resistance selection. Figure 4b shows
output power versus load resistance at the resonant frequency. The optimal load resistance
of 21.8 kΩ led to the highest power generation.
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5. Results and Discussion

The result section provides a comprehensive result set from the experimental tests.
Through the experimental tests, power generation with Ropt = 21.8 kΩ was studied with
various excitation signals. Note that the load resistance of Ropt = 21.8 kΩ was employed
in all experimental results presented in this section. Excitation signals with Added White
Gaussian Noise (AWGN), single-frequency harmonics, and multi-frequency harmonics
were studied. Moreover, the effect of the vibration level from low-level to high-level vibra-
tions was studied with harmonics with single frequency and multi-frequencies. Because in
piezoelectric energy harvesting applications a harvester’s natural frequency is matched to
the dominant acceleration frequency, here, Ω = ωr=1 was assumed.

5.1. Effects of Adding White Noise to the Excitation Signal

Pure analytical solutions often consider a single harmonic signal without noise as an
excitation signal. In contrast, practical vibration sources often have added noise. Here,
the effect of adding white noise was studied by considering Added White Gaussian Noise
(AWGN) for a single harmonic signal with matched frequency, i.e., Ω = ωr=1. The
shaker vibration signal was y(t) = 0.1(1 + AWGN) sin(2πΩt) (V), where “AWGN” is
the white noise percentage, 1% or 2%. The shaker vibration signals with and without
AWGN are shown in Figure 5a. The output power results showed that adding white noise
increased the power slightly (see Figure 5b). White noise, i.e., random noise with a uniform
frequency domain value, caused additional vibration on the piezoelectric harvester, so
power generation slightly increased. An important conclusion is that white noise in the
practical vibration data did not show a reduction in power influence.
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5.2. Effects of Increasing the Vibration Level with Single-Frequency Harmonics

A single-frequency harmonic excited the harvester, and the vibration-level effect on the
output power was investigated by increasing the harmonic amplitude. This experimental
setup tested the linearity assumption of power generation versus input square acceleration
amplitude. Note that a single frequency does not imply constant frequency. Various single-
frequency harmonics with different frequencies were studied. Considering the matched
frequency (Ω1 = ωr=1) up to six harmonics, the natural multiples of the fundamental
frequency were studied. Therefore, Ωi = i×ωr=1, i = 1, . . . , 6.
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Shaker input signals are symbolised with yJK(t) = YJ sin(Kωrt), where Y is the mag-
nitude of the shaker excitation signal and K is the driving frequency multiplier. Subscript
J denotes different excitation magnitude levels for one driving frequency. By changing Y,
the vibration level moves from low-level to high-level vibrations; in other words, the strain
on the piezoelectric material changes from low levels to high levels.

The output power with Ropt was recorded during three independent runs. Table 3
shows the output power, and average and experimental errors for all the harmonics and
vibration levels. An experimental error of less than 4% implies experimental repeatability.
The sensitivity comparisons showed the dramatic power increase obtained by magnifying
the excitation amplitude of all excitation harmonics; however, the trends were not the same
for all harmonics.

Table 3. Base excitation signal characteristics and experimental results obtained by connecting
harvester to optimum load.

Ωi YJ (V) Prms(µW) Experimental
Error (%) Ωi YJ (V) Prms(µW) Experimental

Error (%)

Ω1 =
1×ωr=1 = 20.4 Hz

0.04 19.51 1.22

Ω3 =
3×ωr=1 = 61.2 Hz

0.04 4.01 1.13
0.05 38.25 1.25 0.05 6.36 0.33

0.075 140.68 1.20 0.075 13.73 0.55
0.09 243.13 1.54 0.09 19.45 0.49
0.1 344.21 1.18 0.1 24.08 1.71

0.12 543.71 0.29

Ω4 =
4×ωr=1 = 81.6 Hz

0.04 3.01 2.75
0.17 1104.92 0.29 0.05 4.87 0.78
0.2 1370.04 1.70 0.075 10.13 0.46

Ω2 =
2×ωr=1 = 40.8 Hz

0.04 6.98 1.76 0.09 14.32 0.81
0.05 11.45 1.05 0.1 17.44 0.47

0.075 24.91 0.75
Ω5 = 5×

ωr=1 = 102.0 Hz

0.05 4.34 3.26
0.09 35 0.82 0.08 10.65 1.78
0.1 43.45 0.58 0.1 17.25 3.85

Ω6 = 6×
ωr=1 = 122.4 Hz

0.05 3.84 2.32
0.08 9.2 0.96
0.1 14.12 2.99

Output power (P) versus square shaker signal amplitude (Y2) for Ω1 to Ω6 frequencies
are plotted in Figure 6a. According to the analytical model in Equation (9), the relation
between power and square input amplitude is linear for all frequencies; however, Figure 6a
demonstrates a separate pattern for Ω1 excitation. This apparent pattern indicates that the
resonant excitation frequency differed from the other frequencies.

