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Abstract: This paper proposes a unique memristor-based design scheme for a balanced ternary digital
logic circuit. First, a design method of a single-variable logic function circuit is proposed. Then, by
combining with a balanced ternary multiplexer, some common application-type combinational logic
circuits are proposed, including a balanced ternary half adder, multiplier and numerical comparator.
The above circuits are all simulated and verified in LTSpice, which demonstrate the feasibility of the
proposed scheme.
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1. Introduction

In the era of big data, the amount of data is growing explosively, and as a result,
digital logic systems are having difficulty in processing such huge amounts of data while
striving for ever-increasing efficiency [1]. To meet the demand of data processing speed and
power efficiency, ternary logic has received recent attention due to its advantages of higher
single-line information carrying capacity and additional logical functions [2–7]. Compared
to the binary digital signal, each bit of the ternary digital signal contains more information,
resulting in a higher transmission rate at the same frequency. It also helps in reducing circuit
interconnections, and digital chips can be made smaller and less expensive [8–10]. Ternary
logic can be divided into two categories: balanced ternary {−1, 0, 1} and unbalanced ternary
{0, 1, 2} or {0, −1, −2} [11]. Among them, balanced ternary logic has unique advantages,
including the ability of having a unified representation for positive and negative numbers
without the sign bit, and multiplication operation without generating a carry. Moreover,
the symmetry of one-bit addition and multiplication operations can be used for symmetric
arithmetic operation circuit design [12,13].

In recent years, ternary digital logic circuits have been implemented in various tech-
nologies, including MOSFETs, carbon nanotube field effect transistors (CNTFETs), resonant
tunneling diodes (RTD), single-electron transistors, memristors, etc. [14–18]. Among them,
memristor-based ternary logic is of considerable interest, as it provides the advantages of
non-volatility, nanoscale and compatibility with CMOS technology [19,20].

There are two typical paradigms for designing memristor-based ternary logic circuits;
one uses three resistance states of the ternary memristor and the other one uses the voltage
value as the logic variable, where the former method makes full use of the resistance
change characteristics of the memristor, the operation result can be stored in memristors,
the logic state will not be lost after power withdrawal. Several studies [21,22] reported
on the unbalanced ternary basic logic gate circuit using the three resistance states of the
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ternary memristor which correspond to positive ternary logic ‘0’, ‘1’, and ‘2’. A voltage-
controlled tri-valued memristor model was first proposed in Ref. [22], with designs of
ternary AND, OR and NOT gate circuits based on it. In this case, three stable resistance
states, RH, RM and RL, correspond to logic ‘0’, ‘1’, and ‘2’, respectively. In Ref. [23], a bipolar
three-state ZnO memristor was reported, and then all the 27 possible univariate positive
ternary logics were realized with a single memristor cell. Furthermore, Ref. [24] proposed a
method of realizing a balanced ternary adder using the resistance state transformation of
only one single memristor, in which the circuit area and system power consumption were
greatly reduced.

Significant advancement has also been achieved in implementing logic circuits using
the second method (i.e., employing the voltage value as a logic variable) [25,26]. For exam-
ple, Wang et al. [27] reported the construction of positive ternary logic circuits, including, the
ternary AND gate, OR gate, inverters, encoder and decoder circuits. Similarly, in Ref. [28],
ternary basic logic gates and combinational logic circuits using memristor-CNTFET hybrid
circuit were proposed, whose delay and circuit complexity were lower compared to those
of the circuits only using CNTFETs. Ref. [29] proposed a systematic method of constructing
a two-digit ternary logic function based on the concept of memristive threshold logic (MTL)
and applied this method for constructing basic ternary arithmetic operations. Compared
to that of the previously reported relevant circuit design schemes, the circuit area of the
ternary adder and ternary multiplier was greatly reduced. In Refs. [5,30], the balanced
ternary logic circuits based on a memristor and MOSFET were proposed. The design idea
was to construct balanced ternary essential logic gates, such as TAND, TOR, TI, TSUM,
NCONS, NANY, etc., and then propose design scheme of a balanced ternary full adder.

