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Abstract: With the continuous progress in integrated circuit technology, single-event effect (SEE)
has become a key factor affecting the reliability of aerospace integrated circuits. Simulating fault
injection using the computer simulation technique effectively reflects the SEE in aerospace integrated
circuits. Due to various masking effects, only a small number of faults will result in errors; the
traditional method of injecting one fault in one workload execution is inefficient. The method of
injecting multiple faults in one workload execution will make it impossible to judge which fault
results in errors because the propagation characteristic of SEE and faults may affect each other. This
paper proposes an improved multi-point fault injection method to improve simulation efficiency
and solve the problems of the general multi-point fault injection method. If one workload execution
does not result in errors, multiple faults can be verified by one workload execution. If one workload
execution results in errors, a specific grouping method can be used to determine which faults result in
errors. The experimental results show that the proposed method achieves a good acceleration effect
and significantly improves the simulation efficiency.

Keywords: aerospace integrated circuits; single-event effect; multi-point fault injection method;
grouping method

1. Introduction

Due to the existence of the earth radiation belt proton, galactic cosmic ray, solar cosmic
ray, and so on, the radiation effect in the space environment seriously affects the reliability
of aerospace integrated circuits [1]. With the continuous progress in integrated circuit
technologies, single-event effect (SEE) has become a key factor affecting the reliability of
aerospace integrated circuits [2,3]. SEE results from the generation of electron-hole pairs
in the sensitive area of the device when high-energy particles bombard microelectronic
devices. These charges are collected by the electrodes of the sensitive device, affecting the
working state of the aerospace integrated circuits [4–6]. The impact of SEE on aerospace
integrated circuits will lead to system functional errors and even system functional failure
in severe cases. So, it is necessary to evaluate the SEE in aerospace integrated circuits.

The evaluation methods of SEE mainly include onboard experiments, ground experi-
ments [7], and computer simulation techniques [8]. The experiment data obtained from
onboard experiments and ground experiments can reflect realistic changes in aerospace
integrated circuits in the radiation environment, but there are disadvantages, such as long
test cycles and high costs. In contrast, computer simulation technology has the charac-
teristics of low cost and high efficiency, which can be used as a supplement to onboard
experiments and ground experiments.

The evaluation method of SEE based on computer simulation technique mainly in-
cludes device-level simulation method, circuit-level simulation method, and system-level
simulation method according to the hierarchy.
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Device-level simulation method uses relevant parameters to build device models and
then adds the radiation model to simulate the impact of SEE [9–11]. This method can reflect
the physical mechanism of SEE with high accuracy, but the simulation speed is slow, so it
is only suitable for small-scale circuits. Circuit-level simulation object is the circuit netlist
described by SPICE. It needs to obtain the transient current source model generated by
the device-level simulation result, and then the transient current source model is added
to the circuit node by PWL or Verilog-A [12–14], etc. Although this method improves the
simulation speed, it still cannot meet the speed requirements of large-scale digital circuits.
So, it is suitable for analog circuits and small-scale digital circuits. System-level simulation
method modifies the relevant signal to simulate the impact of SEE in the RTL model or
higher hierarchy [15–17]. The simulation speed is fast, but it cannot reflect the physical
mechanism of SEE and it cannot be compared to the SEE experiment result.

Therefore, this paper uses a mixture simulation method. The simulation object is
divided into different modules according to the execution function. The module to add the
transient current source model is described by SPICE; the other modules are described by
RTL. Different types of modules are connected through A/D and D/A interfaces, as shown
in Figure 1.

Micromachines 2023, 14, x FOR PEER REVIEW 2 of 14 
 

 

The evaluation method of SEE based on computer simulation technique mainly in-
cludes device-level simulation method, circuit-level simulation method, and system-level 
simulation method according to the hierarchy.  

