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Abstract: This paper pioneers the use of the extreme learning machine (ELM) approach for surface
roughness prediction in ultra-precision milling, leveraging the excellent fitting ability with small
datasets and the fast learning speed of the extreme learning machine method. By providing abundant
machining information, the machining parameters and force signal data are fused on the feature level
to further improve ELM prediction accuracy. An ultra-precision milling experiment was designed
and conducted to verify our proposed data-fusion-based ELM method. The results show that the
ELM with data fusion outperforms other state-of-art methods in surface roughness prediction. It
achieves an impressively low mean absolute percentage error of 1.6% while requiring a mere 18 s for
model training.

Keywords: surface roughness prediction; ultra-precision machining; milling; extreme learning
machine; feature-level data fusion

1. Introduction

Ultra-precision machining holds great promise for generating surfaces with sub-
micrometer form accuracy and surface roughness at the nanometer level, which are widely
used in advanced optics and the biomedical, electronic, and aerospace industries [1,2].
As one of the ultra-precision machining technologies, ultra-precision milling can achieve
high-level surface quality, which finds extensive applications across various industries,
such as the semiconductor and optical fields [3]. Surface quality is physically assessed
using precision measuring equipment and instruments, such as the non-contact optical
surface profiling system provided by New Zygo NexView. However, traditional physical
measurement methods for surface quality detection tend to be time-consuming. To address
this issue, an artificial intelligence-based model for surface roughness prediction can be
developed on the basis of processing information and machining parameters, through
which surface roughness can be generated as soon as the processing is completed. The
advancement of machine tool automation has enabled the collection of machining process
information by arranging sensors on the machine tool. Thus, the real-time monitoring of
the machining conditions and conjecture about surface roughness can be realized without
physical metrology operations, which are vital for increasing machining efficiency and
guaranteeing machining surface quality [4].

Intelligent surface roughness prediction based on machine learning methods can
predict surface roughness through signal data in real time once the prediction model
is constructed, which can quickly detect defective workpieces [5]. Classical machine
learning algorithms, such as random forest, support vector machine, and artificial neural
network [6–8], have demonstrated their effectiveness in industrial scenarios. However,
deep learning models like Transformer and BERT, commonly applied in speech recog-
nition [9] and natural language processing [10], achieve better prediction accuracy and
possess more complex structures and less dependency on expert knowledge [11]. However,
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it is worth noting that deep learning models require a large-scale dataset to attain optimal
performance, which largely limits the application of deep learning models in scenarios
where only a limited dataset is available [12]. In ultra-precision machining scenarios, the
collection of sensor data and their corresponding real-measured surface roughness data
is typically constrained to a limited amount, often several hundreds of samples, which
renders most deep learning models unsuitable for this scenario.

A way to achieve high prediction accuracy while overcoming a limited dataset is a
crucial research problem for surface roughness prediction in ultra-precision machining.
Most machine learning predictive methods typically train their model based on the back-
propagation mechanism, which is time-consuming because network parameters should be
updated in repeated iterations [13]. In contrast, ELM has been demonstrated to be effective
in many prediction tasks with small datasets because of its fast learning speed, facilitated
by the rapid determination of network parameters using Moore–Penrose within several
seconds instead of training iteratively with the backpropagation mechanism [14]. Besides a
small dataset demand and the quick determination of network parameters, ELM maintains
good prediction accuracy at the same time. Cojbasic et al. [15] applied the extreme learning
machine to the surface roughness prediction of abrasive water jet machining. However,
they only adopted cutting parameters, such as the thickness of the workpiece, abrasive flow
rate, and cutting speed, as the model input. To further improve ELM prediction accuracy,
an approach is proposed to leverage sensor data that accurately reflects real-time machining
conditions by concatenating it with machining parameters for prediction. Specifically, a
feature-level fusion technique is employed to seamlessly merge the extracted features from
both the sensor data and machining parameters, thus enabling a more comprehensive and
robust prediction model.

Considering that research focusing on applying machine learning prediction models
to ultra-precision milling has received relatively little attention, this paper presents the use
of ELM to develop a surface roughness prediction model for ultra-precision milling that
can ensure prediction accuracy and significantly accelerate learning speed. By providing
richer machining information, feature-level sensor data and machining parameter fusion
can further enhance ELM prediction accuracy.