As a further development in the present study, combinatorial logic circuits are imple-
mented directly by combining univariate logic circuits and multiplexers. The multiplexer
uses the circuit proposed in Ref. [31], and its function is to select only one of the data
of multiple channels and transmit it to the output terminal according to the state of the
selection signal. The proposed design scheme of a memristive balanced ternary digital logic
circuit with the voltage value as the logic variable could be beneficial for further improving
information storage, processing, and transmission efficiency.

The structure of this paper is as follows: Section 2 presents a design scheme of a
balanced ternary single-variable logic function circuit based on a hybrid design of memris-
tor and MOS transistor; in Section 3, based on the proposed univariate logic circuits and
the multiplexer designed in our previous study [31], balanced ternary application-type
combinational logic circuits are designed, including a half adder, multiplier, and numerical
comparator; Section 4 presents the comparison and analysis of the proposed circuit with
existing designs; Section 5 contains the conclusion of this paper.

2. Balanced Ternary Univariate Logic Circuit

In digital logic circuits, univariate logic functions are used to perform corresponding
logic transformations on signals, thus playing an important role in circuit design. For
ternary logic, there are three possible values for a single-input variable, with 33 = 27
possible output results in total, as shown in Table 1.

As evident from Table 1, balanced ternary univariate logic can be divided into three
categories, such as three-state to one-state logic, three-state to two-state logic, and three-
state to three-state logic. The first category (three-state to one-state logic: F1, F14, and F27) is
also called constant logic; that is, irrespective of the input value, the output is a fixed logic
state, and therefore their applications are limited in circuit design.
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Table 1. Balanced ternary univariate logic function truth table.

Input Output

A F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0
0 −1 −1 −1 0 0 0 1 1 1 −1 −1 −1 0
1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1

Output

F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27

0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 1 1 1 −1 −1 −1 0 0 0 1 1 1
0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1

This paper will mainly involve the circuit design of the other two categories, i.e., the
balanced ternary three-state to two-state logic, and the three-state to three-state univariate
logic, as well as a detailed analysis and simulation verification of the corresponding circuits.
All univariate logic circuits are represented by the circuit symbol shown in Figure 1.
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2.1. Three-State to Two-State Logic

From the truth table of the balanced ternary univariate logic function shown in Table 1,
there are 18 kinds of univariate logic functions for three-state to two-state logic. Among
them, the logics of F19 and F25 correspond to the NTI gate and the PTI gate, respectively,
which have been introduced in detail in Ref. [31] and will not be repeated in this section.

2.1.1. Circuit Design of Logic Function F4, F5, F9, F10, F13, F18, F23 and F26

Table 2 shows the designed circuit diagram and the threshold voltage range of the
MOS transistor. While the circuits of logic functions F4 and F9 only need one memristor
and one NMOS transistor, those of the logic functions F5, F9, F10, F13, F18, F23 and F26 are
all composed of two memristors and one NMOS transistor. Among them, two groups of
logic (F10 and F13) and (F23 and F26) adopt the same circuit structure, but the difference
is that the threshold voltage ranges of MOS transistors in the corresponding circuits are
different. See Table 2 for details.

The working principles of these logic functions can be understood via simply analyzing
the circuits of logic functions F4 and F5. For F4, when input A is −VDD (logic ‘−1’) or 0V
(logic ‘0’), transistor T1 is turned off, and the output terminal will be directly connected to
the input terminal through memristor M1, so the output remains consistent with the input.
When input A is VDD (logic ‘1’), transistor T1 is turned on, and the output terminal will be
directly connected to -VDD through T1, that is, logic ‘-1’ is the output. For F5, when input A
is −VDD (logic ‘−1’) or 0V (logic ‘0’), transistor T1 is turned off, the output terminal will
pass through memristor M1, which is directly connected to the input terminal, and the
output is consistent with the input. When input A is VDD (logic ‘1’), transistor T1 is turned
on, and there is a current path flowing from the input terminal to −VDD in the circuit. Both
memristors M1 and M2 are switched to the ROFF state, and the output terminal is about 0 V
after voltage division, that is, the output logic is ‘0’. Similar methods can be used to verify
the correctness of other circuits, which will not be repeated here.
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Table 2. Structure diagram of three-state to two-state logic circuit and threshold voltage of MOS transistor.
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is cascaded after the Fm logic circuit. 
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2.1.2. The Circuit Design of the Remaining Three-State to Two-State Logic Function