Device-level simulation method uses relevant parameters to build device models and 
then adds the radiation model to simulate the impact of SEE [9–11]. This method can re-
flect the physical mechanism of SEE with high accuracy, but the simulation speed is slow, 
so it is only suitable for small-scale circuits. Circuit-level simulation object is the circuit 
netlist described by SPICE. It needs to obtain the transient current source model generated 
by the device-level simulation result, and then the transient current source model is added 
to the circuit node by PWL or Verilog-A [12–14], etc. Although this method improves the 
simulation speed, it still cannot meet the speed requirements of large-scale digital circuits. 
So, it is suitable for analog circuits and small-scale digital circuits. System-level simulation 
method modifies the relevant signal to simulate the impact of SEE in the RTL model or 
higher hierarchy [15–17]. The simulation speed is fast, but it cannot reflect the physical 
mechanism of SEE and it cannot be compared to the SEE experiment result.  

Therefore, this paper uses a mixture simulation method. The simulation object is di-
vided into different modules according to the execution function. The module to add the 
transient current source model is described by SPICE; the other modules are described by 
RTL. Different types of modules are connected through A/D and D/A interfaces, as shown 
in Figure 1. 

The transient current source model adopted in this paper is obtained from previous 
work [18] and is added by PWL. 

Verilog
module

SPICE
moduleA/D

Transient current source

D/A Verilog
module

 
Figure 1. Mixture simulation method. 

With the development of integrated circuit technology, the fault injection set becomes 
larger and larger. To effectively reflect the SEE in aerospace integrated circuits, tens of 
thousands of faults need to be verified at least [19]. The traditional fault injection method 
injects only one fault in one workload execution. However, due to the propagation char-
acteristics of SEE and the design characteristics of aerospace integrated circuits, most 
faults will not result in errors [20,21]. The traditional fault injection method is inefficient.  

Injecting multiple faults in one workload execution has the problem of being unable 
to judge which fault results in errors because the errors continue to propagate as the aer-
ospace integrated circuits run. So, it will be impossible to judge whether the subsequent 
faults injected after errors occurred result in errors. In addition, injecting multiple faults 
in one workload execution may result in additional errors compared to injecting one fault. 

The current research direction is mainly to improve efficiency by reducing the fault 
injection set, which is that some faults can be judged whether they result in errors without 
simulation. Some studies analyze SEE by analyzing the instruction program to determine 
whether faults will result in errors [22–24]. Some studies analyze from the perspective of 
logic masking [25,26], register reading, and writing [27]. 

Although these methods can directly improve simulation efficiency, all methods are 
based on injecting only one fault in one workload execution. Otherwise, the methods of 
analyzing the instruction program makes accuracy decline. The methods of analyzing 
logic masking consider logic masking without considering sequential circuits. The 

Figure 1. Mixture simulation method.

The transient current source model adopted in this paper is obtained from previous
work [18] and is added by PWL.

With the development of integrated circuit technology, the fault injection set becomes
larger and larger. To effectively reflect the SEE in aerospace integrated circuits, tens
of thousands of faults need to be verified at least [19]. The traditional fault injection
method injects only one fault in one workload execution. However, due to the propagation
characteristics of SEE and the design characteristics of aerospace integrated circuits, most
faults will not result in errors [20,21]. The traditional fault injection method is inefficient.

Injecting multiple faults in one workload execution has the problem of being unable to
judge which fault results in errors because the errors continue to propagate as the aerospace
integrated circuits run. So, it will be impossible to judge whether the subsequent faults
injected after errors occurred result in errors. In addition, injecting multiple faults in one
workload execution may result in additional errors compared to injecting one fault.

The current research direction is mainly to improve efficiency by reducing the fault
injection set, which is that some faults can be judged whether they result in errors without
simulation. Some studies analyze SEE by analyzing the instruction program to determine
whether faults will result in errors [22–24]. Some studies analyze from the perspective of
logic masking [25,26], register reading, and writing [27].

Although these methods can directly improve simulation efficiency, all methods are
based on injecting only one fault in one workload execution. Otherwise, the methods of
analyzing the instruction program makes accuracy decline. The methods of analyzing
logic masking consider logic masking without considering sequential circuits. The
method of analyzing register reading and writing only considers the circuits with read
and write ports.

