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Abstract: Microsphere-shaped cobalt selenide (Co0.85Se) structures were efficiently synthesized
via a two-step hydrothermal process. Initially, cobalt hydroxide fluoride (Co(OH)F) microcrystals
were prepared using a hydrothermal method. Subsequently, Co0.85Se microsphere-like structures
were obtained through selenization. Compared to Co(OH)F, the microsphere-like Co0.85Se structure
exhibited outstanding catalytic activity for the hydrogen evolution reaction (HER) in a 1.0 M KOH
solution. Electrocatalytic experiments demonstrated an exceptional HER performance by the Co0.85Se
microspheres, characterized by a low overpotential of 148 mV and a Tafel slope of 55.7 mV dec−1.
Furthermore, the Co0.85Se electrocatalyst displayed remarkable long-term stability, maintaining its
activity for over 24 h. This remarkable performance is attributed to the excellent electrical conductivity
of selenides and the highly electroactive sites present in the Co0.85Se structure compared to Co(OH)F,
emphasizing its promise for advanced electrocatalytic applications.
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1. Introduction

The development of efficient and sustainable energy conversion technologies is of
paramount importance in addressing the growing global energy demand and mitigating
environmental concerns [1,2]. Among the various renewable energy sources, hydrogen gas
(H2) holds immense promise as a clean and high-energy-density fuel [3,4]. Its production
through water electrolysis, particularly via the hydrogen evolution reaction (HER), has
garnered significant attention due to its potential to provide a clean and versatile energy
carrier [5,6].

Traditionally, the alkaline HER has been described using the Volmer–Heyrovsky
mechanism or the Volmer–Tafel mechanism [4–6]. However, both of these mechanisms
are limited by sluggish kinetic processes, which hinder their overall efficiency. To address
this challenge, researchers have turned to electrocatalysts as a means of enhancing HER
performance. Over the past decade, electrocatalysts based on transition metals, including
hydroxides, sulfides, selenides, phosphides, nitrides, and carbides, have gained widespread
recognition in pioneering research efforts [7–12]. Among these, transition metal selenides
have emerged as particularly promising candidates [13–17]. Notably, cobalt-based selenides
have gained significant interest due to their exceptional catalytic properties and remarkable
electrical conductivity [17–21].

In recent decades, morphology engineering has emerged as a pivotal strategy for
enhancing the electrocatalytic properties of cobalt-based selenide materials. For instance,
Lan et al. conducted pioneering work in shape-controlled synthesis, allowing the fabrica-
tion of various CoSe2 morphologies, including wires, spheres, and rods, by modulating
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the amount of NH4F. Among these diverse morphologies, CoSe2 microspheres demon-
strated exceptional promise, achieving an impressively low overpotential of 167 mV at
10 mA cm−2 and a Tafel slope of 38 mV dec−1 for the HER in acidic media [22]. Similarly,
Shen et al. developed microsphere-like Co0.85Se structures, incorporating sulfur into their
design, resulting in a remarkable electrocatalytic performance for the HER [23]. Addition-
ally, Hao et al. introduced a novel HER electrocatalyst composed of 1D ultrafine cobalt
selenide nanowires intertwined with 2D Ti3C2Tx MXene nanosheets, achieving a low over-
potential of only 84 mV, an impressive Tafel slope of 56 mV dec−1, and exceptional cycling
stability [24]. Despite these remarkable achievements, it remains essential to manipulate
the morphology and structure of cobalt-based selenide materials in order to fully unlock
their potential and further enhance their catalytic performance.

In this context, we present a facile and effective method for the synthesis of microsphere-
like cobalt selenide (Co0.85Se) structures on nickel foam (Ni-foam), designed to enhance
their catalytic activity in the HER. Utilizing a two-step hydrothermal approach, we suc-
cessfully engineered microsphere-like Co0.85Se structures. Electrocatalytic investigations
demonstrated the remarkable HER performance of these microsphere-like Co0.85Se struc-
tures, characterized by an impressively low overpotential of 148 mV at a current density
of −10 mA cm−2 and a Tafel slope of 55.7 mV dec−1. The outstanding performance of
Co0.85Se structures can be attributed to their exceptional electrical conductivity, along with
the abundance of electroactive sites, which surpass those found in Co(OH)F. This combina-
tion of features positions Co0.85Se structures as a promising electrocatalyst for efficient and
sustainable hydrogen production.