2. Related Works

Many researchers have been dedicated to researching surface roughness prediction
with machine learning methods for decades. One of the most frequently used methods is
the artificial neural network (ANN). Zain et al. [16] used ANN techniques for intelligent
surface roughness measuring. The experimental model incorporated three input variables,
namely cutting speed, feed rate, and rake angle, which were designated as nodes of the
artificial neural network (ANN) input layer. Different numbers of nodes in the hidden
layer were tested to decide the structure of the ANN. It was found that the 3-1-1 network
structure provided the best ANN model. Similarly, Karayel [17] predicted and controlled
surface roughness in turning using an ANN with cutting parameters as the input. They are
the depth of cut, the cutting speed, and the feed rate. It was found that the feed rate is a
dominant parameter, and the effect of depth of cut on surface roughness is not regular. A
feed-forward multi-layered neural network was developed, and the network model was
trained using the scaled conjugate gradient algorithm.

Deep learning methods have emerged in recent years in applications in this field. Fea-
tures extracted in the time domain and frequency domain from original and decomposed
signals were used to predict the surface roughness accurately in the grinding process by
Guo et al. [18]. The long short-term memory (LSTM) network is applied to forecast ground
surface roughness with the input of the grinding force signal, the acceleration signal, and
the acoustic emission signal. Another newly emerged deep learning model is the one-
dimensional convolutional neural network (1D-CNN). Lin et al. [19] used three models,
namely, FFT-DNN, FFT-LSTM, and 1D-CNN, to explore training and prediction perfor-
mance. 1D-CNN is employed to automatically extract the raw vibration signal data while
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DNN and LSTM use the FFT feature extractor at the beginning. According to experimental
research, FFT-LSTM and 1D-CNN are suggested for developing an intelligent system.
Furthermore, CNN and LSTM are sometimes incorporated together to make predictions.
Wang et al. [20] fused several process signals using an attentional CNN-LSTM architecture,
in which CNN was utilized to extract features from process signals and the LSTM handled
the sequential output of CNN. For model input, spindle current, vibration, and acoustic
emission signals were selected as process signals considering the aspects of grinding wheel
rotation, workpiece supporting, and material removal. Similarly, Lv et al. [21] suggested an
end-to-end deep learning prediction model for improving surface roughness prediction
using acceleration sensors arranged on spindles, fixtures, and metal blocks to obtain vi-
bration signals. First, the 1D-CNN model was used to automatically extract the vibration
signal features and train the data; second, an LSTM model suitable for time-series-sensitive
signal training was used for the 1D-CNN training data and continued training; and finally,
the fully connected classification performed predictive analysis. While a considerable body
of research has been carried out on machine learning-based surface roughness prediction,
much less is known about ELM applications in ultra-precision milling cases. What is more,
the inputs of the majority of models are unitary, which are either cutting parameters or
signal data. As a result, the novelties of this paper exist both in the application scene and in
the data fusion technique that improv es model prediction accuracy.

3. Methodology

Figure 1 shows a framework for building an ELM model with data fusion for surface
roughness prediction in the ultra-precision milling process. As shown in Figure 1, a
detailed data preprocessing procedure is illustrated incorporating machining parameters
and features from sensor data on a feature level. Specifically, machining parameters are
taken as three new features and added after features extracted from sensor data in step
5 to formalize the final feature map. The inputs for the ELM model are the feature map
comprising of normalized machining parameters (feed rate, depth of cut, and width of cut)
and 12 time-domain features extracted from force signals, and the model output is the real-
measured surface roughness. Since the raw force signal data are long, one-dimensional time
series data, they should be preprocessed from step 1 to step 6. The machining parameters
have only three values for each sample, so they are only preprocessed from step 5 to step
6. An ELM is chosen as the prediction model because of its fast learning speed and good
fitting ability with small datasets.