The remaining three-state to two-state logic function circuits, including F2, F3, F7,
F11, F15, F17, F21, and F24 logic, can be obtained via cascading the circuits as mentioned
above. For example, for the F2 logic circuit, it is only necessary to cascade an F4 logic circuit
after the F26 logic circuit to complete the logic conversion corresponding to F2. As shown
in Table 3, it is a design scheme of a single-variable three-state to two-state logic circuit
designed via the cascade method. Among them, ‘Fm + Fn’ indicates that the Fn logic circuit
is cascaded after the Fm logic circuit.

Table 3. The scheme of univariate three-state to two-state logic circuit designed via the cas-
cade method.

Logic
Function F2 F3 F7 F11 F15 F17 F21 F24

Composition F26 + F4 F25 + F19 F4 + F9 F4 + F10 F25 + F26 F4 + F18 F4 + F19 F4 + F23

2.1.3. Simulation Verification of Three-State to Two-State Logic Circuit

To validate the above approach, the proposed circuit is simulated and verified using
LTSpice. Figures 2–4 show the simulation waveforms of three kinds of three-state to two-
state logic, including the transition from the three-state logic circuits to logic (−1,1), (−1,0)
and (0,1).
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2.2. Three-State to Three-State Logic

There are 6 types of single-variable logic functions in this category, including F6, F8,
F12, F16, F20 and F22. Among them, the output of F6 is equal to the input, which is called
‘follower logic’. Only five types of three-state to three-state logic are effective and used
in circuit design. However, the F22 logic (STI gate) circuit has been discussed in detail
previously [31], and the remaining four logic circuits will be introduced here.

2.2.1. Circuit Design of Up-Spin Logic Function F16 and Down-Spin Logic Function F20

The circuit structure diagram of the up-spin logic function, F16, the down-spin logic
function, F20, and the threshold voltage range of the MOS transistor used is shown in
Table 4. The F16 circuit uses two memristors and two NMOS transistors, while the F20
circuit uses three memristors and three NMOS transistors. In the case of F20, when input
A is −VDD (logic ‘−1’), MOS transistors T1, T2, and T3 are all turned off, and the output
terminal is pulled up to VDD through memristor M1, that is, the output logic is ‘1’. When
input A is 0 V (logic ‘0’), both T1 and T2 are turned off, T3 is turned on, and the output
terminal is directly connected to −VDD through T2, that is, the output logic is ‘−1’. When
input A is VDD (logic ‘1’), both T1 and T2 are turned on, T3 is turned off, and there is a
current path from VDD to −VDD in the circuit. Both memristors M1 and M2 are switched to
the ROFF state, and the output terminal outputs a voltage nearly 0V, that is, the output logic
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is ‘0’. The correctness of spin-up logic function F16 can be verified via a similar method,
which will not be repeated here.

Table 4. Circuit structure diagram of up-spin logic function, down-spin logic function and threshold
voltage of MOS transistor.

Logic Function Up-Spin Logic Function, F16 Down-Spin Logic Function, F20

Circuit Structure
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2.2.2. The Circuit Design of the Remaining Three-State to Three-State Logic Function 
The remaining three-state to three-state logic function circuits, including F8 and F12 

logic, can also be obtained via cascading the circuits mentioned above. For example, for 
the F8 logic circuit, it is only necessary to cascade an F22 logic circuit after the F20 logic 
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be obtained via cascading F16 logic and F22 logic. Table 5 shows the design scheme of the 
univariate three-state to three-state logic circuit using the cascade method. The term ‘Fm + 
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2.2.2. The Circuit Design of the Remaining Three-State to Three-State Logic Function

The remaining three-state to three-state logic function circuits, including F8 and F12
logic, can also be obtained via cascading the circuits mentioned above. For example, for
the F8 logic circuit, it is only necessary to cascade an F22 logic circuit after the F20 logic
circuit to complete logic conversion corresponding to F8. Similarly, the F12 logic circuit
can be obtained via cascading F16 logic and F22 logic. Table 5 shows the design scheme of
the univariate three-state to three-state logic circuit using the cascade method. The term
‘Fm + Fn’ indicates that the Fn logic circuit is cascaded after the Fm logic circuit.

