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Abstract: The high level of stress and dimension deviation induced by glass molding are the main
causes of the low yield rate of large, irregular glass components on vehicles. To solve this issue, a
numerical model of large glass component molding was established in this study, which aimed to
analyze the dominant factors of molding quality and achieve a synergistic balance between quality
characteristics and energy consumption. The results show that molding temperature is the dominant
factor affecting the energy consumption and residual stress, and the molding pressure is the main
factor affecting the dimension deviation. Furthermore, the NSGA-II optimization algorithm was used
to optimize the maximum residual stress, dimension deviation, and energy consumption with the
numerical results. The combination of a heating rate of 1.95 ◦C/s, holding time of 158 s, molding
temperature of 570 ◦C, molding pressure of 34 MPa, and cooling rate of 1.15 ◦C/s was determined
to be the optimized scheme. The predictive error of the numerical result, based on the optimized
scheme, was experimentally verified to be less than 20%. It proved the accuracy of the model in this
study. These results can provide guidance for the subsequent precision molding of large, irregular
glass components.

Keywords: large irregular glass components; molding; optimization; energy consumption

1. Introduction

Today, with the rapid development of vehicles, communications, electronic products,
and other industries, 3D curved glass offers a good visual experience to users due to
the surface treatment of the arc in the middle or edge positions as it is in line with the
arc of the human retina [1]. A new glass machining process, molding technology [2],
has been widely applied in the 3D glass manufacturing field as it has the advantages of
high molding accuracy and low equipment cost [3–6]. During molding, the glass blank
undergoes three procedures, as follows: heating and softening, pressure loading, and
cooling. During this process, improper molding parameters may cause issues of uneven
glass flow (resulting in small defects) [7], geometric dimension deviation, high stress, and
other problems associated with glass products. The glass components of vehicles are usually
large in size and have irregular structures (as shown in Figure 1); therefore, their molding
quality problems are more prominent. In addition, molding is a high-energy process, and
high-quality glass components are usually manufactured at the expense of production
costs [8]. Therefore, establishing a prediction model for the precision molding of large glass
components, studying molding quality and the tendency to produce large, irregular glass
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components for vehicles during molding, and balancing the relationship between glass
molding quality and energy consumption are urgent problems to be addressed [9].

Figure 1. Common 3D glass components of vehicles.

Many studies have been conducted on glass molding [10]. For example, Yan et al. [11]
proposed a new two-step hot pressing method, and they established a glass heat transfer
model by considering the nonlinear characteristic of the material’s thermal expansion and
the specific interaction between heat, thermal conductivity, and the temperature of glass
materials. The improved Newtonian fluid model was intended to describe the flow of glass
materials at high temperatures, and the load fluctuation during extrusion was accurately
predicted. Tao et al. [12] found that the residual stress is significantly affected by the
thermal expansion coefficient and the heat capacity of the glass material. Sarhadi et al. [13]
quantified the friction coefficient and viscoelastic properties of the glass/mold interface via
simulations and experimental testing, and they successfully predicted the final dimensions
and residual stress distribution of the molded lens. Schott [14] and Fotheringham [15] found
that geometric accuracy affects the refractive index of glass components, and the curvature
of the glass components may deviate with changes in temperature and structure [16].
Further, Balajee et al. [17] studied the influence factors of the dimension deviation of
glass components, including molding temperature, molding rate, and mold parameters.
By analyzing the geometric deviation of glass, Dambon et al. [18] adopted the finite element
method, geometric compensation method, and other related “high-tech” methods that can
assist in molding and manufacturing.

The machining quality of the product depends on the process parameters [19,20]. It is
important to model accurate prediction models and optimize the process parameters to
improve product quality [21]. In recent decades, many studies have focused on the correla-
tion and optimization of machine quality and process parameters [22–27]. For example,
He et al. [27] conducted a systematic study on the molding of the 3D curved screens of
smartphones, and a multi-objective optimization method based on the genetic algorithm
(GA) was applied to efficiently solve the optimization problem of glass product quality.
Li et al. [26] established a theoretical model of grinding force by taking the comprehen-
sive influence of strain rate, random distribution of abrasive radii, and “elastic-to-plastic”
transition depth into account; the key force model parameters were determined using a
GA trained based on the experimental data. Zhang et al. [24] developed a mixed predic-
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tion model of residual stress using fuzzy theory and a GA. Chen et al. [25] predicted and
optimized the residual stress of Mg-Li alloy milling based on the GRA-BP-NSGA-III model.

