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Abstract: Nanofibers have gained much attention because of the large surface area they can provide.
Thus, many fabrication methods that produce nanofiber materials have been proposed. Electrospin-
ning is a spinning technique that can use an electric field to continuously and uniformly generate
polymer and composite nanofibers. The structure of the electrospinning system can be modified,
thus making changes to the structure, and also the alignment of nanofibers. Moreover, the nanofibers
can also be treated, modifying the nanofiber structure. This paper thoroughly reviews the efforts to
change the configuration of the electrospinning system and the effects of these configurations on the
nanofibers. Excellent works in different fields of application that use electrospun nanofibers are also
introduced. The studied materials functioned effectively in their application, thereby proving the
potential for the future development of electrospinning nanofiber materials.

Keywords: electrospinning; nanofibers; carbon fibers; polymer fibers; composite fibers

1. Introduction

Nanofiber materials have attracted much attention because of their extraordinary
advantages that can bring many benefits to applications [1]. Since the interaction of
the materials with the working environment happens on their surface, improvement of
the surface area can greatly enhance their working performance. Many studies have
proposed that nanofiber materials possess a surface area much greater than bulk or 2D
(sheet) materials [2,3]. Meanwhile, they are still imbued with the physical properties of the
material from which they are built. These properties can help the materials to be applied in
some applications that require a certain physical strength [4–8].

Many fabrication methods for nanofibers have been proposed in the literature, in-
cluding the uses of hard, soft, and free templates. While hard and soft templates release
a large amount of chemicals into the environment, the free template seems to be more
environment-friendly, in which case, electrospinning is a free template technique that uses
an electrical field to fabricate the polymer and polymer composite nanofibers [9–13]. This
technique requires a very limited amount of solvent, which is used to dissolve the polymer
into a high-viscosity solution. After the shape of fibers is applied to the solution, the solvent
is released and leaves the material in the shape of the nanofibers [14]. The polymer used in
the process must be dissolved in the solvent, which limits the selection of polymers that
can be spun. However, some of the available commercial polymers are dissolvable in a low
boiling point solvent, so such limitation is almost negligible.

Though the mechanism of electrospinning is simple, many improvements can be
carried out on the components of the system [15–17]. Thereby, the morphology of the pro-
duced nanofibers can be greatly altered. There are reports that described further treatment
processes that have been carried out on the electrospun nanofibers [18]. As collected, the
nanofibers usually stack over each other, layer after layer, and form a membrane. They can
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be used as a membrane sheet and built up to a 3D structure [19–21]. On the other hand,
carbonization can transform most of the existing polymer nanofibers into carbon nanofibers
(CNFs). These CNFs showed great potential in electrochemical application, which has
gained increased interest in recent years [22].

Herein, the manuscript proposes a critical review of the electrospinning system. First,
the modifications made to components (electrospun material, nozzle, and collector) of the
electrospinning system are introduced, together with the effects on the shape of nanofibers.
Later, the recent applications of nanofibers that are fabricated by electrospinning are sug-
gested. Many modifications of nanofibers, including freeze-drying, deposition, and thermal
treatment, can be applied to achieve suitable properties for many advanced applications.

2. The Electrospinning System

The basic electrospinning system consists of a syringe pump, material solution, nozzle,
collector, and power source (Figure 1). The materials used in an electrospinning system are
usually solutions where the polymers are well dissolved in an easy-to-vaporize solvent.
The syringe pump injects the polymer solution from a syringe into the connected metal
nozzle, where it is charged by a high-voltage electric field. The polymer solution inherits
the charge from the nozzle, which is opposite to the charge of the collector [23]. Thus,
the solutions are drawn toward the surface of the collector. Here, two processes happen
simultaneously. First, while the droplet of the polymer solution is held at the outlet of the
nozzle, it is stretched and pulled over the collector [24,25]. During this process, the high
difference between the areas of the nozzle and the collector splits the solutions and forms
nanoscale diameter fibers [26]. Secondly, the split solution has a high surface area, which
makes it easier for the solvent trapped between the polymer matrix to be released, leaving
solid polymer fibers. Despite the simple mechanism and advantages in product quantity,
many factors can affect the outcome properties of the fibers and need to be optimized
thoroughly with each material and condition. These factors may derive from the materials
and systems configuration, as well as the environment [27]. The necessary power needed
to operate an electrospinning system is very high. There is no electron flow (amplitude
is near zero amperes) since there is no direct contact between the nozzle and collector.
Meanwhile, the voltages may vary from a few kilovolts up to 30 kV, which builds up
a difference in the electrical potential between the nozzle and the collector, creating an
electric field. Hence, safety during the working of the system should be of high priority.
The working mechanism of electrospinning is based on this electric field. For the nanofibers
to form uniformly in diameter, the applied voltage has to be maintained stably over time.
The higher applied voltage can result in the material solution being pulled away from the
nozzle faster. Thus, the applied potential is an important factor to be controlled, so that the
solution droplet is stable in the cone-jet mode [28,29]. In this mode, the nanofibers can be
generated with a more uniform diameter. By controlling the applied voltage, which can be
easily optimized during the operation of electrospinning, the diameter of the nanofibers can
also be controlled [30]. The higher the voltage, the smaller the diameter of the nanofibers.
On the other hand, the diameter of the nanofibers is also highly affected by the material
solution properties, system configuration, as well as environment, which is to be discussed
in the following sections of the manuscript. However, there is no significant modification
that can be carried out on the power source in the electrospinning system that can result in
a change in the configuration of the nanofibers.

2.1. Polymer Solutions
2.1.1. Solutions Using One Polymer

A solution with one or many polymers that are well dissolved in a low boiling point
solvent can be used as material for the electrospinning process. The viscosity of the solution
material can be considered the most important factor when operating an electrospinning
system [31,32]. It can be affected by the following common factors: the molecular weight of
the polymer, the functional structure of the polymer, and the viscosity of the solvent [33].
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It is well known that the higher molecular weight of the polymer chain provides higher
viscosity of the solution [34]. However, the contribution of the polymer molecular weight
can be considered small, compared to the interaction between the polymer chains. The
interchain interactions are induced by the functional groups of the polymer. Most of the
interactions that are commonly encountered are hydrogen and van der Waals interactions.
As the concentration of polymer increases, these interactions become stronger. Such a phe-
nomenon can occur because shorter distances between the functional groups strengthen the
interchain interactions. It was found that the solvent can also contribute to the viscosity of
the solution, but this is also dependent on the interaction between solvent and polymer [35].
The viscosity of the polymer solution has a large impact on the shape of the electrospun
fiber. The higher the viscosity, the harder it is for the solution to be split during the spinning
process, and the larger the size of the outcome fibers. On the other hand, when the viscosity
is too low, the solution quickly leaves the nozzle toward the collector as a drop of solution.
It is noted that the electrical conductivity of the solution also affects the electrospinning
process [36]. Table 1 suggests some works that use simple polymer solutions. While seeing
that the simple polymer solution is the basic material for the electrospinning process, three
groups of modification can be made: solutions using mixed polymer, block copolymer, and
polymer composite, respectively, as described below:Micromachines 2023, 14, x FOR PEER REVIEW 3 of 39 
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Table 1. Simple polymer solutions that had been used in electrospinning.