2. Experimental Section
2.1. Chemicals and Reagents

Cobalt nitrate (Co(NO3)2·6H2O), ammonium fluoride (NH4F), sodium selenite (Na2SeO3),
hydrazine hydrate (N2H4), and potassium hydroxide (KOH) were acquired from Sigma
Aldrich Chemicals, Seoul, Republic of Korea. Ethyl alcohol (C2H6O) was procured from
DUKSAN Pure Chemicals Co. Ltd., Seoul, Republic of Korea. Deionized water (DI H2O)
was utilized for the washing process. All chemicals and reagents were employed without
additional purification.

2.2. Synthesis of Co(OH)F Microcrystals on Ni-Foam

In the typical one-step preparation method, Co(NO3)2·6H2O (50 mM, 0.297 g) and
NH4F (150 mM, 0.1111 g) were dissolved in 20 mL of DI H2O by stirring for 10 min. The
resulting clear, pink-colored solution was then transferred into a 100 mL Teflon-lined,
stainless-steel autoclave. Following that, a thoroughly cleaned Ni-foam substrate with
a size of 10 mm × 50 mm was immersed into the reaction solution, and a hydrothermal
treatment was conducted at 120 ◦C for 12 h using an electric furnace. Once the reaction
had finished, the autoclave was allowed to cool down naturally to room temperature. The
resultant pink-colored Co(OH)F microcrystals coated on the Ni-foam were collected and
washed multiple times using DI H2O and C2H6O. Subsequently, the synthesized sample
was left to dry overnight in an electric oven at 70 ◦C.

2.3. Conversion of Co(OH)F to Co0.85Se Microcrystals

In the second step, the Co(OH)F microcrystal precursor underwent a transformation
into its corresponding Co0.85Se morphology through a selenization process. To provide
further details, 0.2 g of Na2SeO3 and 1 mL of hydrazine hydrate were added to a solution
containing 20 mL of DI H2O, along with the previously prepared Co(OH)F microcrystal
precursor deposited on the Ni-foam substrate. This mixture was subsequently transferred
into a 100 mL Teflon-lined, stainless-steel autoclave and subjected to heating at 120 ◦C for
12 h. Following the completion of the selenization process, the autoclave was allowed to
cool to room temperature. The resulting black-colored sample was thoroughly rinsed with
DI H2O and C2H6O and subsequently dried in an electric furnace for 12 h at 70 ◦C.
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2.4. Materials Characterization

X-ray diffraction (XRD) analysis was employed to determine the crystalline phase,
utilizing a PANalytical X’Pert Pro instrument with Cu Kα radiation (λ = 1.54060 Å), op-
erating at a voltage of 40 kV and a current of 30 mA. X-ray photoelectron spectroscopy
(XPS) scans were conducted using a Thermo Scientific K-Alpha ESCA spectrometer, em-
ploying monochromatized Al Kα radiation. The morphology was examined through field
emission scanning electron microscopy (FESEM) using a Hitachi S4800 instrument, as well
as field emission transmission electron microscopy (FETEM) using an FEI Tecnai G2 F20.
The elemental composition of the samples was analyzed using energy-dispersive X-ray
spectroscopy (EDX) with Oxford Instruments, Abington, UK.

2.5. Electrochemical Measurements

The electrochemical HER was evaluated using a standard three-electrode setup on
the IVIUMSTAT electrochemical workstation. The counter electrode was a graphite rod,
mercury/mercury oxide (Hg/HgO) was employed as the reference electrode, and the
working electrode consisted of the Co0.85Se microcrystals. For comparison, the precursor
Co(OH)F microcrystal electrocatalyst was also tested for HER in 1 M KOH. Linear sweep
voltammetry (LSV) was conducted at a scan rate of 5 mV s−1 from −1.0 to −1.8 V vs.
Hg/HgO. The Tafel slope values were obtained from their respective polarization curves.
The durability of the as-prepared Co(OH)F and Co0.85Se electrocatalysts was evaluated
using the chronopotentiometry (CP) technique at a constant current density of −10 mA
cm−2 over a duration of 24 h. The electrochemical double-layer capacitance (Cdl) of the
electrocatalysts was determined from the cyclic voltammetry (CV) curves obtained at vari-
ous scan rates within the potential range of −0.3 to −0.35 V vs. Hg/HgO. Electrochemical
impedance spectroscopy (EIS) was carried out over a frequency range of 100 kHz–0.01 Hz
with an AC voltage of 5 mV. In this work, all electrocatalytic studies were conducted at
room temperature.