Further analyses of the power pattern were conducted with the dimensionless study of
power versus square vibration amplitude. The dimensionless study divided the parameters
into the lowest-level vibration amplitude and power. The dimensionless power–vibration
values for Ω1 excitation frequency and for Ω2 to Ω6 excitation frequencies are plotted in
Figure 6b and c, respectively.

As shown in Figure 6c, the slope of the fitted line for Ω2 to Ω6 harmonic excitation
frequencies was approximately one; power linearly changed by the square of input acceler-
ation at these frequencies. This conclusion is in line with the analytic model in Equation (9).
In contrast, for Ω1 frequency, where the excitation frequency was the fundamental natural
frequency (Figure 6b), the slope of the fitted line was approximately three.
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Figure 6. Power variation concerning excitation magnitude in the single-harmonic case with
Ropt = 21.8 kΩ. (a) plots the output power (P) versus square shaker signal amplitude (Y2) for W1 to
W6 frequencies, (b,c) plot the dimensionless power–vibration values for W1 excitation frequency and
for W2 to W6 excitation frequencies respectively.

According to the linear bending theory, the axial strain depends on the beam curva-
ture [15], e.g., εxx ∝ ∂2w

∂x2 . By increasing the vibration level, the strain on a piezoelectric
material also increases. Assuming the matched frequency (Ω1 = ωr=1), Ω1-frequency
vibration excitation creates resonance deformation on the piezoelectric beam, and the reso-
nance deformation is large. Therefore, a high vibration level is expected to create elevated
levels of strain, which goes beyond the linear assumption between the axial strain and
beam curvature. However, the experimental dimensionless study showed that for higher
harmonics, e.g., Ω2 and beyond, a high vibration level does not cause a high strain level;
therefore, the linear analytical model is valid.

It has been demonstrated that nonlinearity exists even in a typical no-added-tip-mass
energy harvester. In many typical energy harvesters, an added mass adjusts the funda-
mental frequency and increases the power [30], inducing physical deformation, i.e., they
become noticeably enlarged, at the acting frequency [31]. As observed in Figure 6b, increas-
ing physical deformation creates nonlinearity, and the added-tip-mass effect is expected
to enlarge nonlinearity. The tip mass affects the first vibration mode more substantially
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than other vibration modes (because of the larger first-mode-shape magnitude); therefore,
the added-tip-mass effect on the nonlinear effects of resonant excitation is expected to
be considerable.

5.3. Effects of Increasing the Vibration Level with Multi-Frequency Harmonics

As demonstrated in Section 2, practical vibration energy sources only have single-
frequency signals instead of a series of harmonic multipliers. Thus, a vibration-level study
was carried out on a multi-harmonic signal using vibration-level control. The standard
baseline excitation signal was the summation of harmonics with Ω1 to Ω6 frequencies,
denoted by ZM(t); it excited the piezoelectric harvester, and the corresponding RMS power
with optimum load was PZM . ZM(t), as given in Equation (10) and shown in Figure 7a.

ZM(t) = M[0.04 (V)]sin(Ω1t) + [0.05 (V)]sin(Ω2t) + [0.05 (V)]sin(Ω3t)
+[0.05 (V)]sin(Ω4t) + [0.05 (V)]sin(Ω5t) + [0.05 (V)]sin(Ω6t)

(10)

where M is the signal magnification factor. Note that Ωi = i ×ωr=1, i = 1, . . . , 6. In
practice, four magnification factors, M = 1, 1.2, 1.5, 1.75, and 2.0, were assigned. The
associated acceleration signals from Z1(t) to ZM=2(t) are shown in Figure 7b.
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The optimum power with 21.8 kΩ for different magnification factors is shown in
Figure 8a. As expected, the power increased with the increase in the excitation vibration
level; however, a nonlinear variation was observed. Further analyses were conducted
on dimensionless experimental power versus square magnification factor (Figure 8b).
Figure 8b shows that the experimental correlation between P and M2 was not linear, while
according to the analytical modelling of P∝M2, the empirical correlation between power
and the magnification factor is given by

PZM

PZ1

= 0.77 ln M2 (11)

The output power obtained in the experiments was smaller than that obtained by
employing the linear analytical theory. For explaining this statement, the interaction effects
between the harmonics needed to be studied.

5.4. Interaction Effects between Different Excitation Harmonics

The interaction effects were studied by applying an excitation signal comprising six
harmonics and controlling the harmonic amplitude. The excitation signal is denoted by

Z(t) = α1sin(Ω1t) + α2sin(Ω2t) + α3sin(Ω3t) + α4sin(Ω4t) + α5sin(Ω5t) + α6sin(Ω6t) (12)

where α1 to α6 can be controllably changed. Note that Ωi = i×ωr=1, i = 1, . . . , 6.
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(b) normalised power versus magnification factor.