Table 5. Design scheme of univariate three-state to three-state logic circuit designed via cascade method.

Logic Function F8 F12

Composition F20 + F22 F16 + F22

2.2.3. Verification of Three-State to Three-State Logic Circuit Using LTSpice Simulation

The above circuit was simulated in LTSpice, which provides a verification of the design
for a given input signal. The simulation waveform diagram of the three-state to three-state
logic circuit is shown in Figure 5.
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Here, S is a selection signal, and I−1, I0, and I1 are three input signals. The multiplexer 
is composed of a balanced ternary one-line–one-line decoder, three balanced ternary 
minimum gates and one balanced ternary maximum gate. The circuit structure diagram 
is shown in Figure 6. 
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Figure 6. (a) Circuit diagram of balanced ternary multiplexer (b) symbol. 

When the selection signal is S =−1, the output terminals S−1, S0 and S1 of the one-line—
three-line decoder output logic 1, −1 and −1, respectively. According to the working 
principle of the minimum value gate and the maximum value gate, the output signal of 
the circuit is equal to input signal I−1, that is, Y = I−1, and the circuit realizes the function of 
output signal I-1. When the selection signal S = 0, the output terminals S−1, S0 and S1 of the 
decoder output the logic −1, 1, −1, respectively. In this case, Y = I0, that is, the circuit realizes 
the function of outputting signal I0. Finally, when the selection signal S = 1 occurs, the 
output o decoder terminals S−1, S0, and S1 output the logic −1, −1, and 1, respectively, 
resulting in Y = I1. 

Figure 5. Simulation waveform diagram of three-state to three-state univariate logic circuit.
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3. Design of Balanced Three-Valued Combinational Logic Circuit Based on Univariate
Logic and Multiplexer

A multiplexer can select one of several input signals to the output. This paper uses the
balanced ternary multiplexer circuit proposed in Ref. [31], which can realize the output of
one signal from the three inputs. The corresponding input–output relationship is expressed
as follows:

Y =


I−1 S = −1
I0 S = 0
I1 S = 1

(1)

Here, S is a selection signal, and I−1, I0, and I1 are three input signals. The multiplexer
is composed of a balanced ternary one-line–one-line decoder, three balanced ternary min-
imum gates and one balanced ternary maximum gate. The circuit structure diagram is
shown in Figure 6.
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When the selection signal is S =−1, the output terminals S−1, S0 and S1 of the one-
line—three-line decoder output logic 1, −1 and −1, respectively. According to the working
principle of the minimum value gate and the maximum value gate, the output signal of the
circuit is equal to input signal I−1, that is, Y = I−1, and the circuit realizes the function of
output signal I-1. When the selection signal S = 0, the output terminals S−1, S0 and S1 of
the decoder output the logic −1, 1, −1, respectively. In this case, Y = I0, that is, the circuit
realizes the function of outputting signal I0. Finally, when the selection signal S = 1 occurs,
the output o decoder terminals S−1, S0, and S1 output the logic −1, −1, and 1, respectively,
resulting in Y = I1.

In this paper, a balanced ternary half adder, a balanced ternary multiplier and a
balanced ternary numerical comparator are also designed using the multiplexer and the
univariate logic circuit described in Section 2. The truth tables and circuit structures of
these applications are summarized in Tables 6 and 7, respectively. The design process and
working principle of each circuit are explained in the following three subsections, along
with the corresponding simulation results.

Table 6. Truth table of balanced ternary half adder, balanced ternary multiplier, and balanced ternary
numerical comparator.