3.1. Extreme Learning Machine

Since the ELM approach was first proposed by Huang et al. [22] from Nanyang
Technological University, it has attracted much attention, as it has been deeply studied
both in its basic theory and applications. Similar to the three-layer backpropagation neural
network, the ELM is a single hidden layer feedforward neural network that trains the
weights between the hidden layer to the output layer in the learning stage. The difference
is, normally, gradient-based algorithms are used to determine the weights and bias in the
three-layer backpropagation neural network, but the ELM randomly decides the weights
and biases between the input layer and the hidden layer and only computes the weights
between the hidden layer and the output layer by determining Moore–Penrose directly,
which can significantly save training time as parameters to be trained decrease and can
be mathematically determined in one time. The number of neurons in the first layer of
the ELM is the same as the number of features after data preprocessing. Therefore, only
one hyperparameter, the number of neurons in the hidden layer, needs to be adjusted
during the learning stage. A simple loop traversal is coded to find the best hyperparameter
aimed at finding the best accuracy.
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Figure 1. The framework of training an extreme learning machine model for surface roughness
prediction in the ultra-precision milling process with the fusion of machining parameters and force
signal data. Raw signal data and machining parameters are fused on a feature level in step 5,
composing the final feature map as the input of ELM. The blue, red and pink raw signals shown in
the small picture in the upper left corner are x-direction force signal, y direction force signal and
z-direction signal respectively.

As shown in Figure 1, the training samples are represented as {
xk
i , yk

∣∣∣xk
i ∈ RD , yk ∈ Rm , i = 1, 2, . . . , N

},
and the hidden layer is computed as shown in Equations (1)–(3).

H(x) =
[

h1(x), h2(x), . . . , hJ
]

(1)

g(x) =
1

1 + e−x (2)

hk
j (x) = g

(
ωk

ij·xk
i + bk

i

)
, ωk

ij ∈ RD, bk
i ∈ R (3)

where H(x) is the output matrix in the hidden layer; hj(x) is the output of the jth node in
the hidden layer; g is the activation function: sigmoid; and ωk

ij and bk
i are weights and bias

in the hidden layer, which are randomly generated parameters. The output layer of the
ELM is illustrated in Equation (4).

yk
pred =

J

∑
j=1

βk
j ·hk

j (x) = H(x)·β (4)

where yk
pred is the predicted surface roughness value, and βk

j is the weight of the jth neuron
in the hidden layer to the output layer. The main goal of the network is to minimize the
training error between predicted surface roughness and real-measured surface roughness,
as shown in Equation (5).

min(H(x)·β−Yreal)
2 (5)

where Yreal is the matrix constituting the actual measured surface roughness value. In the
ELM, the least square method is used to compute β, which can achieve a better performance.
The solution to β is shown in Equations (6) and (7).

β∗ = H+·Yreal (6)
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H+ =
(

HT H
)−1

HT (7)

where H+ is the Moore–Penrose generalized inverse matrix of H. HT is the transpose
matrix of H. In this way, the only parameters that need to be trained can be determined.

3.2. Data Preprocessing

The data preprocessing procedure is shown in the left part of Figure 1. After 6 steps of
preprocessing, the raw force signal data and machining parameters can be transformed into
a normalized feature map as the input of the ELM, where features are along the column,
and samples are along the row. The functionality of each step is introduced below.

Step 1. Remove zero drift. Force signal data are collected from the Kistler 3-component
measuring system but encounter the zero drift problem, which means the effect where the
zero reading of an instrument is modified by a change in ambient conditions. Thus, the
first step of data preprocessing aims to minimize or even eliminate zero drift.

Step 2. Truncate valid data. Milling a flat surface requires tool advances and with-
drawal several times since the diameter of the tool is smaller than the width of the surface
to be milled. As a result, the force signals are only available when the tool is in contact with
the workpiece surface, where effective force data need to be segmented from the raw signal
data, which are sparse and contain many zero values. Thus, step 2 is to truncate valid data
from raw signals.

Step 3. Dataset augmentation. The paired data consist of features from sensor data and
machining parameters as inputs and corresponding real-measured surface roughness as the
output. Each sample is one pair of data. In sensor data collection, a high sampling frequency
is set, and data are collected for several seconds in each sample. Thus, the sensor data are
very long, one-dimensional time series data. Considering the complexity of conducting
actual experiments resulting in the limited dataset, the dataset should be augmented to
improve the prediction accuracy. Original long one-dimensional force signals are cut with
a small-sized time window. However, the augmented data cut from the same force signal
share the same label (real measured surface roughness) and the same combination of milling
parameters. The details of this data augmentation technique have been clearly illustrated
by Tieng et al. [23].