Polymer Solvent Reference

PEO 1 Water/chloroform
[37]PVA Water

CA Acetone
PANi 2/PEO Chloroform [38]

PEO Isopropyl alcohol
[39]

Polycarbonate DMF 3/THF 4

Polyurethane DMF [40]
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Table 1. Cont.

Polymer Solvent Reference

Polycaprolactone Acetone [41]
PVP Ethanol/water [42]
PANi Formic acid [43]
Ppy 5 DMF [44]

Magnesium linked
PEDOT:PSS 6 DI water 7 [45]

Collagen HFIP 8 [46]
Gelatin Aqueous acetic acid (90%) [47]

HA-DTPH 9 Dulbecco’s modified eagle’s medium [48]
1 Polyethylene oxide. 2 Polyaniline. 3 N,N-dimethylformamide. 4 Tetrahydrofuran. 5 Polypyrrole. 6 poly(3,
4-ethylenedioxythiophene) polystyrene sulfonate. 7 De-ionized water. 8 1,1,1,2,2,2-hexafluoro-2-propanol.
9 3,3′-dithiobis(propanoic dihydrazide)-modified hyaluronic acid.

2.1.2. Solutions Using Mixed Polymer

The multiphase structures of the electrospun nanofibers are formed through the phase
separations of the polymers in an emulsion solution. Even though the polymers are well
mixed in the solvents, the surface tension between materials separates them from each other.
Here, one of the polymers acts as the continuous phase (surrounding), while the other acts
as the discontinuous phase (droplet). As the solvent is removed, the polymer hardens and
forms many complicated structures [49,50]. At the nozzle, the discontinuous phase material
is concentrated in the center, while surrounded by the continuous phase material. This
process is named the self-assembly process, in which the materials reorganize themselves.
In the case of electrospun nanofibers, polymers that exist within the solution will try to
reorganize following the direction of the nanofibers. Note that surfactants can also be
used to create an emulsion between hydrophobic and hydrophilic solutions (for example
chloroform and water) for electrospinning [51]. Table 2 presents the emulsion mixtures of
polymer solutions that can self-assemble to create multiphase electrospun nanofibers.

Lee et al. electrospun the solution containing a mixer of poly(acrylonitrile) (PAN)
and poly(vinylpyrrolidone) (PVP) (Figure 2a) [52]. It has been proven that the viscosity
of polymer components participating in the mixture can directly affect the disposition of
polymers in the nanofibers. Here, the PVP was the continuous phase of low viscosity, while
PAN was the discontinuous phase of much higher viscosity in the mixed solution. The
constructed electrospun nanofibers contained a single large PAN core in the center covered
by the PVP shell. However, when the mixed solution of poly(methyl methacrylate) (PMMA)
and PAN was used for electrospinning (also demonstrated by Lee et al.), the structure of
the nanofibers was much different (Figure 2b) [53]. The PAN was the continuous phase
and covered the PMMA when the electrospun fiber was formed. Because the PMMA
solution had lower viscosity compared to the PAN solution, the droplets of PMMA were
very small in size and created multicore/multichannel inside the nanofibers. After the fiber
was carbonized and PMMA decomposed, the PAN shell was carbonized into multichannel
carbon nanofibers (MCNFs). Though the size of the channels was small, the structure with
multichannel provided great porosity for the carbon fibers.

The ratio between the component polymers has been proven to be a decisive factor
that affects their contribution in volume within the nanofibers. Narumi et al. electrospun
the mixed solution of poly(styrene) (PS) and PVP in the N,N-dimethylformamide (DMF)
solvent (Figure 2c) [54]. The authors investigated the structure of nanofibers by dissolving
the PVP in the fibers with water. Note that there are polymer ratios that give phase
separation, and these solutions cannot be used for electrospinning. When the PVP was the
majority amount in the mixture, they covered the outside of the fibers, and PS formed a
single core in the fibers. On the other hand, the PS-rich material formed fibers containing
multi-PVP cores in the PS cover. In summary, the polymer of a larger amount usually covers
the other polymer, though the structure of the core is highly dependent on the properties of
the studied polymer.
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Figure 2. (a) Electrospinning process of PVP/PAN mixture, both are dissolved in DMF [52]. Copyright
2011, American Chemical Society. (b) The formation of PAN nanofibers containing PMMA multicore
using electrospinning [53]. Copyright 2017, Wiley. (c) The effect of ration between PVP and PS over
the formation of nanofibers with electrospinning [54]. Copyright 2022, American Chemical Society.

Table 2. Combination of solutions, that can form the emulsion system for electrospinning.

Solution 1 Solution 2
Reference

Polymer Solvent Polymer Solvent

PEO Chlorobenzene PQT-12 1 Chlorobenzene [55]
PEO DI water Fibrinogen Distilled water [56]

Nomex 2 DMAc 3 Carboxylated nitrile
butadiene rubber Chloroform [57]

PAN DMF PI 4 DMF [58]
PPDO 5-b-PEG Chloroform/DMF PLA 6 Chloroform/DMF [59]

Lysozyme/methyl
cellulose PBS 7 poly (DL-lactic acid) Chloroform [60]

PLGA 8/Span80 9 Chloroform FITC 10 DI water(or PBS) [61]
PCL 11 Chloroform Hyaluronan Chloroform [62]

PCL/Span80 Chloroform PCL/Span80/MH 12 Distilled water
[63]

PHBV 13/Span80 Chloroform PHBV/Span80/HF Distilled water
1 poly(3,3′-didodecyl quarter thiophene). 2 Poly(m-phenylene isophthalamide). 3 N,N-Dimethylacetamide.
4 Polyimide. 5 Poly(p-dioxanone. 6 Poly(lactic acid). 7 Phosphate buffer saline. 8 Poly(lactic-co-glycolic acid).
9 Surfactant. 10 Fluorescein isothiocyanate isomer. 11 Polycaprolactone. 12 Metformin hydrochloride (Drug).
13 Poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid).