In this study, the Hg/HgO electrode was converted into a reversible hydrogen elec-
trode (RHE) according to the Nernst equation [25]:

E (RHE) = E (Hg/HgO) + 0.0591 × pH + Eo (Hg/HgO) (1)

where E (RHE) represents the converted potential, E (Hg/HgO) denotes the potential
experimentally measured against the Hg/HgO reference electrode, and Eo (Hg/HgO)
stands for the standard potential of Hg/HgO at 25 ◦C (0.098 V).

3. Results and Discussion

After synthesis, the crystalline phases of the as-prepared electrocatalysts were analyzed
using XRD analysis. The strong XRD peaks at 44.6, 51.9, and 76.4◦ 2θ were assigned to the
Ni-foam substrate (Figure 1(a1)). As depicted in Figure 1(a2), the diffraction peaks of the
first-step hydrothermal product closely match those of Co(OH)F (JCPDF no: 50-0827). The
diffraction peaks at approximately 20.8◦, 32.3◦, 33.5◦, 34.8◦, 35.6◦, 38.8◦, 39.9◦, 52.7◦, 56.9◦,
59.1◦, and 61.5◦ correspond to the (110), (310), (201), (400), (111), (211), (410), (420), (511),
(002), and (601) planes of orthorhombic Co(OH)F, confirming their good agreement with
previous literature reports [26–28]. During the second hydrothermal step, the Co(OH)F
structure underwent conversion into Co0.85Se through a low-temperature selenization
process (Figure 1(a3)). The observed peaks at 33.5◦, 45.0◦, 51.1◦, 60.5◦, 62.5◦, and 70.2◦

can be attributed to the (101), (102), (110), (103), (112), and (202) planes of hexagonal
Co0.85Se [20,21,23]. Notably, no additional diffraction peaks were detected, affirming the
high purity of the Co0.85Se phase. These XRD findings conclusively demonstrate the
successful synthesis of the Co0.85Se electrocatalyst through the selenization of Co(OH)F.



Micromachines 2023, 14, 1905 4 of 11

Micromachines 2023, 14, 1905 4 of 11 
 

 

the successful synthesis of the Co0.85Se electrocatalyst through the selenization of 
Co(OH)F. 

 
Figure 1. (a) XRD pattern of Ni-foam substrate, Co(OH)F microcrystals, and Co0.85Se microspheres. 
XPS characterization of Co0.85Se microspheres: (b) survey spectrum, (c) Co 2p, and (d) Se 3d. 

To investigate the chemical states of the microsphere-like Co0.85Se, we performed fur-
ther XPS measurements (Figure 1b–d). The survey spectrum of Co0.85Se (Figure 1b) clearly 
indicates the presence of peaks corresponding to C 1s, O 1s, Co 2p, and Se 3d. The C 1s 
and O 1s peaks originate from the reference material and inevitable surface oxidation of 
the sample, respectively. The Co 2p spectrum in Figure 1c reveals two main peaks at 780.6 
and 796.5 eV, corresponding to Co 2p3/2 and Co 2p1/2, respectively [29–31]. These values 
are consistent with the reported literature on Co0.85Se structures. Additionally, two satel-
lite peaks at 784.5 eV and 802.2 eV are attributed to the Co 2p3/2 and Co 2p1/2 peaks 
(Figure 1d). The deconvolution of the Se 3d spectrum displays two contributions at 54.9 
and 58.8 eV, corresponding to Se 3d5/2 and Se 3d3/2, respectively [29–31]. These contribu-
tions are related to the metal–selenide bond. 

The FESEM technique was employed to analyze the morphology of the as-prepared 
Co(OH)F and Co0.85Se structures. Figure S1 displays the FESEM images of the Co(OH)F 
microcrystals synthesized using the hydrothermal method. The overall morphological 
view indicates that the prepared microcrystals exhibit a combination of tetrahedral, octa-
hedral, and dodecahedral faces, each approximately 1 µm in size, consistent with our pre-
vious reports [26,32]. In Figure S2, the EDAX spectrum and mapping reveal the presence 
of cobalt, oxygen, and fluoride elements, without any impurities, thus confirming the high 
purity of the Co(OH)F microcrystals. Figure 2 illustrates the FESEM images of the 
selenized Co(OH)F product. As shown in Figure 2a–d, the morphology of Co0.85Se closely 
resembles that of Co(OH)F, indicating the preservation of the hierarchical microcrystal 
structure during the selenization process. It can be observed that the Co0.85Se structure 
displays spike-like features on its surface, which are characteristics resulting from the 
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XPS characterization of Co0.85Se microspheres: (b) survey spectrum, (c) Co 2p, and (d) Se 3d.