Input
Output

Half Adder Multiplier Numeric Comparator

A B SUM CARRY MUL MLE
−1 −1 1 −1 1 0
−1 0 −1 0 0 −1
−1 1 0 0 −1 −1
0 −1 −1 0 0 1
0 0 0 0 0 0
0 1 1 0 0 −1
1 −1 0 0 −1 1
1 0 1 0 0 1
1 1 −1 1 1 0
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Table 7. Circuit structure of each application.
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3.1. Balanced Ternary Half Adder

It can be seen from the truth table that when input signals A = −1 and B selects f the
values of {−1, 0, 1}, the ‘SUM’ outputs the sum of the half adder outputs, corresponding to
{1, −1, 0}. According to the working principle of the multiplexer, if A is used as the selection
signal, we can obtain the following results. When A = −1, the multiplexer selects the I-1
input terminal for the output, that is, SUM = I-1. And as shown in Table 1 a univariate logic
F20 just can fulfill the conversion demanded in the red square in Table 6, so F20 is selected
to connect the input B and I-1 in the circuit. Similarly, when input signal A = 0, the sum
output of the half adder is SUM = I0 = B, so we directly connect B to I0. When input signal
A = 1, SUM = I1, the logic F16 is consistent with the conversion, so F16 is selected to connect
the input B and I1 in this case. The ‘CARRY’ output circuit part is designed in the same
way. Figure 7 shows the corresponding logic conversion diagram of the balanced ternary
half adder.

Micromachines 2023, 14, 1895 9 of 13 
 

 

-1

B

0
1

-1

B

0
1

-1

B

0
1

1
-1
0

A=-1

-1
0
1

A=0

A=1 0
1
-1

I-1

I0

I1

-1

B

0
1

-1

B

0
1

-1

B

0
1

-1
0
0

A=-1

0
0
0

A=0

A=1 0
0
1

I-1

I0

I1

(a) (b)  
Figure 7. The corresponding logic conversion diagram of the balanced ternary half adder. (a) ‘sum’ 
output part; (b) ‘carry’ output part. 

According to the univariate logic function relationship in Table 1, for the ‘sum’ output 
part, the three logic conversion relationships correspond to the down-spin logic function, 
F20, the follow-up logic function, F6, and the up-spin logic function, F16. For the ‘carry’ 
output part, the three logical conversion relationships correspond to the logical functions 
F5, F14, and F15. Therefore, it is only necessary to introduce the corresponding univariate 
logic circuit into circuit design. The LTSpice simulation waveform diagram is given in 
Figure 8. 

-1

0

1

-1

0

1

-1

0

1

-1

0

1

A
/V

B/
V

SU
M

/V

0 1 2 3 4 5 6 7 8 9
t/ms

CA
RR

Y/
V

 
Figure 8. Simulation waveform diagram of half adder. 

3.2. Balanced Ternary Multiplier 
Balanced ternary does not generate carry during multiplication, so it has certain 

advantages over the unbalanced ternary logic. The multiplier circuits design is as follows: 
When A = −1, the multiplexer selects the I-1 input terminal for the output, According to 
Tables 1 and 6, F22 can be selected to connect the input B and I-1 in the circuit. When A = 0, 
the I0 terminal of the multiplexer is gated, and now the output terminal outputs a logic ‘0’, 
so we can directly connect I0 to the ground. When A = 1, the logic value of the output 
terminal is consistent with the input signal B, so we connect input signal B to the I1 
terminal of the multiplexer in this case. Figure 9 shows the LTSpice simulation waveform 
diagram of the circuit. 

Figure 7. The corresponding logic conversion diagram of the balanced ternary half adder. (a) ‘sum’
output part; (b) ‘carry’ output part.