A three-level experimental design was proposed so that nonlinear relationships could
also be captured and the overlap of the interaction effects could be avoided. In addition, to
avoid overlapping the interaction effects, two levels for α1 and three levels for α2 to α6 were
employed. A fractional factorial design using the orthogonal method of resolution III was
used with 36 runs of experiments [32]. Table 4 shows the orthogonal array with thirty-six
runs. Moreover, three duplications were performed.

Table 4. Orthogonal design of experiments on interaction effects of harmonics.

Index α1
(V)

α2
(V)

α3
(V)

α4
(V)

α5
(V)

α6
(V) Index α1

(V)
α2
(V)

α3
(V)

α4
(V)

α5
(V)

α6
(V)

1 0.04 0.05 0.05 0.05 0.05 0.05 19 0.1 0.05 0.05 0.08 0.05 0.08
2 0.04 0.08 0.08 0.08 0.08 0.08 20 0.1 0.08 0.08 0.1 0.08 0.1
3 0.04 0.1 0.1 0.1 0.1 0.1 21 0.1 0.1 0.1 0.05 0.1 0.05
4 0.04 0.05 0.05 0.08 0.08 0.1 22 0.1 0.05 0.05 0.1 0.1 0.1
5 0.04 0.08 0.08 0.1 0.1 0.05 23 0.1 0.08 0.08 0.05 0.05 0.05
6 0.04 0.1 0.1 0.05 0.05 0.08 24 0.1 0.1 0.1 0.08 0.08 0.08
7 0.04 0.05 0.08 0.05 0.1 0.1 25 0.1 0.05 0.1 0.08 0.05 0.1
8 0.04 0.08 0.1 0.08 0.05 0.05 26 0.1 0.08 0.05 0.1 0.08 0.05
9 0.04 0.1 0.05 0.1 0.08 0.08 27 0.1 0.1 0.08 0.05 0.1 0.08
10 0.04 0.05 0.08 0.1 0.05 0.08 28 0.1 0.05 0.1 0.1 0.08 0.05
11 0.04 0.08 0.1 0.05 0.08 0.1 29 0.1 0.08 0.05 0.05 0.1 0.08
12 0.04 0.1 0.05 0.08 0.1 0.05 30 0.1 0.1 0.08 0.08 0.05 0.1
13 0.04 0.05 0.1 0.05 0.08 0.05 31 0.1 0.05 0.08 0.05 0.08 0.08
14 0.04 0.08 0.05 0.08 0.1 0.08 32 0.1 0.08 0.1 0.08 0.1 0.1
15 0.04 0.1 0.08 0.1 0.05 0.1 33 0.1 0.1 0.05 0.1 0.05 0.05
16 0.04 0.05 0.1 0.1 0.1 0.08 34 0.1 0.05 0.08 0.08 0.1 0.05
17 0.04 0.08 0.05 0.05 0.05 0.1 35 0.1 0.08 0.1 0.1 0.05 0.08
18 0.04 0.1 0.08 0.08 0.08 0.05 36 0.1 0.1 0.05 0.05 0.08 0.1

Table 5 shows the Analysis of Variance (ANOVA) table with which the meaningful
variations were interpreted. Parameter F is the mean square of responses within the same
treatment factor divided by the mean square of responses in all experimental runs. F > 1
indicates meaningful variation, and a greater F demonstrates a more sensitive treatment
factor. The ANOVA table shows that variables α1 to α4 have F > 1, meaning that their
influence on the output power was substantial. Table 5 shows that the influence of the α1
factor (with Ω1 frequency) was larger than that of the other factors and that the excitation
frequencies of Ω1 to Ω4 had meaningful effects on the output power. This conclusion
implies that harmonics in a practical vibration source up to the fourth harmonic should
be considered.
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Table 5. Analysis of Variance (ANOVA) table of the designed test with three duplications.