So, an improved multi-point fault injection method is proposed in this paper. This
method not only solves the problems existing in the general multi-point fault injection
method but also can be applied to any aerospace integrated circuits. The improved multi-
point fault injection method injects multiple faults in one workload execution. If the
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workload execution does not result in errors, it is proved that the faults injected in this
workload execution would not result in errors. If the workload execution results in errors, a
grouping method is used to find faults that result in errors. Simulation results based on the
Leon2 system show that the proposed method can achieve a speedup of 60.69× at most.

2. Proposed Method
2.1. Motivation

The general multi-point fault injection method cannot determine which fault is an
error fault and the grouping method can solve the problem. The purpose of grouping is to
find the error faults.

Once the workload execution results in errors, the injected faults will be grouped. If
there are no errors, the injected faults would not be grouped. Each group corresponds to a
workload execution with injected faults. Considering the propagation characteristics of
SEE, determining whether a fault is an error fault can only be done on the premise that
only one fault is injected in one workload execution. Therefore, the grouping ends until
the workload execution does not result in errors or the number of injected faults in one
workload execution is 1.

Injecting multiple faults does result in additional errors compared to injecting one
fault, even if the probability of this happening is low. However, the number of injected
faults must be one when judging whether one fault is an error fault or not by using the
grouping method, so this shows that even if it occurs, only increasing the number of
workload executions will not affect the correctness of the results.

Based on the above analysis, the multi-point fault injection method based on the
grouping method can solve the problems of general multi-point fault injection and improve
the simulation efficiency.

2.2. The Introduction of One Multi-Point Fault Injection Process

Before analyzing SEE, it is necessary to run one workload execution completely with-
out injecting faults to obtain the correct simulation data, called golden data, which is
used to judge whether the workload execution that injected faults results in errors. The
multi-point fault injection process proposed in this paper needs to inject a certain number
of faults into one workload execution first; these faults are called the first layer faults, and
this workload execution is called the first layer workload execution. The simulation results
of the first layer workload execution will be compared with the golden data. The specific
grouping method is obtained in Section 2.3. Each group is called one fault group. After the
process of the first layer ends, the process of the second layer begins. First, it is necessary to
judge the number of fault groups and the number of faults contained in each group in the
second layer, which depends on the grouping method of the previous layer. A multi-point
fault injection process ends until a layer contains no fault group. The process of deciding
whether to group the injected faults is shown in Figure 2.
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Take the example of injecting eight faults in one workload execution and the grouping
method is to divide the faults as equally as possible into two groups. Assume that there
is one and only one error fault in eight faults. The number of the first layer faults is eight.
In the first layer, eight faults are injected in one workload execution. The comparison
results are inconsistent, and the number of faults injected is greater than one, the eight
faults will be equally divided into two groups of four faults each and are defined as the
second layer fault groups. The second layer includes two fault groups, so the number of
the second layer workload executions is two and one workload execution results in errors.
The above process is repeated until the multi-point injection process ends. The structure
of this multi-point fault injection process is shown in Figure 3. The number inside the
rectangle indicates the number of faults injected into one workload execution. Red means
the workload execution results in errors; yellow means the workload execution does not
result in errors.
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2.3. Determination of Relevant Parameters

The four cases are shown in Figure 4. The number of the first layer faults in each case
is eight. In Figure 4a, the first layer workload execution does not result in errors because
there are no error faults. However, the number of workload executions required increases
as the number of error faults increases. In Figure 4b–d, 7, 9 and 11, workload executions are
required, and the corresponding numbers of error faults are 1, 2, and 2. When the number
of error faults increases to a certain number, the proposed method will be less efficient than
the traditional fault injection method.

From the above analysis, it can be known that it is necessary to control the number
of error faults in the first layer faults, which is related to the error probability. Otherwise,
the number of fault groups divide, and the number of faults contained in each fault group
are different with different grouping methods. So, one multi-point fault injection process
requires two input parameters: the number of the first layer faults and the specific
grouping method. Next, this paper will explain how to choose the two parameters
through theoretical analysis.