In summary, the above studies have verified the influence of glass material properties
and molding parameters on glass molding quality and realized the optimization of the
molding process [28,29]. However, these studies on the molding technology for glass
components mainly focus on small glass components, and the research on large glass
components is limited. For example, the size of the 3D curved screen on a smartphone is
148 × 73 × 0.35 mm, the fingerprint lock glass panel is 348 × 66.6 × 2 mm, and the mobile
display obtuse glass component is Φ14 × 7 mm, as shown in Table 1. However, the glass
component of vehicles studied in this study is a large, irregular ultra-thin curved glass
component with a size of 1454× 161× 2 mm and an aspect ratio of 9.03. Large and irregular
structures of glass components greatly increase the difficulties during glass molding, easily
producing large residual stress, large dimension deviation, and other issues, resulting in the
problems of low yield rate and low productivity of the components. In order to improve the
product quality of large glass components and balance the relationship between product
quality and production efficiency, a numerical model of glass molding for large instrument
panels on vehicles was established to predict the molding process and quality of glass
components. The molding quality and energy consumption of glass components were
analyzed and optimized based on experimental data with multi-variable factors. Through
experimental verification, multi-objective cooperative optimization between glass product
quality and energy efficiency was realized.

Table 1. Dimensions of molded glass components.

Glass Components Dimension Aspect Ratio Irregular

Vehicle glass component 1454 × 161 × 2 mm 9.03 Yes
Smartphone 3D curved screen [27] 148 × 73 × 0.35 mm 2.03 No

Fingerprint lock glass panel [30] 348 × 66.6 × 2 mm 5.23 No
Mobile display obtuse glass component [31] Φ = 14 mm; h = 7 mm 1 No

Alvarez lens [32] Φ = 84 mm; h = 1 mm 1 Yes
Aspherical glass component [33] 13 × 3.5 × 1 mm 3.71 No

2. Numerical Simulation and Analysis
2.1. Numerical Modeling

MSC. Marc is a powerful thermo-mechanical coupling simulation software with high-
precision convergence solution technology, which can achieve the thermal analysis of
steady and transient states and can effectively simulate complex nonlinear problems. In this
study, the molding processes of large glass components of vehicles were simulated based
on the software of MSC. Marc 2019. Through real-time observation of the temperature
distribution, deformation, and thermal stress of glass blank in multiple stages of heating,
molding, and cooling, the molding mechanism of large glass components during molding
can be better understood.

(1) Geometric model

In this study, a large glass component with a complex asymmetric structure on a
vehicle is the research object, and its mold model is shown in Figure 2. The sizes of both the
upper and lower molds are 1480 × 170 mm, and the heights of the upper and lower molds
are 104 and 50 mm, respectively. In order to accurately describe the shape of the glass
component, a solid tetrahedral element was used to divide molds, and mesh refinement
was performed on the glass blank and local areas of molds. The final model consists of
116,851 mold elements and 36,986 glass elements, as shown in Figure 3.
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Figure 2. Three-dimensional models for the glass molds of vehicles: (a) upper mold; (b) lower mold.

Figure 3. Finite element model of glass and molds: (a) overall model; (b) sectional views of positions
A, B, C, and D.
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(2) Material models

Third-generation Corning glass and graphite were selected as the glass components of
vehicles and mold materials, respectively; their thermo-mechanical properties are shown in
Table 2. The viscoelastic characteristics of the glass material are shown in Table 3. In order
to better describe the characteristics of structural and stress relaxations of glass materials,
the glass viscosity change with temperature was predicted with the William–Landel–Ferry
model, and the structural relaxation of glass materials with temperature was described
with the Narayanswamy model [34,35]. The parameters of the William–Landel–Ferry and
Narayanswamy models are shown in Table 4.

Table 2. Mechanical and thermal properties of glass and mold materials.

Properties Glass Material Mold Material

Density ρ (g/cm3) 2.39 1.78
Young’s modulus E (GPa) 77 10.2

Poisson rate ν 0.22 0.25
Thermal conductivity K (W/m·◦C) 1.028 151

Specific heat Cp (J/kg·◦C) 858 720
Thermal expansion coefficient (/◦C) 7.25 × 10−6 4.8 × 10−6

Table 3. Viscosity of third-generation Corning glass at different temperatures.