2.1.3. Solutions Using Block Copolymer

Another option for the material for single nozzle electrospinning is the use of block
copolymers. Although there is no major phase separation, the self-assembly process can
also occur at the nanoscale [64]. The volume fraction of the block copolymer will affect
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its structure after the self-assembly process [65,66]. Table 3 presents some of the block
copolymers that have been used in electrospinning.

Recently, Zhou et al. proposed carbon fibers that are the result of the carbonization of
the PMMA−PAN block copolymer (Figure 3a) [67]. The fibers have been proven to contain
microporous structures that can significantly improve the efficiency in the application of
energy storage. However, a structure that has pores that are too small in size can bring
certain disadvantages. For example, in the application of the capacitor (energy storage),
the carbon material needs to be mixed with a polymer binder and conductive carbon black
during device fabrication. In the study, the authors did not use any polymer binder or
conductive carbon powder. The use of polymer binders can cover the porous structure,
thereby greatly limiting the measured capacity.
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Copyright 2019, Science. (b) The effect of P4VP fraction in the block copolymer PSS-b-P4DP
over the self-assembled structure of nanofibers [68]. Copyright 2007, Royal Society of Chemistry.
(c) PDMS-b-P4VP, whose surface tension changed in contract with pH 4 and pH 7 water [69]. Copy-
right 2016, American Chemical Society.

Ruotsalainen et al. made a clear investigation of the block copolymer polystyrene-
block-poly(4–vinyl pyridine) (PSS–b–P4DP) fraction’s ratios and their effect on the mor-
phology of the fibers (Figure 3b) [68]. The proposed assembly structure can provide an
excellent example of how, after the electrospinning process, the block copolymer assembles
itself. As the ratio of the polymer fractions in the copolymer changed, the structure of
the self-assembly material also changed. Thereby, the properties of the nanofibers may
also be dramatically changed, both physically and chemically, together with their interface
interaction. This phenomenon can greatly widen their field of application.
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The different individual blocks in the block copolymer can exhibit their various
properties independently. However, their interaction can contribute, and make the material
suitable to be applied as a smart interface material. Li et al. introduced the electrospun
block polymer poly(dimethylsiloxane)–block-poly(4–vinylpyridine) (PDMS–b–P4VP) as a
switchable oil/water separate membrane (Figure 3c) [69]. Up point interacts with acidic
water (potential of hydrogen, pH is smaller than 4), the poly(4–vinylpyridine) (P4VP)
block of the polymer fibers stretches out and makes the surface of fiber highly hydrophilic.
Meanwhile, the interaction with water with higher pH makes the poly(dimethylsiloxane)
(PDMS) extend and stretch out. The PDMS at the surface makes the membrane fiber
highly hydrophobic.

Table 3. The block copolymers that were used in electrospinning.

Block Copolymer Solvent Reference

PMMA−PS DMF [70]
PMTFPS 1−PMMA THF/DMF [71]

PEG−PCL DCM 2 [72]
PEG−PLA DMF [73]
PS−PPG 3 DMF [74]

PEO −PPO 4−PEO Chloroform [75]
PCL−PTHF−PCLPCL 5 Chloroform/methanol [76]

PE−PVA 6/PLA Chloroform [77]
PS−PDMS 7/PS THF/DMF [78]

PLGA 8/antibiotic (fusidic
acid and sodium fusidate)

THF/DMF [79]

1 Poly[methyl(3,3,3-trifluoropropyl)siloxane]. 2 Dimethyl carbonate. 3 Polypropylene glycol. 4 Poly(p-phenylene oxide).
5 Polycaprolactone–polytetrahydrofuran–polycaprolactone. 6 Polyethylene-co-vinyl acetate. 7 Polydimethylsiloxane.
8 Poly(D,L-lactic acid-co-glycolic acid).

2.1.4. Solutions Using Polymer Composite

Another modification that has been carried out on the electrospun nanofiber, besides
the selection of polymer materials, is the addition of fillers into the polymer matrix [80].
Though most of the common materials used in the electrospinning system are polymer
solutions, other materials of limited amounts (organic, inorganic) can be mixed and spun
together with the polymer. The results of such effort are the composite nanofibers, where
the fillers are dispersed uniformly in the polymer matrix. The necessary condition for the
formation of uniform fibers is that the filler must be mixed well in the solution, together
with the polymer. Thus, the filler materials have to be chosen for their excellent interaction
with the polymer and solvent (hydrophobic–hydrophobic or hydrophilic–hydrophilic). In
the case where the fillers do not interact well with the solvent, the filler cannot disperse in
the precursor solution. When the fillers do not have good interaction with the polymers,
aggregation may occur while the solvent evaporates and the polymer reorganizes its
structure. Table 4 presents the electrospinning processes that have been proposed for the
fabrication of polymer composite nanofibers. Cai et al. introduced composite nanofibers
that were constructed from cellulose acetate (CA) fibers and montmorillonite modified
with surfactant sodium dodecyl sulfonate (SDS) (Figure 4a) [81]. The modification of
the surfactant improved the dispersity of filler material in the polymer matrix, making a
uniform structure for composite nanofibers. Thereafter, the fibers undergo carbonization,
and CA turns to carbon nanofibers (CNFs). The results were products that have suitable
properties to be used for heavy metal ions adsorption. The combination of CNFs and
modified montmorillonite filler has been proven to significantly improve the performance
of materials in the application.
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Table 4. The solutions for the electrospinning of polymer composite nanofibers.