Step 4. Feature extraction. For force signals, 12 time-domain features are extracted
for each sample after augmentation. The involved time-domain features are the peak, root
mean square, crest factor, kurtosis, skewness, root mean square amplitude, margin factor,
mean, pulse factor, waveform indicators, variance, and standard deviation.

For each sample before augmentation, machining parameters are designed differently
with the full-factorial experiment design method. Thus, there are 64 combinations of
machining parameters. For samples after augmentation, the newly generated samples
inherit the same machining parameters as their corresponding mother sample and the
surface roughness from the mother sample. Therefore, the combination of machining
parameters is still 64, and son samples generated from the same mother sample have the
same machining parameters and surface roughness label. After step 4, three machining
parameters, namely, the feed rate, depth of cut, and width of cut, are attached after the
time-domain features along the column to form a new feature map.

Step 5. Normalization. Based on the above process, a feature map, whose column
is different features (time-domain features from the force signal and three machining
parameters) and whose row is different samples, is formed. To improve the accuracy and
integrity of the data, data normalization ensures uniformity in how the data can be utilized
across the whole dataset. Z-score normalization, as shown in Equation (8), is adopted for
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the normalization of input data along each column in the feature map formed after step 4.
The final feature map is ready to be fed as the input of the ELM model.

xj
n f =

xj
f − µj

σj (8)

where xj
n f is the normalized jth feature; xj

f is the original jth feature; µj and σj are the mean

and standard deviation of xj
f , respectively.

Step 6. Split the training and testing datasets. The train–test split is a technique for
evaluating the performance of a machine learning algorithm. Splitting your dataset is
essential for an unbiased evaluation of prediction performance. The training dataset is
used to fit the model and the testing dataset is used to test the model after completing the
training. In this work, the training and testing datasets are divided by a ratio of 4 to 1,
which means 80% of the data are for training, and 20% of the data are for testing.

4. Experimental

To verify the effectiveness of the proposed ELM with a data fusion framework, a real
ultra-precision milling experiment is designed and conducted on a Toshiba UVM five-axis
micro-milling machine to collect the dataset for model training. The hardware configuration
and setup for the milling experiment are presented in Figure 2. To see the structures of
milled surface roughness clearly, Figure 3 provides a schematic image of the machined
workpiece. In order to increase the utilization of the workpieces, two combinations of
milling parameters are milled on the same plane. To distinguish different trials, the trial
numbers are lettered on both sides. Each workpiece is cubic with a length of 8 mm, a
processing area of 2 mm on both sides, and a margin of 4 mm.
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Three primary machining parameters, namely, the feed rate, depth of cut, and width
of cut, are widely recognized as the crucial controllable factors influencing surface rough-
ness during the face milling process [24]. The spindle speed is set to a fixed parameter
(60,000 rpm) in this experiment, as the minimum spindle speed of the high-speed air float
spindle used for the Toshiba high-precision micro-milling machine is 60,000 rpm, and
the spindle speed for ultra-precision milling is already a relatively optimal value. A full
factorial experiment is applied to design different machining conditions. Based on the
capabilities of the ultra-precision milling machine and the desired range of value com-
monly used in the industry, each parameter is set to four different levels, providing a total
of 64 experiment runs for each parameter combination. The four levels of feed rate are
200 mm/min, 400 mm/min, 600 mm/min, and 800 mm/min. The four levels of depth of
cut are set to 30 mm, 60 mm, 90 mm, and 120 mm. Moreover, 5 mm, 100 mm, 150 mm, and
200 mm are the four setting values for the width of the cut. Table 1 shows the levels of each
parameter used in the experiment. In total, 64 groups of milling experiments are conducted
under different combinations of control parameters.

Table 1. Cutting parameters of the experiment.