No. Temperature (◦C) Viscosity

1 574 1014.7

2 628 1013.2

3 900 107.60

(3) Boundary conditions

The initial temperatures of the molds and glass blank were set at 20 ◦C, the thermal
conduction coefficient between the mold and glass was set as 2800 W/m2K, and the friction
coefficient between the glass materials and mold was set as 0.1. According to the actual
situation, boundary conditions and loading conditions of the model were determined,
the movements in the x, y, and z directions of the lower mold were restricted, and the
movements in the x and y directions of the upper mold were restricted. At the same time,
the upper mold moves in the negative direction of the z-axis under a certain pressure.
As shown in Figure 4, the temperature control strategy during glass molding is mainly
divided into three parts: heating, holding, and cooling. First, the glass blank temperature
begins to rise, reaching the expected molding temperature at 240 s. Then, the upper mold
moves 9 mm in the negative direction of the z-axis under a steady pressure of 35 MPa to
achieve the desired molding effect during the holding stage, and the whole step will last
for 150 s. The release of internal residual stress can effectively avoid cracking. Relevant
studies have shown that the internal stress of glass materials can be alleviated effectively at
around 500 ◦C [27,36]. Therefore, in this study, glass components and molds were slowly
cooled to around 500 ◦C to effectively release the internal stress, followed by rapid cooling
to room temperature. In order to ensure the dimensional accuracy of glass components, a
load of 450 N was applied to the upper mold during cooling. The loading conditions at
each stage are shown in Figure 3.
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Table 4. Relaxation model parameters of third-generation Corning glass [37].

Stress Relaxation Structural Relaxation

Shear Modulus
(MPa) Relaxation Time (s) Weight Coefficient Relaxation Time (s)

12,566 0.0689
0.108 3.0
0.443 0.671

12,615 0.0065
0.166 0.247
0.161 0.091

4582 0.0001
0.046 0.033
0.077 0.008

Figure 4. Schematic diagram of boundary conditions.

2.2. Result Analysis

Figure 5 shows the temperature variation during the heating stage. At 30 s, the glass
component of a vehicle presents temperature distribution at different positions; there is a
temperature difference of 28.6 ◦C between the middle and edge of the glass component.
After 120 s, the temperature difference in the glass component becomes very small, only
about 4.8 ◦C. As heating time increases, as shown in Figure 5c, the temperature distribution
gradually becomes uniform, and it eventually reaches stability at 580 ◦C.

As heating proceeds, the temperature of the glass component reaches the expected
molding temperature, and the glass begins to deform under the pressure exerted by the
upper mold. Figure 6a shows the deformation displacement in the local areas of the glass
component during molding, and it is found that the maximum z-axis displacement at
position E is 11.775 mm. The fit degree between the glass and mold in the direction of the
z-axis was analyzed, and it can be seen that there is no obvious gap between the glass and
lower mold in Figure 6b. Figure 6c shows the line displacement of the glass component
at positions A~F. It can be observed that there is a little deformation displacement from
position A to D, but the bending degree of the glass component is large from position D
to F. From the above analysis, it can be concluded that the bending deformation of the
glass component mainly occurs at the position of the main cavity. In this study, the fit gap
between the glass and lower mold in the middle of the main cavity was selected as the
evaluation standard of the dimension deviation.
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Figure 5. Temperature distribution of glass component of vehicle during heating: (a) 30 s; (b) 120 s;
(c) 210 s.

Figure 6. Deformation displacement on the z-axis of the glass component after molding: (a) deformation
displacement at the positions of A–F; (b) fit degree; (c) displacement of the sampling positions A–F.

2.3. Scheme Design

In this study, different process conditions, including molding temperature, heating rate,
molding pressure, holding time, and cooling rate, were studied to assess the residual stress,
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dimension deviation, and energy consumption during molding. In order to better explore
the influence of various factors on the glass molding process, an orthogonal experimental
design based on the molding parameters was implemented. The molding parameters of
heating rate (A), holding time (B), molding temperature (C), molding pressure (D), and
cooling rate (E) were determined as the control variables; four levels were designed for
each control factor, and an orthogonal array of L16 (45) was designed. The level setting
standards of the five control factors can be seen in Table 5. Finally, 16 data samples were
collected through finite element analysis, as shown in Table 6. Then, the collected sample
data were further analyzed for the influence of different control factors on residual stress,
dimension deviation, and energy consumption.