Assume that the number of the first layer faults is k, and the error probability is p. The
number of error faults is a random variable with a binomial distribution. Therefore, the
probability that the number of error faults = i is:

P(x = i) = Ci
k × pi × (1 − p)k−i (1)

Ci
k denotes the binomial coefficient. The number of error faults can vary from 0 to

k theoretically, so the number of workload executions required for one multipoint fault
injection process is:

sum = 1 +
k

∑
i = 1

[R(k,i) × P(x = i)] (2)
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Figure 4. There are four structures and the number of the first layer faults is 8: (a) the number of
error faults is 0 and the number of workload executions required is 1; (b) the number of error faults is
1 and the number of workload executions required is 7; (c) the number of error faults is 2 and the
number of workload executions required is 9; (d) the number of error faults is 2 and the number of
workload executions required is 11.
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R (k, i) denotes the number of workload executions required when the number of the
first layer faults is k, and the number of error faults is i. If i = 0, the number of workload
executions required is one.

Then, it only needs to determine the grouping method to calculate R (k, i). To determine
the grouping method, it is necessary to obtain the complete structure of this multi-point
fault injection process. The complete structure refers to the number of layers, the number
of fault groups contained in each layer, and the number of faults contained in each fault
group. To obtain the complete structure, it is assumed that each workload execution will
result in errors. Therefore, if the number of faults in one fault group is greater than 1, it will
be grouped until the number of faults is 1 for all fault groups in one layer.

The grouping method in this paper only considers four grouping methods, which is
dividing the faults in one fault group as equally as possible into two groups, three groups
four groups, or five groups. Four complete structures can be obtained for the same number
of the first layer faults.

Some special grouping situations need to be explained to ensure that the number of
faults in each group is as equal as possible, for example, if the number of faults in one fault
group is 7 and the faults are divided into three groups, the number of faults in the three
group is 3, 2, and 2. In addition, if the number of faults is 3 but it needs to be divided into
four groups, it will only be divided into three groups and each group contains one fault.

The probability pro that one fault group contains error faults is:

pro = 1 −
Ci

k − nmh

Ci
k

(3)

Ci
k and Ci

nmh
denotes the binomial coefficient. mh denotes the m-th fault group of

the h-th layer. nmh denotes the number of faults contained in the m-th fault group of the
h-th layer.

When a fault group contains error faults, it will be grouped and will need additional
workload executions. The number of additional workload executions depends on the
grouping method; if the fault group is divided into two groups, the number of additional
workload executions is 2; if the fault group is divided into three groups, the number
of additional workload executions is 3. The other grouping methods are the same.
Summing up the number of additional workload executions required for all fault groups,
the number of workload executions required can be obtained when the number of error
faults is i (i ≥ 1), which is:

R(k,i) =
H

∑
h=1

Mh

∑
m=1

{[1 −
Ci

k−nmh

Ci
k

] × group} (4)

H denotes the number of layers, Mh denotes the number of fault groups at the h-th
layer, and group denotes the number of additional workload executions required when a
fault group contains error faults.

Therefore, the number of workload executions required for one multi-point fault
injection process is shown:

sum =1 +
k
∑
i=1

[P(x = i) × R(k,i)]

= 1 +
k
∑
i=1

{P(x = i) ×
H
∑

h=1

Mh
∑

m=1
{[1 −

Ci
k−nmh
Ci

k
] ∗ group}}

(5)

The speedup is shown:

speedup =
k

sum
(6)
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The four grouping methods can obtain four speedups with the same number of the
first layer faults. Based on the speedup, the optimal number of the first layer faults and the
optimal grouping method can be selected. It is worth stating that the error probability also
determines the upper limit for the number of the first layer faults. The error probability
times the optimal number of the first layer faults should be less than one, because the case
without error faults requires the least number of workload executions.

When error probability = 0, it indicates there are no error faults. To ensure the
fastest speed, it is necessary to double the number of the first layer faults this time as
the number of the first layer faults in the next multi-point fault injection process. When
error probability = 0, the more the number of the first layer faults and the more faults
can be verified in one workload execution.