Polymer Carrier Solvent Filler Reference

PVA DI water Ag NPs [84]
Polyvinyl butyral Isopropyl alcohol/water Fe(NO3)3, Co(NO3)2, or Ni(NO3)2 [85]

PVA DI water Cu(CH3COO)2 [86]
PVP DMF/DI water H2PtCl6 [87]PVP DMF/DI water H2PtCl6/HAuCl4

Poly(acrylic acid) Ethanol HAuCl4 [88]
PVP Ethanol Al(CH3COCHCOCH3)3 [89]
PVA DI water Ce(NO3)3 [90]

PMMA DMF/chloroform C4H6MnO4 [91]

PVA DI water/propanol/and
isopropanol SnCl4 [92]

PVP Ethanol/acetic acid Ti(OBu)4 [93]
PAN DMF Melamine–trithiocyanuric acid [94]

Most of the applications where composite nanofibers are used have fillers playing the
role of the main active material. Thus, the fillers should stay in the position favoring their
activity. Wang et al. developed the chitosan/poly (ε-caprolactone) nanofiber composite
used to store medicine and release it after a predicted period (Figure 4b) [82]. In the study,
the chitosan particles that store the medicine chemicals were well covered in the polymer
fiber, even if the particles were larger than the fiber diameter. This structure prevents
medicine loss during the delivery process. On the other hand, there are applications
where the fillers must have interacted with the electrolyte. For the material to effectively
function, the particles should be concentrated on the surface of the fibers through a variety
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of fabrication methods. In the application of visible light catalysts, Lee et al. used a mixture
of two solutions (PAN−SnCl4 and PVP−ZnAc2) to fabricate PAN composite nanofibers as
the precursor for carbonization (Figure 4c) [83]. As demonstrated, the PAN formed a single
core, while PVP formed the cover shell. After the carbonization, while PAN turned into
CNFs containing SnO2, PVP decomposed completely and left the ZnO nodule attached to
the wall of the fiber. The ZnO nodule greatly exposed to the electrolyte helps improve the
electron exchanges, thereby creating the optimized condition for the activity of catalysts.

2.1.5. Solutions Using Co-Solvent

In the electrospinning technique, a low boiling point solvent and a high boiling point
solvent can be combined as co-solvents for the electrospinning solution. Because the vapor-
ization rate of the solvent has a great impact on the formation of the polymer nanofibers,
modification of the solvent can generate some special morphological structure for the
material. On the other hand, the dependence of solvent vaporization rates on the environ-
ment can also vary, thereby opening the opportunity for the structure to be modified even
further [95,96]. Though many results can be harvested from the modifications of co-solvent
electrospinning, it also means that they are very sensitive to the fabrication conditions.
Thus, they post many requirements for controlling the fabrication process. Table 5 presents
some examples that used multi-solvent to modify the morphology of polymer nanofibers.
In addition to that, phase separation that may occur between the solvents is a very impor-
tant factor that needs attention during the operation of electrospinning. Phase separation
can be triggered due to differences in the properties of solvents like hydrophilicity, surface
tension, and electrical conductivity [97].

Zaarour et al. used the combination of acetone and DMF to prepare the solution for
the production of electrospun polyvinylidene fluoride (PVDF) nanofibers (Figure 5a) [98].
While acetone is easy to vaporize, DMF is harder to vaporize. As the acetone vaporized,
the water molecules were drawn into the fibers [99]. If the polymer fibers are spun in an
environment with low humidity, the water droplets can quickly leave the fibers. Because
PVDF cannot be dissolved in water, the trapped water molecule can create pores in the
structure of nanofibers. However, the higher the humidity, the more difficult it is for the
polymer matrix to release the water. Water nucleation growth occurs, and the water droplet
can grow to a larger size. Finally, macro-size pores form in the structure and increase the
size of fibers. In addition, the ratio of acetone over DMF affects the size of the pores and
the polymer fibers’ diameter.

When there are fillers in the solution, special structures can also be formed. Lee et al.
introduced a tube-in-tube structure of SnO2 that can be generated simply using a thermal
treatment on composite nanofibers (Figure 5b) [100]. The PVP polymer and SnCl2 were
dissolved with a mixture of DMF and methanol. After the solution was spun with the
electrospinning technique, the nanofibers underwent the calcination process at 600 ◦C with
a well-controlled heating rate. As the methanol quickly vaporized at lower temperatures,
a layer of SnO2 formed at the outside wall of the fibers. Meanwhile, the DMF solvent
vaporizes slower and forms another layer of SnO2 in the center. Note that PVP decomposed
completely at high temperatures; thereby, no carbon is produced after the process. Here,
the heating rate of the calcination process can decide the resultant shape of the SnO2 core
layer. While the SnO2 molecules can rearrange themselves during a slow vaporization rate
(slow heating rate) and the fiber solidifying, the high vaporization rate results in the hollow
structure of the core. Meanwhile, Yoon et al. dissolved PVP in DMF and water together
with RuCl3/Mn(OAc)2 (1:2) (Figure 5c) [101]. The RuCl3 and Mn(OAc)2 are the precursors
of the RuO2/Mn2O3 complex. During the calcination process, the DMF quickly vaporizes,
forming a hollow metal oxide outer shell, since it is the first solvent to vaporize. Water is
vaporized at higher temperatures, and finally forms the core of the metal oxide fibers. In
this study, the heating rate of the calcination process also plays an important role in the
formation of the morphology of the fibers.
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Figure 5. (a) Porous PVDF nanofibers, whose porous structure was created by the mixture of solvents
(acetone and DMF) [98]. Copyright 2018, Springer. (b) The difference in evaporation rate of methanol
and DMF solvent formed the tube-in-tube structure of SnO2 nanofibers [100]. Copyright 2017, Royal
Society of Chemistry. (c) The effect of heating rate on the inner tube structure of the Mn2O3/RuO2

tube-in-tube [101]. Copyright 2016, American Chemical Society.

Table 5. The electrospinning solutions used the difference between solvents to alter the morphology
of nanofibers.

Polymer Solvent 1 Solvent 2 Reference

Poly (2-hydroxethyl methacrylate) Formic acid Ethanol
[102]PS DMF Diethyl Formamide

Nylon 6 HFIP DMF
[103]

Nylon 6/NLS 1 HFIP DMF
PVC 2 THF 3 DMF [104]
PLA DCM Ethanol [105]