Table 5. Control factors and standard settings of levels.

No.

Control Factors

A
(◦C)

B
(◦C/s)

C
(s)

D
(MPa)

E
(◦C/s)

1 1.5 100 550 20 0.75
2 2.0 120 560 25 1
3 2.5 140 570 30 1.25
4 3.0 160 580 35 1.5

Table 6. Experimental design and response statistics.

No.

Control Factors
Residual

Stress
(MPa)

Dimension
Deviation

(mm)

Energy
Consumption

(kJ/pcs)A B C D E

1 1.5 100 550 20 0.75 28.98 0.2537 45,921.5
2 1.5 120 560 25 1 23.16 0.2586 46,942.6
3 1.5 140 570 30 1.25 19.92 0.1851 47,937.1
4 1.5 160 580 35 1.5 18.69 0.2307 48,328.3
5 2 100 560 30 1.5 24.87 0.1913 46,573.2
6 2 120 550 35 1.25 26.78 0.2014 45,977.2
7 2 140 580 20 1 16.69 0.2374 47,981.6
8 2 160 570 25 0.75 19.07 0.2713 47,879.3
9 2.5 100 570 35 1 20.07 0.1928 47,113.4

10 2.5 120 580 30 0.75 17.97 0.2377 47,631.1
11 2.5 140 550 25 1.5 30.06 0.2456 45,777.9
12 2.5 160 560 20 1.25 22.32 0.2230 46,737.3
13 3 100 580 25 1.25 17.55 0.2310 47,318.8
14 3 120 570 20 1.5 18.72 0.2020 47,032.3
15 3 140 560 35 0.75 26.16 0.2210 46,524.7
16 3 160 550 30 1 31.27 0.2053 45,539.2

3. Influence of Molding Parameters on Quality and Energy Consumption
3.1. Residual Stress

Through the orthogonal experimental analysis, it could be concluded that molding
temperature (C), molding pressure (D), and cooling rate (E) are the main factors affecting
the residual stress, as shown in Table 7. In Figure 7, it can be seen that the maximum value of
the residual stress has an obvious linear relationship with molding temperature. At 580 ◦C
(No. 7), residual stress reaches the minimum value of 15.10 MPa; as molding temperature
decreases, residual stress increases to 28.98 MPa at 550 ◦C (No. 1). The viscosity of the
glass material reduces significantly as temperature increases, and the rheological property
improves, which results in a decrease in residual stress.

As shown in Figure 8, the maximum value of the residual stress gradually increases
with molding pressure. The value of residual stress is 18.75 MPa at a molding pressure of
20 MPa (No. 14), and it reaches 23.06 MPa when the molding pressure increases to 35 MPa
(No. 9). As the molding pressure increases, the strain rate of the glass material will be
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significantly increased, thus shortening the time required for glass deformation, so that the
internal balance of the glass material cannot be effectively maintained, and less stress is
released in a short time, resulting in an increase in residual stress.

Table 7. Mean response table for residual stress.

Level A B C D E

1 22.69 22.87 31.02 21.28 23.04
2 23.21 23.41 24.13 22.46 22.40
3 22.60 22.81 19.45 23.51 23.39
4 23.42 22.84 17.33 24.68 23.09

Delta 0.82 0.60 13.70 3.40 1.00
Order 4 5 1 2 3

Figure 7. Influence of molding temperature on residual stress.

Figure 8. Influence of molding pressure on residual stress.

As can be seen from Figure 9, there is an obvious linear relationship between the
cooling rate and residual stress. As the cooling rate increases from 0.75 ◦C/s (No. 10) to
1.5 ◦C/s (No. 11), the maximum residual stress value rises from 17.97 MPa to 30.06 MPa.
An increase in the cooling rate results in a greater temperature difference within the glass
components, leading to an enlarged temperature gradient, which will further increase
stress aggravatingly. In addition, accelerating the cooling rate will shorten the cooling time
and may cause the internal structure of the glass material to not fully achieve a stable state,
thus reducing the ability of stress relief.
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Figure 9. Influence of cooling rate on residual stress.