To investigate the chemical states of the microsphere-like Co0.85Se, we performed
further XPS measurements (Figure 1b–d). The survey spectrum of Co0.85Se (Figure 1b)
clearly indicates the presence of peaks corresponding to C 1s, O 1s, Co 2p, and Se 3d. The
C 1s and O 1s peaks originate from the reference material and inevitable surface oxidation
of the sample, respectively. The Co 2p spectrum in Figure 1c reveals two main peaks at
780.6 and 796.5 eV, corresponding to Co 2p3/2 and Co 2p1/2, respectively [29–31]. These
values are consistent with the reported literature on Co0.85Se structures. Additionally, two
satellite peaks at 784.5 eV and 802.2 eV are attributed to the Co 2p3/2 and Co 2p1/2 peaks
(Figure 1d). The deconvolution of the Se 3d spectrum displays two contributions at 54.9 and
58.8 eV, corresponding to Se 3d5/2 and Se 3d3/2, respectively [29–31]. These contributions
are related to the metal–selenide bond.

The FESEM technique was employed to analyze the morphology of the as-prepared
Co(OH)F and Co0.85Se structures. Figure S1 displays the FESEM images of the Co(OH)F
microcrystals synthesized using the hydrothermal method. The overall morphological view
indicates that the prepared microcrystals exhibit a combination of tetrahedral, octahedral,
and dodecahedral faces, each approximately 1 µm in size, consistent with our previous
reports [26,32]. In Figure S2, the EDAX spectrum and mapping reveal the presence of cobalt,
oxygen, and fluoride elements, without any impurities, thus confirming the high purity of
the Co(OH)F microcrystals. Figure 2 illustrates the FESEM images of the selenized Co(OH)F
product. As shown in Figure 2a–d, the morphology of Co0.85Se closely resembles that of
Co(OH)F, indicating the preservation of the hierarchical microcrystal structure during the
selenization process. It can be observed that the Co0.85Se structure displays spike-like
features on its surface, which are characteristics resulting from the selenization process. The
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spherical appearance of the Co0.85Se structure is attributed to the presence of these spike-
like structures. Furthermore, the elemental mappings and the EDX spectrum in Figure 3
reveal a homogeneous distribution of Co and Se elements within the microsphere-like
Co0.85Se structure.
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The detailed morphology and composition of the microsphere-like Co0.85Se structure
were elucidated using HRTEM and EDX analyses. A representative TEM image of Co0.85Se,
shown in Figure 4a, indicates its microsphere-like morphology. The high-magnification
TEM image in Figure 4b reveals the presence of spikes on the surface, consistent with
FESEM analysis (Figure 2b,c). The high-resolution TEM (HRTEM) image in Figure 4c
further demonstrates the crystalline nature of the microsphere-like structure. The calculated
interlayer distance was measured as 0.26 nm, corresponding to the (101) crystal plane of the
Co0.85Se structure [20,21,33]. Elemental mapping images derived from the HAADF image
(Figure 4d–f) demonstrate the uniform distribution of Co and Se within the sphere-like
morphology. The EDX spectrum, shown in Supporting Figure S3, further confirms that the
composition of the Co0.85Se structure consists of Co and Se. The overall physicochemical
characterization demonstrates the successful preparation of microsphere-like Co0.85Se
structures from Co(OH)F microcrystals through a selenization process.
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The electrocatalytic properties of Co(OH)F and Co0.85Se catalysts were comprehen-
sively investigated for the HER. Prior to linear sweep voltammetry (LSV) measurements,
each electrode was activated through CV in a potential range of −0.1 to −0.8 V vs. Hg/HgO
at a scan rate of 50 mV s−1 for 50 cycles. Subsequently, after CV activation, the polariza-
tion curves of the Co(OH)F and Co0.85Se electrocatalysts were measured at a scan rate of
5 mV s−1. Figure 5a,b illustrate the LSV curves and overpotential profiles of the Co(OH)F
and Co0.85Se electrocatalysts in a 1.0 M KOH electrolytic solution. The LSV curves provide
compelling evidence of Co0.85Se’s superior HER activity, requiring a lower overpotential
of 148 mV compared to Co(OH)F (222 mV) to achieve a current density of 10 mA cm−2.
To gain deeper insights into the catalytic activity of the prepared samples, Tafel slopes
were derived from the LSV curves. Figure 5c shows the Tafel plots, where Co0.85Se exhibits
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a notably lower Tafel value of 55.7 mV dec−1 compared to Co(OH)F’s 72.9 mV dec−1.
Importantly, the overpotential and Tafel value of the prepared Co0.85Se microspheres
(148 mV, 55.7 mV dec−1) were found to be significantly lower than those of other CoSe-
based materials, including p-CoSe2/CC (138 mV, 83 mV dec−1) [18], Co7Se8 (472 mV,
59.1 mV dec−1) [34], Co0.85Se@NC (230 mV, 125 mV dec−1) [35], CoSe2/CNTs (186 mV,
52 mV dec−1) [36], CoSe2/C-HRD (157 mV, 110 mV dec−1) [37], CoSe2/MoSe2 (218 mV,
76 mV dec−1) [38], Ni-doped CoSe2 (172 mV, 32.4 mV dec−1) [39], B-CoSe2/CC (153 mV,
85 mV dec−1) [40], CoSe2@MoSe2 (183 mV, 43.37 mV dec−1) [41], and MoSe2-CoSe2 (148 mV,
45 mV dec−1) [42]. The remarkable electrocatalytic behavior of Co0.85Se can be attributed to
the strong metallic bonding between Co2+ and Se2−, which accelerates the dissociation of
H2 from H2O. The electroactivity of Co0.85Se is primarily centered on the Se active sites, as
this facilitates the weakening of the thermodynamic energy barrier for the HER [43]. In this
reaction process, Co0.85Se, where Co2+ carries a positive charge and Se2− carries a negative
charge, can readily adsorb H2O molecules following the ‘Volmer–Heyrovsky’ pathway.
Co2+ readily accepts electrons from Se2−, leading to reduction through the adsorption of
H2O on the surface. Furthermore, the electronegative nature of Se2− makes it conducive
for the decomposition of H2O into H* and OH− ions, followed by the dissociation of OH−