Control Parameter Units
Levels

1 2 3 4

Feed rate mm/min 200 400 600 800

Depth of cut mm 0.03 0.06 0.09 0.12

Width of cut mm 0.05 0.1 0.15 0.2

The CrTiAlN-coated cemented carbide and micro-milling tool (model numer: MXH230,
manufacturer: NS Tool from Nankowu city, Japan) is used to milled the specimens. In order
to minimize the impact of tool wear, each tool is replaced with a new one after collecting
eight original samples during the actual experiment. The dynamometer (Kistler 9256C1,
manufacturer: Kistler from Winterthur, Switzerland) is fixed under the workpiece, and the
charge amplifier (Kistler multichannel charge amplifier 5080, manufacturer: Kistler from
Winterthur, Switzerland) and PC software (Dynoware version 3.0.9.0) are used to measure
force in the three orthogonal directions along the X-axis, Y-axis, and Z-axis. The sampling
ratio for the cutting force measurement is set to 20 kHz. In the experiment, the specimen is
made of die steel and the milling tool is made of cemented carbide.

After the milling process, surface roughness is measured with a ZYGO NEXVIEW
(manufacturer: Zygo Corporation from Middlefield, Connecticut, USA) white light interfer-
ometer. The interferometer uses white light to scan the surface of the workpiece and collect
data on the height and position of each point. The roughness measurement selected for this
study is arithmetic roughness, Ra, which represents the average distance between the high-
est and lowest points of the surface texture profile over a specified sampling length. Once
the measurement is complete, the data collected by the interferometer will be analyzed
using the NexView software (version: Mx 9.0.0.20) to determine the Ra value, as shown in
Figure 4. The analysis results are saved and exported for further analysis.
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5. Results and Discussion

The data adopted in this section is acquired from the above ultra-precision milling
experiment. From the Taguchi experiment design, there are a total of 64 sets of samples with
different combinations of machining parameters. After data augmentation, the dataset is
enlarged to 960 samples, where 80% (768) of the samples are randomly selected for training
and 20% (192) of the samples are for testing. To prove the fast learning speed and high
prediction accuracy of our proposed ELM with a data fusion method, many state-of-the-art
machine learning methods are applied in this case, with training and testing on the same
dataset. As declared in our review of recent related works, four machine learning models,
namely, the long short-term memory network (LSTM), the one-dimensional convolutional
neural network (1DCNN), the integrated convolutional neural network and long short-term
memory (CNN-LSTM), and the backpropagation neural network (BPNN) are chosen to
prove the effectiveness of our proposed ELM with data fusion approach.

Firstly, five machine learning models are compared with each other in terms of mean
absolute percentage error (MAPE), while only the features from the force signal are used as
the model input. For the 1D-CNN and CNN-LSTM, data preprocessing for force signals
only has five steps, which excludes the feature extraction (step 4) in Figure 1, as these
two machine learning methods have an automatic feature extraction ability. For the LSTM,
BPNN, and ELM, force signal preprocessing follows the six steps indicated in Figure 1.
Besides evaluating the accuracy of the model, training time also should be taken into
consideration for the application of the future online prediction, which is significantly
affected by the model adjustment time (retraining time). Therefore, training time attracts
attention in particular while performing different methods.

A comparison of the models’ performance regarding prediction accuracy and the total
training time in the ultra-precision milling surface roughness prediction case is shown in
Figure 5. The red bar represents the model prediction accuracy evaluated by the MAPE. The
smaller the MAPE, the better the prediction accuracy. The blue bar represents the total time
required to complete training. The CNN-LSTM and CNN have the worst performance, with
MAPEs over 30%. This is probably because although data augmentation increases the size
of the dataset, the richness and diversity of the dataset have no significant improvement.
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For the CNN-LSTM and CNN, it is hard to leverage their automatic feature extraction
power under the dataset where data diversity is not rich enough. In terms of total training
time, the ELM reaches its best accuracy, taking no more than 1 min, while the LSTM takes
the longest time to converge. To compare the model efficiency intuitively, Figure 6 shows a
comparison of model-training efficiency after training for 10 min. As the ELM and BPNN
have finished the whole training process within 10 min, their final prediction accuracy is
shown in Figure 6. After training for 10 min, the prediction accuracy of the CNN, CNN-
LSTM, and LSTM is still larger than 30%. Especially for LSTM-related approaches, training
efficiency is lower than other approaches. The reason LSTM-related methods have longer
training time than other methods may be that Tensorflow 2.0 does not optimize the LSTM
implementation for batch processing, resulting in slow performance over time. The LSTM,
BPNN, and ELM use handmade features as model inputs to have better prediction accuracy,
which is consistent with existing knowledge showing that handcrafted features as model
inputs usually perform better than learned features relying on a large number of labels for
small datasets [25]. Among all the chosen methods, the BPNN and ELM have relatively
high performance in prediction accuracy. The prediction accuracy of the BPNN is 18.6%,
which is quite close to the prediction accuracy of the ELM with a MAPE of 14.3%. However,
the BPNN takes about 6 min to converge, and the ELM spends no more than 1 min to
outperform the other four models. Therefore, the ELM outperforms other approaches both
in prediction accuracy and efficiency.
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Figure 5. Comparison of different models’ performance in prediction accuracy and training time for
surface roughness prediction in ultra-precision milling.