3.2. Dimension Deviation

Molding pressure (D), cooling rate (E), and molding temperature (C) are the main
factors affecting product dimension deviation, as shown in Table 8. The information from
Figure 10 indicates that the dimension deviation alteration follows a pattern of initial
reduction followed by enlargement with an increase in molding temperature. As the mold-
ing temperature gradually ascends from 550 ◦C (No. 1) to 570 ◦C (No. 14), a significant
reduction in dimension deviation is observed. At 580 ◦C (No. 7), dimension deviation
tends to increase in reverse. A moderate increase in molding temperature leads to im-
provements in the flow characteristics of glass materials, contributing to a reduction in
dimension deviations. However, excessive temperature may cause the glass materials to
undergo deformation beyond the normal range, which results in a corresponding increase
in their volumetric expansion rate, further exacerbating their appearance inaccuracies in
the subsequent cooling step.

Table 8. Mean response table for dimension deviation.

Level A B C D E

1 0.2320 0.2172 0.2265 0.2290 0.2459
2 0.2253 0.2249 0.2235 0.2516 0.2235
3 0.2248 0.2223 0.2128 0.2049 0.2101
4 0.2148 0.2326 0.2342 0.2115 0.2174

Delta 0.0172 0.0154 0.0214 0.0468 0.0358
Order 4 5 3 1 2

From Figure 11, it is evident that the molding pressure significantly influences the
dimension deviation of the molded glass components. At a molding pressure of 20 MPa
(No. 1), dimension deviation is recorded at 0.2537 mm. As molding pressure escalates
to 35 MPa (No. 9), there is a noticeable reduction in dimension deviation, decreasing
from the initial value of 0.2537 mm to 0.1982 mm. Furthermore, with the increase in
molding pressure, there is an enhancement in filling efficiency between the glass and molds,
effectively reducing dimension deviation.
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Figure 10. The influence of molding temperature on dimension deviation.

Figure 11. The influence of molding pressure on dimension deviation.

According to Figure 12, we can observe that as the cooling rate increases from 0.75 ◦C/s
(No. 8) to 1.5 ◦C/s (No. 11), dimension deviation initially decreases and then increases
again, ultimately reaching a turning point at 1.25 ◦C/s. In theory, as the cooling rate
increases, there is a corresponding reduction in the required time. This poses a greater
challenge for the structure inside glass material to achieve a stable state, resulting in reduced
deformation due to material structural relaxation. Consequently, the dimension deviation
decreases. However, an excessive cooling rate may also lead to mold deformation, resulting
in the deformation of glass components.
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Figure 12. The influence of cooling rate on dimension deviation.

3.3. Energy Consumption

The calculation of energy consumption in glass molding encompasses not only the
heat absorbed by the mold and glass but also the heat consumption by nitrogen [38]. These
heat contributions over a production cycle can be expressed using Equations (1) and (2):

Ee = λ(Q1 + Q2) = λ(
2

∑
i=1

cimi∆T + c3vtρ∆T′) (1)

λ(T) = 2.01 + 3.1× 10−5T (2)

where:
Ee—energy consumption (kJ/pcs);
λ—thermal loss coefficient, a function of temperature T;
Q1, Q2—heat consumption of the glass blank and molds, and heat consumption of

nitrogen (kJ/pcs);
c1−3—specific heat capacity of the mold, glass, and nitrogen (J/(kg ◦C));
mi—mass of the molds and glass blank (kg);
∆T—temperature changes of the glass blank and molds (◦C);
∆T′—temperature changes of nitrogen (◦C);
v—nitrogen flow rate (mL/s);
t—nitrogen injection time (s);
ρ—nitrogen density (kg/mm3).
Observing Table 9 reveals that the heating rate (A), holding time (B), and molding

temperature (C) emerge as critical factors constraining the production efficiency of glass
components. This trend is further illustrated in Figure 13, where a noticeable increase
in molding temperature leads to a sharp rise in energy consumption. Simultaneously,
extended holding times correspond to increased energy consumption. Conversely, faster
heating rates yield lower energy consumption. Although elevating the molding temper-
ature can mitigate dimensional deviations and stress levels, this increase in temperature
directly leads to higher energy consumption during production. When heating rates de-
crease and heating times increase, the component’s production cycle lengthens, resulting in
augmented furnace heat consumption and amplified energy consumption.