Variable Standard Deviation of
¯
PR

Degree of
Freedom Mean Square F

α1 (with Ω1 frequency) σG1 1 σG1 = 138,434.3 σG1 /(σe/96) = 109.59

α2 (with Ω2 frequency) σG2 2 σG2 /2 = 4418.2 (σG2 /2)/(σe/96) = 3.50

α3 (with Ω3 frequency) σG3 2 σG3 /2 = 5538.2
(
σG3 /2

)
/(σe/96) = 4.38

α4 (with Ω4 frequency) σG4 2 σG4 /2 = 4964.7 (σG4 /2)/(σe/96) = 3.93

α5 (with Ω5 frequency) σG5 2 σG5 /2 = 507.4
(
σG5 /2

)
/(σe/96) = 0.40

α6 (with Ω6 frequency) σG6 2 σG6 /2 = 119.5
(
σG6 /2

)
/(σe/96) = 0.09

Residual σe 3× 25 = 96 σe/96 = 1263.2

Figure 9a–e demonstrate the interaction effects of different harmonics. The interaction
effects of the Ω1–Ω2, Ω1–Ω3, and Ω1–Ω4 harmonics were substantial, while the Ω5 and Ω6
harmonics had negligible effects. The charge cancellation effect of the Ω1–Ω2 harmonics
was visible, i.e., increasing α2 (with Ω2 frequency) adversely affected α1 (with Ω1 frequency)
and increased the effect on power generation. In Ω1–Ω3 and Ω1–Ω4 harmonics, the interac-
tion effects were positive. In other words, increasing α3 (with Ω3 frequency) or α4 (with Ω4
frequency) did not change the positive effect of the first harmonic.
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Figure 9. Interaction effects of different excitation harmonics in a multi-frequency excitation signal:
(a) Ω1–Ω4 effect; (b) Ω1–Ω3 effect; (c) Ω1–Ω2 effect; (d) Ω1–Ω6 effect; (e) Ω1–Ω5 effect.

The interaction study showed that the negative interaction between the Ω1 harmonic
and the Ω2 harmonic led to smaller power generation than when applying the linear theory,
which is observed in Figure 8b. This observation can be linked to the link between the
resonant harvester frequencies and the different harmonics in the excitation signal. As
demonstrated in Table 6, the first resonant frequency and the piezoelectric-coupled resonant
frequency (ωr=1 and ωpc) were in the range of the first and second excitation harmonics
(Ωi=1 and Ωi=2). Thus, these two excitation harmonics are expected to have considerable
effects compared with the effects of high harmonics.
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Table 6. Comparison of the harvester’s resonant frequencies and the external excitation harmonic
frequencies.

Harvester’s Resonant Frequencies External Excitation Frequencies

ωr=1 = 21.7 Hz Ωi=1 = 20.4 Hz
ωpc = 31.0 Hz Ωi=2 = 40.8 Hz

ωr=2 = 136.3 Hz Ωi=3 = 61.2 Hz
ωr=3 = 381.5 Hz Ωi=4 = 81.6 Hz
ωr=4 = 747.7 Hz Ωi=5 = 102.0 Hz
ωr=5 = 1235.9 Hz Ωi=6 = 124.4 Hz

5.5. Proposing a Nonlinear Model

Large-deformation strain and nonlinear stress–strain constitutive equations are proposed.
Base excitation a(t) deforms the piezoelectric beam with the deformation shape of

w(x, t). In a nonlinear framework, the axial strain is given by

εxx = −z
∂2w(x,t)

∂x2(
1 +

(
∂w(x,t)

∂x

)2
) 3

2
(13)

at level z from the neutral axis.
Moreover, the nonlinear stress–strain constitutive equations can be given by [33]

Tp
xx = Ypεxx − e31Ez +

1
2

βpε2
xx (14)

Ts
xx = Ysεxx +

1
2

βsε2
xx (15)

where Txx is the axial stress, Ez is the z-component electrical field, and β is the nonlinear
coefficient.

Thus, the internal bending moment can be calculated with

M(x, t) = −b
(∫ −Zb

−Za
Ts

xxzdz +
∫ 0

−Zb

Tp
xxzdz +

∫ Zc

0
Tp

xxzdz
)

(16)

Consequently, the beam stiffness (YI) and piezoelectric coupling coefficients (Yr and
Λr) are obtained for the nonlinear model.

The electromechanical voltage equation for the nonlinear model is given by

CP
.

VR(t) +
1
R

VR(t) = −
e31
(
hp + hs

)
b

2

L∫
0

d
dt

[
∂2w(x, t)

∂x2

(
1 +

(
∂w(x, t)

∂x

)2
)]

dx (17)

More details about the nonlinear model can be found in ref. [34].

6. Concluding Remarks and Future Works

This paper presents extensive experimental works aimed at practical PEH performance
characterisation. Single-frequency harmonics with resonant and off-resonant excitation
frequencies, and multi-frequency signals as practical vibration signals were studied as
PVEH excitation signals. The investigations demonstrated the high-strain-level nonlineari-
ties at resonance, while off-resonant harmonics followed the linear theories. Furthermore,
with multi-frequency signals, resonance nonlinearity and different frequency interactions
caused nonlinear performance in the PEH. This paper contributes to the realistic evalu-
ation of piezoelectric energy harvesters. Nonlinear energy harvester models with more
experimental investigation are proposed for future work. Moreover, further studies on
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the parameters of the flexibility characteristics of energy harvesters, such as thickness and
width, are needed.
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