2.4. Add Checkpoints to Optimize the Grouping Method

After obtaining the optimal number of the first layer faults and the optimal grouping
method in Section 2.3, this section proposes a method of adding checkpoints to optimize
the grouping method. By judging whether the workload execution results in errors at all
checkpoints, the earliest checkpoint that detects errors when the workload execution results
in errors is called the error checkpoint. If one workload execution results in errors, it Is
proved that the injection time of error faults is before the error checkpoint. All faults injected
after the error checkpoint need to be injected into one workload execution to determine
whether these faults contain error faults because of the propagation characteristics of
SEE. For the faults injected after the error checkpoint, it requires the same process for
determining other error checkpoints until the workload execution does not result in errors.
The process of adding checkpoints is shown in Figure 5.

Micromachines 2023, 14, x FOR PEER REVIEW 8 of 14 
 

 

Inject faults Start

Error? FinishNODetermine
error checkpoint

Adding 
checkpoints

and
Start execution

YES

Fault group
(Before error 
checkpoint)

Fault group
(After error 
checkpoint)

Injection
time

 
Figure 5. The process of determining error checkpoints. 

The faults are divided into multiple parts by error checkpoints, and the number of 
faults contained in each part can be obtained through the grouping method based on 
checkpoints. It is equal to obtaining the number of the first layer faults in each part, so that 
each part can search for error faults using the optimal grouping method mentioned in 
Section 2.3, and the number of error checkpoints depends on the number of error faults.  

The process of one multi-point fault injection process with the addition of check-
points is shown in Figure 6. Adding checkpoints is performed to find the injection time 
range of error faults, and the number of workload executions required can be reduced. 
Results show that the method with the addition of checkpoints is faster than the multi-
point injection method without the addition of checkpoints. 

Add 
checkpoints

Find 
all error faults
 by grouping

 Determine  
error checkpoints

Finish

Start

Divide into parts

Determine 
optimal parameters

 
Figure 6. The process of one multi-point fault injection process with addition of checkpoints. 

2.5. Overall Simulation Flow 
The overall simulation flow is shown in Figure 7. We can estimate the error probabil-

ity and choose an appropriate initial value to satisfy the error probability times the optimal 
number of the first layer faults that should be less than one. So, the initial number of the 
first layer faults in the first multi-point fault injection process is chosen as 10 in this paper. 
The simulation flow ends until the number of faults that have been verified is large enough 
to calculate the error probability of the circuits.  
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The faults are divided into multiple parts by error checkpoints, and the number of
faults contained in each part can be obtained through the grouping method based on
checkpoints. It is equal to obtaining the number of the first layer faults in each part, so
that each part can search for error faults using the optimal grouping method mentioned in
Section 2.3, and the number of error checkpoints depends on the number of error faults.

The process of one multi-point fault injection process with the addition of checkpoints
is shown in Figure 6. Adding checkpoints is performed to find the injection time range of
error faults, and the number of workload executions required can be reduced. Results show
that the method with the addition of checkpoints is faster than the multi-point injection
method without the addition of checkpoints.
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2.5. Overall Simulation Flow

The overall simulation flow is shown in Figure 7. We can estimate the error probability
and choose an appropriate initial value to satisfy the error probability times the optimal
number of the first layer faults that should be less than one. So, the initial number of the
first layer faults in the first multi-point fault injection process is chosen as 10 in this paper.
The simulation flow ends until the number of faults that have been verified is large enough
to calculate the error probability of the circuits.
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3. Results and Analysis
3.1. Simulation Setup

To validate the proposed method, the SEE simulation based on the Leon2 system is
carried out in this section. Leon2 processor is a 32-bit processor developed by the European
Space Agency (ESA). Its code is composed of synthesizable VHDL code. The Leon2 system
has one Leon2 processor and three SRAMs. The main functional modules of the Leon2
processor include an integer unit, register-file, cache, and memory controller module.
Figure 8 shows the structure of the Leon2 system.