Micromachines 2023, 14, 1974 13 of 21

Table 9. Mean response table for energy consumption.

Level A B C D E

1 47,282 46,732 45,804 46,918 46,989
2 47,103 46,896 46,694 46,980 46,894
3 46,815 47,055 47,491 46,920 46,993
4 46,604 47,121 47,815 46,986 46,928

Delta 679 389 2011 68 98
Order 2 3 1 5 4

Figure 13. Influence of molding parameters on energy consumption.

4. Optimization of Molding Process
4.1. Regression Model

Using a model-driven approach offers numerous advantages, but it is associated with
relatively high simulation costs [39,40]. Artificial intelligence algorithms typically demand
a significant volume of data for effective training and learning [41,42]. Insufficient data
can potentially result in a deterioration of model performance. Therefore, a data-driven
approach is favored for its ease of establishment. The relationship among the maximum
residual stress, dimension deviation, and energy consumption of molded products is
exceedingly complex and is far from a simple linear pattern, making the construction of an
accurate analytical model a challenging task. To tackle this challenge, regression analysis
was employed to incorporate various influencing factors into response statistics. This
approach enables a more comprehensive depiction of the interactions among these factors,
thus enhancing our understanding of their relationships. The model formula is presented
as Equation (3):

y(x) = a0 +
n

∑
i=1

aixi +
n

∑
ij(i<j)

aijxixj (3)

where y is the objective function, a0 is the zero-order coefficient, ai is the first-order coeffi-
cient, aij is the second-order coefficient, xi and xj represent the variable factors, and n is
the number of factors. By employing the commercial data analysis software Minitab 19,
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the regression models of the maximum residual stress (Rs), dimension deviation (Sd), and
energy consumption (Ee) were established, as shown in Equations (4)–(6), respectively.

Rs = −2145 + 26.34A− 1.0154B + 8.315C− 5.364D + 81.70E− 17.332A2

−0.000695B2 − 0.007894C2 + 0.002025D2 − 35.61E2 + 0.02819AB+
0.0875AC + 0.0178AD + 0.04197BD

(4)

Sd = 50− 1.19A + 0.0058B− 0.173C + 0.0132D− 0.59E + 0.068A2+
0.000001B2 + 0.000151C2 + 0.000047D2 + 0.256E2 − 0.00029AB+
0.00147AC + 0.00265AD− 0.000176BD

(5)

Ee = −411441 + 1914A− 217B + 1600C + 113D− 1136E− 32A2−
0.0615B2 − 1.415C2 − 1.81D2 − 619E2 − 10.02AB− 1.0AC− 6.5AD
+0.463BD

(6)

To evaluate the adequacy of the regression models in relation to the expected out-
comes, an analysis of the coefficient of determination, R-sp, was conducted. The results
are as follows: For the regression model of maximum residual stress (Rs), the R-sp was
determined to be 0.9999, signifying a remarkably accurate model. In the case of the di-
mension deviation (Sd) regression model, the R-sp was calculated as 0.9610, with a minor
deviation of 0.039, well within the acceptable error range for this model. Similarly, the
energy consumption (Ee) regression model achieved an R-sp of 0.9985, attesting to its high
level of precision.

4.2. Multi-Objective Optimization

The non-dominated sorting genetic algorithm II (NSGA-II) is an optimization method
based on the NSGA algorithm, jointly proposed by Deb and Srinivas [43]. This algorithm
is straightforward to implement and exhibits a faster optimization rate. NSGA-II is a
multi-objective optimization technique that relies on Pareto optimality as its foundation
and incorporates elite strategies. It rapidly and efficiently performs non-dominated sorting,
thereby markedly enhancing the efficiency and precision of genetic algorithms [44]. It excels
in optimizing structural parameters within models and demonstrates high precision in this
regard. NSGA-II leverages crowding distance comparison operators and elite strategies to
enhance optimization accuracy. The crowding distance comparison operator plays a vital
role in assessing the density around each individual while selecting the new generation of
individuals, ensuring that promising individuals are not discarded and promoting a more
even distribution of non-dominated solutions across the entire solution space. In this study,
the NSGA-II optimization algorithm finds application in the molding parameters for large-
sized vehicle glass components. This not only reduces simulation computation time but
also mitigates the risk of converging to local optima and encourages population diversity.