1 Montmorillonite. 2 Polyvinyl chloride. 3 Tetrahydrofuran.

2.2. Nozzle
2.2.1. Single Steel Nozzle

As mentioned, the nozzle is one of the main components of the electrospinning system.
That is the medium to transport the potential charge from the power source to the solution.
The nozzle is usually made from stainless steel to prevent any unwanted reaction while
having high electrical conductivity. The used nozzle can have different sizes depending on
the viscosity of the material solution; the high-viscosity solution with high surface tension
can make it hard for the solution to flow through a small sized nozzle. However, the
nozzle with a higher gauge (smaller size) can produce smaller nanofibers. With one single
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nozzle acting as the only output for the material solution, there are fewer parameters to
control. However, the spinning process can be conducted stably, and uniform nanofibers
can be collected. Therefore, to date, it remains a favorable technique in the electrospinning
process. Note that many simple nozzles can be used at the same time, and each of them
can be provided with different polymer solutions [106,107]. The results are a mixture of
different nanofibers with different properties, both physical and chemical, laid on top of
one another. Though separated, the fabricated fibers can have amazing interactions. Ding
et al. first used electrospinning to fabricate a layer of polyethyleneimine (PEI) fibers, which
was used as a support for the much smaller nanofibers of polyamide 6 (PA) [108]. The
diameter of the PA fibers is only around 30 nm. With the large size of PEI fibers, the distance
between the PA fibers networks was greatly enhanced. The performance of PA nanofibers
in the application of gas sensing is greatly improved since the gas can easily penetrate and
interact with the sensing material. However, as the need for more complicated structures
has increased, modifications have been made to create special structures for the fibers.
With these modifications, many polymers can coexist within the nanofibers while being
separated in phases, even if they are hydrophobic–hydrophilic polymers.

2.2.2. Coaxial Nozzle

The coaxial nozzle (dual nozzle) is a special nozzle, where a larger nozzle covers a
smaller nozzle (Figure 6a). The nozzle can give fibers a structure that has many layers,
called core–shell nanofibers. The two nozzles in the coaxial nozzle are fed with two
different polymer solutions, and the feed rates can be individually controlled. Yet, the
feed rate is an important condition that has to be well controlled, so that the fibers can
be generated uniformly. The method is normally used for two polymer solutions that are
not intended to be mixed. The usual results of the technique are fibers with a single large
core covered in a shell layer. The inner material can be removed to create a large channel
in the center of the fibers or be the skeleton providing excellent physical properties for
the fibers [109,110]. The number of layers can also be increased in number, creating wider
choices for modifications [111]. Table 6 presents some combinations of solutions that were
chosen for the coaxial nozzle.

In the application of oil–water separation, the membrane material must have good
physical properties. The coaxial nozzle was used by Ma et al. to fabricate the fibers with the
polyimide (PI) as the core, and CA as the shell of the fibers (Figure 6b) [112]. As it is nearly
impossible to dissolve PI, poly amide acid (PAA) solution was synthesized, and used for
electrospinning. After the membrane was collected, it went through the heating treatment,
where the imidization can occur, and PAA turned into PI. The PI core plays the role of the
skeleton providing excellent physical strength for the membrane. With the coating of fluori-
nated polybenzoxazine (F−PBZ) functional layer, the working efficiency in the separation
of oil from water was improved, while maintaining the advantage of CA−PI fibers.

However, the size of the outer nozzle has to be large enough to cover the inner nozzle,
leading to the large diameter of fibers. The large diameter of fibers may be a disadvantage
of this nozzle set, reducing the surface area of the nanofibers. Lee et al. sought to reduce the
size of the fibers by using a mixture of PAN and PVP as material for the outer nozzle, and
PMMA as material for the inner nozzle (Figure 6c) [113]. The author used the coaxial nozzle
to intentionally separate PMMA from the mixture of PAN and PVP. The product fibers have
a structure containing three layers (PMMA/PAN/PVP). Since the PMMA was loaded into
the inner nozzle, it became the core of the fibers. On the other hand, the mixture of PAN
and PVP was divided into two layers, as previously mentioned. After the carbonization, the
layers of PMMA and PVP decomposed completely, leaving the carbon material generated
from PAN. The generated carbon fibers have both a channel and a small diameter compared
to the diameter made from the other carbon fibers made from the coaxial nozzle [114,115].

The number of inner nozzles seems to be able to be increased to the desired number.
For example, Zhao et al. surveyed how the number of inner nozzles affects the morphology
of the nanofibers (Figure 6d) [116]. In the study, innocuous oil was used as the material
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for the inner nozzles, and PVP/Ti(OiPr)4 dissolved in ethanol was loaded into the outer
nozzle. After the carbonization, TiO2 fibers with the desired inner channel were obtained
as the oil, and the PVP decomposed. It is clearly shown that each inner nozzle loaded in
the outer nozzle is responsible for the formation of a single channel. Using this method, the
number of channels in the nanofibers can be controlled. However, the number of channels
that can be loaded seems to be limited, due to the relationship in size between the inner
and outer nozzles.
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Figure 6. (a) The structure of a coaxial nozzle. (b) The fabrication of CA nanofibers with the core of
polyimide [112]. Copyright 2016, Royal Society of Chemistry. (c) The nanofibers with three layers
PMMA (core), PAN (middle), and PVP (shell) created with coaxial nozzle [113]. Copyright 2017,
Royal Society of Chemistry. (d) Nanofibers whose controllable number of channels can be controlled
with the number of inner nozzles [116]. Copyright 2007, American Chemical Society.

Table 6. The works that used coaxial nozzle to create core–shell nanofibers.

Inner Solution Outer Solution
Reference

Polymer Solvent Polymer Solvent

PEO Aqueous acetic acid (50%) Chitosan Aqueous acetic acid (50%) [117]
PVA/Ti(OiPr)4 Acetic acid/DMF PVA/C10H25NbO5 DMF [118]

PS−PAN DMF PAN DMF [119]
PVA DMF/ethanol PVDF DMSO/acetone [120]

PS−PAN DMF PAN DMF [121]
PVP Ethanol NaCl DI water [122]
PEG DI water PLLA 1 DCM/DMF [123]

C16H30O4Sn Light mineral oil PVP/Ti(OiPr)4 Ethanol [124]
Tetrabutyltin Mineral oil PVP/Ti(OiPr)4 Acetic acid and ethanol [125]
Nanosilver Mineral oil PVP/Ti(OiPr)4 Acetic acid and ethanol [126]

Mineral oil PAN DMF [127,128]
1 Poly(l-lactic acid).

2.2.3. Side-by-Side Nozzle

The purpose of the side-by-side double nozzle is to fabricate a Janus interface material
(Janus system), where the two materials with different wettability are attached to each
other (Figure 7a). The electrospinning nanofiber now has both the advantage of a Janus
system, and the introduction of excellent surface area of nanofibers structure to the potential
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application [129]. On the downside, the two polymer solutions leave the nozzle near each
other, not as one. There is the chance that they will be drawn into the collector separately,
and form two separate fibers. Both the feeding rate and the voltage applied to the nozzle
need to be well controlled.