The current source model selected in this paper is based on the previous work and it
is added to the drain of NMOSFET [28]. When faults are injected into the digital circuits,
the following three conditions may occur in the digital circuits [29]: a. direct errors: the
output data of the workload execution is wrong; b. potential errors: the output data of the
workload execution is correct, but the operating state of the workload execution is wrong;
c. invalid errors: errors occur but recover quickly.
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This paper only considers direct errors and potential errors. When the workload
execution is finished, if the information stored in the data SRAM is inconsistent, it is proved
that direct errors occurred. If the five-stage pipeline registers state as inconsistent, it is
proved that potential errors occurred. Either direct errors or potential errors are considered
to indicate the workload execution results in errors.

The time interval between the two checkpoints chosen in this paper is the time for
the aerospace integrated circuit system to complete one process from reading data to
writing data, which is to ensure that the errors can be detected. The test program adopted
in this paper is the matrix multiplication program. By analyzing the test program, the
Leon2 system takes 28 clock cycles to complete one process from reading data to writing
data. The Leon2 processor clock frequency is 100Mhz, so the time interval between two
checkpoints is selected as 300 ns to round. Parameters related to one workload execution
are shown in Table 1.

Table 1. Relevant simulation parameters.

Setup Parameters Description

Time interval 300 ns Analyze the test program
Injection time 8700–15,000 ns From the end of the system initialization

LET 100 MeV·cm2/mg Make sure errors can be detected

From 0 to 8700 ns, it is the period of system initialization. No faults are injected in this
period. The modules verified in this paper include integer unit, register-file, cache, and
memory controller module.

Table 2 shows the areas of the different modules obtained through the Design
compile software. Considering that the register-file has a larger circuit area than other
modules and makes the simulation results statistically significant [19], the other modules
inject 10,000 faults each and the register-file module injects 100,000 faults.
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Table 2. Areas of different modules.

Fault Injection Module Area/µm2

Integer unit 53,148.99
Cache 21,611.30

Memory control module 12,165.27
Register-file 421,410.11

3.2. Result and Analysis

This paper ensures that the time and location of the fault injection are consistent
when comparing the speed improvement with and without checkpoints. Table 3 shows
the error probability of different modules and the speed improvements with and without
checkpoints, which is compared with the traditional fault injection method. The results
show that the proposed method can achieve a speedup of 60.69× at most and the method
of adding checkpoints can further improve the simulation efficiency.

Table 3. Speedup of different injection modules with and without checkpoints.

Fault Injection Module Error Probability
Speedup
without

Checkpoints

Speedup
with

Checkpoints

Integer unit 2.85% 3.88× 4.17×
Cache 0.82% 9.81× 10.30×

Memory control module 1.92% 5.16× 5.34×
Register-file 0.09% 57.56× 60.69×

While the traditional fault injection method is equivalent to verifying one fault by
one workload execution, the proposed method equals reducing the required number of
workload executions by the grouping method in Section 2.3. In the initial multi-point
fault injection processes, the number of verified faults is small, and the error probability is
unstable. After the error probability is stable, the number of the first layer faults and the
grouping method will not change until the end of the simulation process. Table 4 shows the
optimal number of the first layer faults, the optimal grouping method for different injection
modules, and the speedup by theoretical analysis after the error probability is stable.

Table 4. The optimal number and grouping method of different injection modules and corresponding
speedup by theoretical analysis.

Fault Injection Module The Optimal
Number of Faults

The Optimal
Grouping Method

Speedup by
Theoretical Analysis

Integer unit 27 3 3.90×
Cache 81 3 9.92×

Memory control module 27 3 5.21×
Register-file 729 3 61.43×

As can be seen from Tables 3 and 4, the optimal number of the first layer faults
times error probability is less than 1 and the optimal grouping method of the four
modules is tripartition. The speedup obtained by simulation results is smaller than
that obtained by theoretical analysis. Firstly, the error probability is unstable in the
initial multi-point fault injection processes, which means speedup is unstable. Sec-
ondly, it takes some time to calculate the optimal number of the first layer faults and
the grouping method before starting a multi-point fault injection process. Injecting
multiple faults also increases the time to execute one workload execution compared
to injecting one fault. However, the calculation time and additional time added have
little impact compared to the time of executing one workload execution. Lastly, the
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higher the number of faults injected in one workload, the higher the probability of
resulting in additional errors. It indicates more workload executions are needed to
exclude additional errors. The more faults injected in one workload execution, the
more the speedup decreases compared with the theoretical analysis.