Utilizing NSGA-II, a multi-objective optimization of glass component molding parame-
ters was conducted to reduce dimension deviation, residual stress, and energy consumption.
The configuration of operational parameters was as follows:

(1) fmin = {Rs, Sd, Ee};
(2) Iteration number = 500;
(3) Population size = 100;
(4) Fitness function value deviation = 1 × 10−100;
(5) Crossover probability = 0.5;
(6) Mutation probability = 0.0005.

Based on Figure 14, it is evident that achieving the optimal state for the dimension de-
viation, residual stress, and energy consumption simultaneously is not feasible. Therefore,
in the implementation of multi-objective optimization, it is crucial to regulate the values of
three objectives within acceptable ranges to achieve the best energy efficiency and reduce
overall costs. Table 10 displays partial Pareto solutions for three optimization objectives.
The optimal molding parameters are as follows: a heating rate of about 1.95 ◦C/s, a holding
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time of about 158 s, a molding temperature of about 570 ◦C, a molding pressure of about 34
MPa, and a cooling rate of about 1.15 ◦C/s. The optimized solutions successfully strike a
balance between high quality and low energy consumption.

Figure 14. Pareto front solutions for residual stress, dimension deviation, and energy consumption.

Table 10. Partial Pareto front solutions for three-objective optimization.

No.

Control Factors
Residual

Stress
(MPa)

Dimension
Deviation

(mm)

Energy
Consumption

(kJ/pcs)A B C D E

1 1.873 158.34 572.47 33.861 1.239 19.71 0.1903 44,770
2 1.906 158.41 567.47 34.365 1.034 20.60 0.1966 45,280
3 1.997 158.30 574.55 34.144 1.147 21.04 0.1772 44,920
4 1.844 154.18 566.93 34.650 1.109 22.73 0.1863 44,240
5 2.069 159.26 571.12 34.959 1.139 23.04 0.1862 45,180
6 2.108 158.34 573.75 34.729 1.181 23.48 0.1868 44,800
7 1.918 157.04 567.47 34.512 1.068 23.80 0.1832 45,600
8 2.125 158.54 572.31 34.811 1.252 24.21 0.1832 44,590

4.3. Experimental Validation

After optimization, the three-objective optimization partial Pareto front solutions could
be obtained. For the validation of the Pareto front solutions concerning residual stress (Rs),
dimension deviation (Sd), and energy consumption (Ee), a simulation and experimental
verification were further conducted. Groups 3, 4, and 5 of the Pareto front solutions were
selected to carry out numerical simulation studies. A comparison of the simulation results
and these solutions facilitates a more precise evaluation of the optimized results.

Figures 15 and 16 display the results for dimension deviation and maximum stress.
In the case of the third group scheme, the simulation results of the dimension deviation,
maximum residual stress, and energy consumption are as follows: 0.1632 mm, 23.99 MPa,
and 46,270.3 kJ/pcs, respectively. When comparing these results with the previous opti-
mization results, it is evident that the relative error for maximum residual stress is 12.3%,
for dimension deviation is 8.6%, and for energy consumption is 2.9%. Similarly, for the
fourth group scheme, the relative errors between the simulation experiment results and
the optimization results are 8.3%, 4.7%, and 7.7%, while for the fifth group scheme, they
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are 16.3%, 3.6%, and 7.1%, respectively. It can be observed that the optimized predictive
results closely match the simulation results, with relative errors well controlled within a
20% margin. Detailed comparison results are shown in Table 11, all of which are within an
acceptable range.

Figure 15. Dimension deviation of glass components: (a) Group 3; (b) Group 4; (c) Group 5.

Figure 16. Maximum residual stress of glass components: (a) Group 3; (b) Group 4; (c) Group 5.
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Table 11. Simulation validation of optimization results.

No.