Knapczyk–Korczak et al. introduced Janus nanofibers constructed from PS and CA
using side-by-side nozzle electrospinning (Figure 7b) [130]. In the water harvesting appli-
cation, the nanofibers with extraordinarily high surface area greatly improved the water
collection rate of the membrane material. The hydrophilic material can collect the water
molecule effectively, yet the water droplet needs to overcome the resistance to fall off the
surface [131]. The proposed Janus material constructed from a hydrophobic (PS) and a
hydrophilic (CA) can collect the water droplet, and continuously drain away the water
to the collector. On the other hand, the Janus nanofibers were used by Yu et al. as the
base material for the delivery of drugs to multi-location (Figure 7c) [132]. By changing the
composition of the load materials, the authors could control the time it took for the polymer
matrix to dissolve in the aqueous environment. In these Janus fibers, the PVP side was
dissolved quickly together with the drug when in contact with water. Ethyl cellulose (EC)
was added to the PVP on the other side of the fibers to prolong the dissolving time, thereby
allowing the drug to be released in the second location. However, because EC cannot be
dissolved, a small percentage of the drug was trapped, and could not be released.
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Figure 7. (a) Janus system created by electrospinning system using side−by−side nozzle. (b) Janus
nanofibers consist of PS can CA, which was able to increase the efficiency in water harvesting [130].
Copyright 2021, American Chemical Society. (c) The different dissolve rates between the two sides of
Janus nanofibers for drug delivery to multiple locations [132]. Copyright 2016, Elsevier.

2.2.4. Multiple Nozzle

In industrial production, multiple nozzles and nozzles with less electrospinning can be
used to increase the production rate, but excellent control is required for the uniformity of
the nanofibers [133,134]. Multiple-nozzle electrospinning is an approach to enhancing the
production rate of nanofibers. The working mechanism is based on traditional single-nozzle



Micromachines 2023, 14, 2022 14 of 37

electrospinning but uses a combination of nozzles arranged according to specific geometries.
The interaction between similarly charged jets from multi-nozzle electrospinning causes a
repulsive phenomenon, leading to uneven fiber deposition and impacting the quality of the
produced nanofibers. The repulsion phenomenon can be solved by increasing the distance
between nozzles, so various configurations of multi-nozzles have been studied [135].
Tomaszewski et al. suggested three types of multi-jet electrospinning heads, including
series, elliptic, and concentric. Among them, the concentric electrospinning head turned
out best in both the efficiency and quality of the process (Figure 8) [136]. In addition, the
drafting effect of the electric field force plays a key role in the formation of nanofibers. Then,
Angammana et al. conducted a study about the correlation between the arrangement and
the strength of the electric field [137]. They indicated that field distortion at each needle tip
increases with the addition of needles. Furthermore, for the multi-nozzle electrospinning
process to proceed smoothly, a higher voltage than usual must be used due to the large
mass of the spinning solution delivered [138].
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series, b is the diameter of concentric, and c/d are modulus of ellipse alignment [136].

In addition to enhancing the fiber production rate, the multiple-nozzle system makes it
possible to fabricate fibers from different materials simultaneously [139]. However, despite
the efforts to improve multi-jet electrospinning that have been made, electrostatic field
interactions between the needles and needle clogging are still the limits of this technique.

2.2.5. Nozzle-Less

To address some drawbacks of nozzle-based electrospinning systems, nozzle-less
electrospinning has been developed. Theoretically, the polymer jets of this system are
generated by an external force (high voltage) added to create perturbances and obtain
conical spike surface waves like Taylor cones [140]. A nanofiber web can be created
once the polymeric jets have reached a conductive collector (Figure 9a). It should be
noted that the concentration of electric force on the solution surface is a crucial issue
for needleless electrospinning. The influence of the electric field on polymeric jets was
demonstrated by Lukas et al. (Figure 9b) [141]. With the increase in voltage, the number
of jets produced will increase. In addition, the nozzle-less electrospinning systems are
sensitive to various parameters, such as the surface tension of the polymeric solution, the
distance between the collector and the solution surface, etc. There are numerous needleless
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electrospinning architectures that have been designed, which focus on solution reservoirs,
rotating spinnerets, syringeless, and so on [142,143].
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By loading extremely high voltages on the free liquid surface, numerous jets can
be obtained simultaneously, which means a high production capacity can be achieved
in the nozzle-less electrospinning technique. Moreover, obstacles caused by nozzles are
absent in this system, like electrospinning of colloidal suspensions or needle clogging [144].
However, the relatively complex setup, applied high voltage, and hard-to-produce ad-
vanced nanofiber structures are still disadvantages. In addition, further studies need to
be conducted on the fiber quality control and electrospinning processes before they reach
industrialization and commercialization.

2.3. Collector
2.3.1. Planar Collector

Planar is the simplest structure of a collector, where a metal plate is used as a collector.
Though the structure is simple, most of the fibers can be collected without the loss of
material. The collected fibers are arranged in random directions. However, there are
situations where the fibers are swollen. In this case, a large amount of solvent is hard to
vaporize during the spinning process, which can be caused by the environmental condition,
or the component of the electrospun solution. The remaining solvent pulls the surrounding
polymer materials together and slowly dissolves them. To overcome this limitation, another
type of collector has been developed.

2.3.2. Rotational Collector

The rotational collector (drum-type collector), whose working mechanism is similar to
that of a winder machine, can be used to collect the electrospun nanofibers (Figure 10a).
The drum operates with a high-speed rotation to stretch the electrospun fibers, preventing
their swelling. During the rotation, the air also circulates much better, thus the solvent
evaporation rate was significantly improved. Thus, the drum collector can be used when
it is difficult for the nanofibers to be collected by a planar collector. On the other hand,
the nanofibers collected by the drum can be well aligned in one direction, whether it is
intentional or not. Manuel et al. produced nanofibers for drug delivery with a drum-type
collector (Figure 10b) [145]. The field emission scanning electron microscope (FE-SEM)
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figures indicate that the material was clearly highly aligned. However, the limitations
of the drum-type collector come with the high-speed mechanical movement. Regular
maintenance needs to be carried out more often to ensure the safety and stability of the
rotation. Energy consumption for the drum is another issue that needs to be addressed,
considering that the electrospinning operation already requires high power.
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2.3.3. Three-Dimensional Structure Collector

The nanofibers that were collected by the traditional planar collector can have a
very random orientation. However, some of the advanced applications can have specific
requirements for the structure of the membrane material. Many efforts have been made to
align the electrospun nanofibers following a designed pattern.