Table 3 also shows that the simulation with addition of checkpoints is more efficient
than without checkpoints because error checkpoints reduce the search range by dividing
the fault into several parts according to the injection time. Table 5 shows the number of
faults that need to be searched under different numbers of error faults with and without
addition of checkpoints after the error probability is stable.

Table 5. The number of faults that need to be searched under different numbers of error faults with
and without addition of checkpoints after the error probability is stable.

Injection Module
Error Faults = 1 Error Faults = 2 Error Faults ≥ 3

With
Checkpoints

Without
Checkpoints

With
Checkpoints

Without
Checkpoints

With
Checkpoints

Without
Checkpoints

Integer unit 11.81 27 14.49 27 16.71 27
Cache 29.88 81 44.65 81 57.31 81

Memory control module 14.63 27 17.24 27 19.28 27
Register-file 234.25 729 348.45 729 443.33 729

Adding multiple checkpoints does increase the time of executing one workload ex-
ecution, but the method proposed in this paper only adds multiple checkpoints when
determining error checkpoints. After grouping based on error checkpoints, there is no
need to add checkpoints. In addition, determining one error checkpoint means that an
additional workload execution is needed to determine whether the faults injected after
the error checkpoint contain error faults, but the increase in the number of simulations is
less than the decrease in the number of simulations compared to the decrease in the search
range. The results in Table 3 show that the increased time in addition of checkpoints is less
than the decreased time.

The speed improvement in the method with checkpoints is not significantly increased
compared to the method without checkpoints because the number of the first layer faults is
selected according to error probability. Therefore, the promotion after adding checkpoints
depends on the probability that the error fault = 0 occurs. Table 6 shows the probabilities of
different numbers of error faults.

Table 6. The probabilities of different numbers of error faults.

Injection Module The Probability
of Error Fault = 0

The Probability
of Error Fault = 1

The Probability
of Error Fault = 2

The Probability
of Error Fault ≥ 3

Integer unit 45.13% 39.82% 9.73% 5.32%
Cache 51.30% 33.91% 12.17% 2.62%

Memory control module 60.55% 29.05% 8.26% 2.14%
Register-file 53.15% 28.83% 13.51% 4.51%

Table 3 shows that speedup depends on error probability and the lower the error
probability, the greater the speed improvement. The integer unit has the highest error
probability than other modules because the five-stage pipeline registers state of the Leon2
processor is mainly determined by the integer unit. The register-file module has the lowest
error probability; it is related to the number of registers used by the test program.

In this study, we evaluated the Leon2 system by running the matrix multiplication
program. The method proposed in this paper can be applied to other processors and
programs. With the continuous progress in aerospace engineering, the error probability
must be smaller and smaller, so the method in this paper has a strong application prospect.
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4. Discussion

Although the mixture simulation method is adopted in this paper, the method pro-
posed in this paper is suitable for any hierarchy, and it can also be used to improve the
speed of system-level simulation in cases where the time cost is more concerned. In this
paper, 21 checkpoints are added to one workload execution to determine error checkpoints.
This is because the mixture simulation takes several minutes to complete one mixture work-
load execution. Adding 21 checkpoints will not increase the time particularly. However,
the number of checkpoints needs to be reduced if the method is applied to system-level
simulation because the system-level simulation time is shorter than the mixture simulation
method. Adding too many checkpoints may reduce simulation efficiency.

The time interval between the two checkpoints proposed in this paper is determined
by the time the processor completes one process from reading data to writing data, related
to the test program. A more general method to select the time interval will be studied in
the future. This method will be applied to multiple-bit upset (MBU) in future work.

5. Conclusions

Simulating fault injection using computer simulation techniques is an effective way
to reflect the SEE in aerospace integrated circuits. This paper proposes a multi-point fault
injection method to achieve a good acceleration effect. Further, this method does not
make the accuracy decline. Simulation results based on the Leon2 system validated the
correctness of the proposed approach and showed that the proposed method could achieve
a speedup of 60.69× at most.
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