Control Factors Simulation Results Relative Error

A
(◦C/s)

B
(s)

C
(◦C)

D
(MPa)

E
(◦C/s)

Rs
(MPa)

Sd
(mm)

Ee
(kJ/pcs)

Rs
(%)

Sd
(%)

Ee
(%)

3 1.997 158.30 574.55 34.144 1.147 23.99 0.1632 46,270.3 12.3 8.6 2.9
4 1.844 154.18 566.93 34.650 1.109 24.78 0.1954 47,951.2 8.3 4.7 7.7
5 2.069 149.26 571.12 34.959 1.139 27.52 0.1797 48,651.2 16.3 3.6 7.1

The multifunctional molding machine shown in Figure 17, located at Guangdong
Intelligent Robotics Research Institute, is equipped with a PLC automatic control system
and a multifunctional assembly line, resulting in a substantial enhancement of production
efficiency. The glass molding device includes a CNC system, heating stations (two stations),
molding stations (two stations), cooling stations (eight stations), a furnace chamber, nitrogen
supply and discharge devices, and auxiliary mechanisms like a power supply. The device’s
dimensions are 25,850 × 4800 × 3600 mm, with a weight of 12,500 kg and a power rating of
400 KW. The CNC system employs programmable control technology and achieves precise
closed-loop control through a feedback system incorporating high-resolution temperature
sensors, pressure sensors, and gas flow sensors. During the heating stage, each station
consists of six components: upper and lower heating plates (incorporating embedded
heating tubes), upper and lower conductive plates, molds, and a glass sample. In the
molding stage, hydraulic cylinders were employed to apply pressure to the molds. During
the cooling stage, the heating elements progressively decreased in temperature. Figure 18
illustrates the mold and glass components.

Figure 17. The device for the molding of large irregular glass components of vehicles.

Upon experimental verification, the average dimension deviation of the large-size
vehicle glass components under the third scheme in Table 11 measures 0.1380 mm, which
has an error of less than 20% compared to the simulation results. Precision molding of
curved ultra-thin glass demands high molding dimension accuracy, typically controlling
dimension deviation within the range of 10−1 mm. In conventional modeling processes,
due to the limitations of numerical simulation modeling software, the existence of errors
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is difficult to avoid. For example, in the verification of an ultra-thin curved glass model,
Yang et al. [45] found that the numerical results of the dimension deviation were generally
lower than the experimental results, yet the variation trend between the simulation and
experimental results remained consistent. He et al. [27] also obtained a maximum prediction
error of 17.62% in the modeling of smartphone curved screen components. In addition,
the glass component of a vehicle in this study possesses the characteristics of a large and
irregular shape. The dimension deviation in the actual production is about ±0.15 mm,
whereas the prediction error of 20% of the simulation model is at 10−2 mm. Therefore,
taking into account potential experimental variations and the limitations of simulation
modeling, the prediction error of less than 20% in this study falls within an acceptable range.

Figure 18. Large vehicle glass components and molds: (a) glass molds; (b) glass components.

5. Conclusions

A molding model of an irregular glass component of a vehicle was established to
predict and analyze the dominant factors of quality characteristics and energy consumption
using a multi-variable factor experimental design. Subsequently, an optimization scheme
was formulated to achieve a synergistic balance between quality characteristics and energy
consumption, employing the NSGA-II algorithm. The main conclusions are as follows:

(1) The simulation model of large glass component molding was established, the tem-
perature variation of the glass blank and graphite mold during the heating stage
was analyzed, and the quality characteristics of the molded component were pre-
cisely predicted. The results indicate that the stress is predominantly concentrated
in the bending deformation position of the molded component, with the maximum
dimension deviation occurring at the central position.

(2) Among the various factors, the molding temperature, molding pressure, and cooling
rate have the most significant impact on the molding process of glass components.
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Under the combination of a molding temperature of 580 ◦C, molding pressure of
25 MPa, and cooling rate of 1.25 ◦C/s, the residual stress remains consistently low.
Similarly, under the combination of a molding temperature of 570 ◦C, molding pres-
sure of 30 MPa, and cooling rate of 1.25 ◦C/s, the dimension deviation is kept to a
minimum. Furthermore, with a molding temperature of 550 ◦C, molding pressure of
30 MPa, and cooling rate of 1 ◦C/s, lower energy consumption in the production of
glass components can be obtained.

(3) The combination of a heating rate of 1.95 ◦C/s, holding time of 158 s, molding
temperature of 570 ◦C, molding pressure of 34 MPa, and cooling rate of 1.15 ◦C/s was
determined as the cooperative balance scheme for quality characteristics and energy
consumption by NSGA-II there-objective optimization. The optimized prediction
closely aligned with both simulation and experimental results, with a maximum error
not exceeding 20%, well within the acceptable range.
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