Because of the limitation in aligning fibers using a drum-type collector, Tan et al. pro-
posed a method to align the electrospun nanofibers using a 3D collector (Figure 11a) [146].
The study provided highly detailed information about the method to generate mono-
directional aligned nanofibers for tissue engineering. Instead of using a single planar
collector lining on the ground, two conducting collectors were placed in a V shape. Know-
ing that the collector position can be an important factor in the study, the collectors were
assembled at two angles of 45◦ and 60◦. The results from the 45◦ collector showed better
control over the orientation of the nanofibers. The orientation of the nanofibers only con-
centrated around the angle of 90◦ at the specific height of 7.7 mm from the bottom of the
collector. However, because the electrospun material did not stack on top of each other,
the interaction between the nanofibers was reduced. The potential to be gathered as a
membrane for use in other applications may be put into question.

It was declared that topography is still one of the most critical conditions for cell
culture, especially stem and bone tissues [147]. To date, chips have been fabricated using
very effective photolithography, etching, or molding techniques. However, to mimic
the in vivo extracellular matrix, which is constructed from nanofibers composite, Zhao
et al. electrospun and aligned the nanofibers following the designed pattern with the 3D
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pattern collector (Figure 11b) [148]. The authors investigated the interaction between the
conducting and non-conducting layers in the patterned collector. The non-conducting layer
created a repulsive force, while the conductive layer created an attractive force towards the
nanofibers. By patterning the layers, repulsive and attractive areas can be designed, and the
resultant is the pattern of the nanofibers membrane. Furthermore, a single 3D conducting
patterned collector was used by Nedjari et al. to make the electrospun nanofibers align
following a pattern (Figure 11c) [149]. Though there is no non-conducting area on the
pattern, attractive and repulsive areas can still be formed. The electrospun nanofibers leave
the nozzle carrying electric charges, but the charges are released when making contact with
the attractive pattern wall of the collector. The nanofibers that cannot make direct contact
with the collector still have the changes, thereby creating repulsive forces in the valley
between the walls. As a result, the latter electrospun nanofibers are only concentrated on
the top of pattern walls. The developed method is easy to execute, but as the membrane
becomes thicker, the repulsive area is less effective. Thus, the thickness of the fabricated
membrane seems to be limited.

Micromachines 2023, 14, x FOR PEER REVIEW 18 of 39 
 

 

It was declared that topography is still one of the most critical conditions for cell cul-

ture, especially stem and bone tissues [147]. To date, chips have been fabricated using very 

effective photolithography, etching, or molding techniques. However, to mimic the in 

vivo extracellular matrix, which is constructed from nanofibers composite, Zhao et al. 

electrospun and aligned the nanofibers following the designed pattern with the 3D pattern 

collector (Figure 11b) [148]. The authors investigated the interaction between the conduct-

ing and non-conducting layers in the patterned collector. The non-conducting layer cre-

ated a repulsive force, while the conductive layer created an attractive force towards the 

nanofibers. By patterning the layers, repulsive and attractive areas can be designed, and 

the resultant is the pattern of the nanofibers membrane. Furthermore, a single 3D con-

ducting patterned collector was used by Nedjari et al. to make the electrospun nanofibers 

align following a pattern (Figure 11c) [149]. Though there is no non-conducting area on 

the pattern, attractive and repulsive areas can still be formed. The electrospun nanofibers 

leave the nozzle carrying electric charges, but the charges are released when making con-

tact with the attractive pattern wall of the collector. The nanofibers that cannot make direct 

contact with the collector still have the changes, thereby creating repulsive forces in the 

valley between the walls. As a result, the latter electrospun nanofibers are only concen-

trated on the top of pattern walls. The developed method is easy to execute, but as the 

membrane becomes thicker, the repulsive area is less effective. Thus, the thickness of the 

fabricated membrane seems to be limited. 

 

Figure 11. (a) Three-dimensional collector for the collection of the one-direction aligned nanofibers 

[146]. Copyright 2018, Springer. (b) Nanofibers align following the pattern created by conducting 

and non-conducting layers of collector [148]. Copyright 2013, Royal Society of Chemistry. (c) Three-

dimensional conducting collector with a pattern wall, which created an attractive force for the align-

ment of nanofibers [149]. Copyright 2015, Royal Society of Chemistry. 

2.3.4. Bath Type Collector 

Though most of the nanofibers should be collected in a dry environment, there are 

some exceptions. In some cases, the electrospun nanofibers can be collected in a bath col-

lector containing liquid base material. 

Many methods have been proposed to generate porous structures for the polymer 

fibers. However, these methods usually require sacrificial materials, but the removal of 

the sacrificial materials can also affect the main materials. McCann et al. electrospun a 

PAN solution directly into a bath of cryogenic liquid (nitrogen liquid) to create highly 

Figure 11. (a) Three-dimensional collector for the collection of the one-direction aligned
nanofibers [146]. Copyright 2018, Springer. (b) Nanofibers align following the pattern created
by conducting and non-conducting layers of collector [148]. Copyright 2013, Royal Society of Chem-
istry. (c) Three-dimensional conducting collector with a pattern wall, which created an attractive
force for the alignment of nanofibers [149]. Copyright 2015, Royal Society of Chemistry.

2.3.4. Bath Type Collector

Though most of the nanofibers should be collected in a dry environment, there are
some exceptions. In some cases, the electrospun nanofibers can be collected in a bath
collector containing liquid base material.

Many methods have been proposed to generate porous structures for the polymer
fibers. However, these methods usually require sacrificial materials, but the removal of
the sacrificial materials can also affect the main materials. McCann et al. electrospun a
PAN solution directly into a bath of cryogenic liquid (nitrogen liquid) to create highly
porous PAN nanofibers (Figure 12a) [150]. Before the solvent evaporated, the temperature
of the polymer suddenly dropped lower than its glass transition temperature. The cool
environment separates the polymer-rich and solvent-rich phases from each other, which is
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the driving force forming the polymer porous nanofiber. Thereafter, the polymer nanofibers
need to warm up rapidly in the air to stabilize the fibers.
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Figure 12. (a) The porous PAN nanofibers created by quickly freezing the newly electrospun fibers
with liquid nitrogen [150]. Copyright 2006, American Chemical Society. (b) The electrospinning of
poly amid 6/66 into a water bath, which was later collected with drawing rollers [151]. Copyright
2018, Springer. (c) The nanofibers contain iron oxide nanoparticles for easy collection from water
baths using a magnetic bar [152]. Copyright 2022, Elsevier.