To obtain a glimpse of the good performance of the ELM more clearly, the prediction
results showing a 26.4% MAPE for the LSTM and prediction results showing a 14.3% MAPE
for the ELM are shown in Figures 7 and 8, respectively. The black line connects the points
from real-measured surface roughness, and the red line connects the points from the
model prediction results. The MAPE is computed based on 192 samples (the whole test
dataset). For the convenience of visualization, only the first 70 samples in the test datasets
are shown. In Figure 7, some red points cannot overlap with the black points in many
points, such as points around test samples of 10, 20, 60, and 70, which means the predicted
surface roughness deviates from the real-measured surface roughness by a lot. As shown
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in Figure 8, the ELM prediction results are generally consistent with the changing trend
in the real-measured surface roughness, except for some points around test samples of
65. However, a 14.3% MAPE is not good enough. Considering that only force signal
data were used as the model input until now, machining parameters should also be taken
into account, as they directly influence the machining surface roughness. As a result, we
propose a data fusion method that fuses machining parameters and features from force
signals on a feature level for the ELM model to train the ultra-precision milling surface
roughness prediction model. Figure 9 illustrates how our proposed ELM with a data fusion
model improves prediction accuracy dramatically from a MAPE of 14.3% to a MAPE of
1.6%. As shown in Figure 9, the prediction results from the proposed method agree well
with the measured surface roughness results, which indicates that the proposed ELM
with a data fusion method is suitable for surface roughness prediction in ultra-precision
milling. Moreover, the proposed ELM method is very effective and efficient, which only
requires a training time of 18 s, while other methods take over 10 min. The efficiency of the
prediction algorithm is important for real-time prediction and parameter adaptation. The
results prove that our proposed ELM method outperforms other state-of-the-art methods
in terms of prediction accuracy and efficiency. A key point that needs to be emphasized
is that this paper only constructed an offline ultra-precision milling surface roughness
prediction model, which means the data used for model training came from a previous
experiment but not the ongoing machining process. In online application, the accuracy
will remain great if the milling condition is very similar to the former design experiment
and there is no other significant tool wear to change the input data distribution. In other
words, the generalization performance depends on whether the milling condition changes
a lot. If there is significant tool wear, or unexpected vibration occurs, the model accuracy
may deteriorate.
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6. Conclusions

An extreme learning machine (ELM) approach with data fusion of machining parame-
ters and force signal features is presented for surface roughness prediction in ultra-precision
milling. When only force signal data are the model input, compared with other state-of-the-
art methods (LSTM, CNN, CNN-LSTM, and BPNN), testing on the real dataset collected
from a fully factorially designed ultra-precision milling experiment proves that the ELM
outperforms other state-of-the-art methods in terms of prediction accuracy with a MAPE of
14.3%. To further improve the prediction accuracy, a feature-level data fusion technique is
applied to the ELM, which dramatically improves the prediction accuracy from a MAPE
of 14.3% to a MAPE of 1.6%, which makes the prediction results agree well with the real-
measured surface roughness. At the same time, the proposed ELM with data fusion is
highly efficient and takes only 18 s for model training. This paper only provides an offline
ultra-precision milling surface roughness prediction model. However, for future online
applications, a model refreshment mechanism should be developed to avoid prediction
accuracy drift and maintain the model prediction accuracy.
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