ions, resulting in the regeneration of H* and the continuation of H2 evolution [44]. It has
been reported that the H* generated through the Volmer pathway forms a weak bond with
Se, and the delocalization of positive and negative charges between Co and Se significantly
enhances the adsorption and desorption of H*, thus promoting the HER [14,45,46].

To elucidate the superior HER performance of Co0.85Se, we conducted EIS measure-
ments. The charge transfer resistance (Rct) behavior of each electrocatalyst was determined
from the Nyquist plots, and the fitted graph with an equivalent circuit is presented in
Figure 5d. The analysis of the graph reveals that Co0.85Se exhibits a significantly lower Rct
value of 6.5 Ω compared to Co(OH)F (9.56 Ω), confirming faster HER kinetics in the KOH
solution, which contributes to its superior activity.

Furthermore, to assess the excellent performance of Co0.85Se, we estimated Cdl val-
ues to determine the electrochemical active sites via CV measurements within a non-
Faradic region, in the potential range of −0.3 to −0.35 V vs. Hg/HgO, with a scan rate of
50–300 mV s−1 (Figure 5e). For comparison, typical CV curves for Co(OH)F were provided
in Figure S4, and their corresponding Cdl values were calculated by plotting the current
density (J anodic–J cathodic) at the potential of −0.325 V vs. the scan rate (Figure 5f). As
anticipated, the Cdl value of Co0.85Se (20.74 mF cm−2) was found to be three times higher
than that of Co(OH)F (5.78 mF cm−2), indicating an increase in the electrochemical active
sites, which inherently facilitates the performance of metal active sites in the electrolytic
solution for HER.

The stability of the electrocatalyst is a crucial factor ensuring a stable HER process.
Consequently, the long-term stability of the electrocatalysts Co0.85Se and Co(OH)F was
tested using chronopotentiometry at a constant potential for 24 h, delivering a current
density of −10 mA cm−2. The corresponding LSV curves, obtained both initially and
after 24 h of stability testing, are depicted in Figure 6a. The successive CV curves for
the Co0.85Se electrode before and after 24 h confirm the durability of the catalyst. The
chronopotentiometry graph shown in Figure 6b clearly illustrates the long-term stability of
Co0.85Se and Co(OH)F at constant potentials of −0.148 V and −0.244 V, respectively, while
delivering a current density of −10 mA cm−2. From this comprehensive investigation,
it can be concluded that Co0.85Se’s remarkable HER activity stems from its excellent fast
electron transfer transport ability, larger electrochemical active sites, and long-term stability.
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Co(OH)F at constant potentials of −0.148 V and −0.244 V, respectively, while delivering a 

Figure 5. (a–d) LSV curves, overpotential, Tafel plot and Nyquist plots of Co(OH)F and Co0.85Se
electrocatalysts. (e) Typical CV curves within a non-faradic region at different scan rates for Co0.85Se
electrocatalyst. (f) The fitted Cdl plot of Co(OH)F and Co0.85Se electrocatalysts. All the measurements
were conducted at room temperature.
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