According to the univariate logic function relationship in Table 1, for the ‘sum’ output
part, the three logic conversion relationships correspond to the down-spin logic function,
F20, the follow-up logic function, F6, and the up-spin logic function, F16. For the ‘carry’
output part, the three logical conversion relationships correspond to the logical functions F5,
F14, and F15. Therefore, it is only necessary to introduce the corresponding univariate logic
circuit into circuit design. The LTSpice simulation waveform diagram is given in Figure 8.
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3.2. Balanced Ternary Multiplier

Balanced ternary does not generate carry during multiplication, so it has certain advantages
over the unbalanced ternary logic. The multiplier circuits design is as follows: When A = −1,
the multiplexer selects the I-1 input terminal for the output, According to Tables 1 and 6, F22
can be selected to connect the input B and I-1 in the circuit. When A = 0, the I0 terminal of the
multiplexer is gated, and now the output terminal outputs a logic ‘0’, so we can directly connect
I0 to the ground. When A = 1, the logic value of the output terminal is consistent with the input
signal B, so we connect input signal B to the I1 terminal of the multiplexer in this case. Figure 9
shows the LTSpice simulation waveform diagram of the circuit.
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3.3. Balanced Ternary Numerical Comparator

As we known, the output of multiplexer equals to I-1 when the input signal A is
selected as −1, that is, MLE = I-1. And according to the truth Tables 1 and 6, logic F10
performs the some function when input A = −1. so F10 is selected to connect the input B
and I-1 in the circuit. Similarly, logics F22 and F26 are chosen to perform the corresponding
functions when input A = 0 and A = 1. Figure 10 shows the simulation results for a balanced
ternary numerical comparator.
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4. Comparison and Analysis

The number of components using the proposed method are given in Table 8 and are
compared with that reported earlier [31]. It is evident that there are significant advantages of
the proposed method in terms of the balanced ternary half adder, multiplier, and numerical
comparator circuit as the number of circuit components is reduced by 37.8%, 39.5%, and
48.2%, respectively.

Table 8. Comparison of the number of components of the circuits (here, T represents the number of
transistors, M represents the number of memristors, and THA, MUL, and MLE are balanced ternary
half adders, multipliers, and numerical comparators, respectively).

Method
Components

THA MUL MLE

Method in This Paper 46
(13T33M)

23
(7T16M)

29
(9T20M)

Multiplexer-Based
Method in [31]

74
(10T64M)

38
(10T28M)

56
(10T46M)

A comparison of power consumptions of the circuits in Ref. [31] is also given in Table 9,
including static power consumption, average power consumption and dynamic power con-
sumption. The static power consumption shown in this table is the maximum static power
consumption value of all the nine input combinations, and the average power consumption
is the average static power consumption for every input combination. The dynamic power
dissipation was estimated and calculated in accordance with the following formula:

P(dynamic) = |P(max) − P(avg)| (2)

where P(max) means the instantaneous maximum power consumption, and the P(avg) is
the average power dissipation, which can be obtained through SPICE simulations.

Table 9. Comparison of power consumption statistics of designed circuits.

Method
Avg. Power (uW) Static Power (uW) Dynamic Power (mW)

THA MUL MLE THA MUL MLE THA MUL MLE

Method in
this paper 246.99 72.84 0.31 698

[−1&1]
193

[−1&1]
1.88

[0&−1] 3.61 4.56 1.44

Method in [27] 72.65 72.84 0.56 201
[−1&1]

181
[0&1]

1.51
[0&−1] 5.06 4.59 1.63

It is evident that, there are no significant advantages over the method reported in
Ref. [31] for the balanced ternary half adder, multiplier and numerical comparator circuits.
Particularly, THA’s static power consumption exceeds about three times that in Ref. [31].
This is because we use three more transistors with relatively higher power consumption
than that in Ref. [31]. However, our dynamic power consumption is relatively lower for
our present study, showing the significance of the current approach.

5. Conclusions

In summary, a design scheme for a balanced ternary logic circuit based on a memristor
and MOS transistor was proposed. At first, the design of a balanced ternary single-variable
logic circuit was introduced, including the commonly used three-state to two-state logic
and three-state to three-state logic. Then, combined with the balanced ternary multiplexer,
several design schemes of application-type combinational logic circuits were proposed,
including a balanced ternary half adder, multiplier and numerical comparator. The de-
signed circuits were simulated and further verified using LTSpice. Finally, the proposed
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circuit was compared with other design methods. Our results show that the number of
components can be significantly reduced using the proposed design method, which could
further reduce the complexity of the circuit.
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