A variation of electrospinning is sol–gel electrospinning, where the nanofibers still
hold solvents inside the fibers. One example of sol–gel electrospinning was when the poly
amid 6/66 (dissolved in formic acid and acetic acid) was used as the material. To overcome
the limitation, Franco et al. spun the nanofiber directly into a bath containing distilled
water (Figure 12b) [151]. The solvent was freed from the polymer matrix by the dispersion
of solvent into the water, which can occur at a much higher rate than evaporation. Because
the solvent was suddenly removed from the nanofibers, the solid polymer nanofibers have
a porous structure, even though the porosity seems to be small. Finally, the electrospun
fibers have to be collected by a drawing roller system. The difficulty in collecting the fibers
from the water bath brought many limitations in application. However, it is undeniable
that the wet electrospinning technique can create distance between the layers of nanofibers.
This structure can offer many advantages. For example, in the studies of tissue engineering,
it allows the cells to penetrate and migrate. Bakhtiary et al. introduced a method to use a
magnetic field to collect the nanofibers in a water bath (Figure 12c) [152]. The author mixed
superparamagnetic iron oxide nanoparticles into the polymer solution. Under a magnetic
field, the nanofibers containing particle material were drawn towards the magnetic bar
placed under the bath. After freeze-drying, aerogel-like material could be collected, and
later used for cell seeding.
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2.3.5. Electrode-Assisted Collector

To intensify the electric field and enhance jet stabilization in the electrospinning
system, auxiliary electrodes are employed, which control the deposition and diameter of
electrospun nanofibers [153]. Ring, cylindrical, and plate are the most popular shapes
of auxiliary electrodes. Normally, the auxiliary electrodes are added between the needle
and collector and carry a similar polarity to the needles (Figure 13a). By increasing the
applied potential of electrodes, the electrospinning jet is narrowed, limiting the area of fiber
deposition. In addition, many researchers have studied the aspect of materials, type of
polarity, type of supplied power (AC or DC), and location of the electrodes in the set-up to
obtain the fiber morphology that meets the needs of the final application [154]. Moreover,
it is possible to control fiber orientation and obtain aligned fibers by modification of the
collector of this electrospinning system. For instance, by using a rotating collector and
adjusting its surface speed, highly aligned polymer fibers can be obtained [155] (Figure 13b).
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2.3.6. Magnetic Field-Assisted Collector

Other than the electric field derived from auxiliary electrodes, a magnetic field de-
rived from permanent magnets can also be used to assist the electrospinning to produce
highly aligned fibers. The most common setup is a pair of permanent magnets installed
between the collector of the conventional electrospinning with no direct contact between
them (Figure 14a). When the whipping jet approaches the collector, under the influence
of the magnetic field, it is stretched and aligned across the magnets [156]. To enhance the
spatial control ability and fiber morphology, several parameters of magnetic field-assisted
electrospinning have been investigated, including magnet geometry, voltage, magnetic
nanoparticle presence in the polymer solution, and flow rate [157]. Recently, magnetically
assisted electrospinning allowed precise spatial control over electrospun fiber alignment
for fabricating musculoskeletal interfacial tissues that have complex gradient structures.
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Here, the collector was designed with three regions that have different magnetic properties,
including magnetic (M), non-magnetic (NM), and transition (T) (Figure 14b) [158]. As a
result, electrospun fibers were highly aligned in a magnetic field and randomly aligned
within the non-magnetic region. It is also indicated that magnetic field-assisted electrospin-
ning is possible for spatial control over fiber alignment, even at sub-millimeter resolution,
showing a bright future for this method in tissue engineering.
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2.4. Other Technical Factors
2.4.1. Distance from the Nozzle and the Collector

Nearfield electrospinning was designed to completely overcome the shortcomings in
random nanofibers generated by traditional electrospinning systems. Here, the distance
between the nozzle and the collector is dramatically reduced (Figure 15a). It was suggested
to be maintained from 0.5 to 3 mm [159]. Instead, the nozzle or collector can be mobilized
enabling the ability to be deposited over long distances, which is similar to the 3D printing
technique. This speed plays an important factor in the operation of the near-field electro-
spinning in addition to the mentioned parameter. As the movement speed becomes faster,
the generated nanofibers will be stretched into a single straight fiber (Figure 15b) [160].
These fibers can be deposited following a designed location. Despite the limitation in
the slow production rate of near-field electrospinning, excellent accuracy in orientation
provides potential in the application of nanodevice materials. For instance, well-oriented
nanofibers can greatly contribute to controlling pore size, which is highly required in cell
cultivation [161].
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2.4.2. Applied Voltage Types

Traditionally, the electrospinning technique has utilized direct current (DC). However,
during the development of the electrospinning technique, alternating current (AC) was
applied to limit the accumulation of electrical charge on the collected nanofibers. Here,
the frequencies and waveforms of AC used for the electrospinning process were proposed
in Figure 16a [162]. No clear differences can be detected from SEM images, whether in
fiber diameter or uniformity. However, the efforts to vary the polymer concentration and
feeding rate cannot fully overcome the limitation of AC electrospinning, which produces
nanofibers with poor quality, large beads, and droplets. Here, the electrical conductivity
of the solution can be considered a decision role to overcome this limitation. For instance,
Farkas et al. investigate the contribution of polyvinylpyrrolidone K90 (PVPK90) and
electrical conductivity, which is controlled by the amount of sodium dodecyl sulfate, to
the stability of electrospun nanofiber formation (Figure 16b) [163]. Not only that, once
the nanofibers can be generated uniformly from the electrospinning, the feeding rate
can be increased up to 1200 mL h−1. Such high feeding rates open up the potential for
electrospinning techniques on an industrial scale.
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3. Applications

Electrospinning can produce outstanding candidate materials for a wide range of
applications. However, there are many applications where the enhanced performance can
be carried out by the modification in nanofibers morphology are few in number. Some of
the representative applications can be named including air purification, sound absorption,
heat retention, etc. [164–170]. Their development rather lies in the interactions between the
fibers with each other to build the membrane network. On the other hand, electrospun
nanofibers whose morphology has been modified have been proven to be able to provide
suitable active sites for the operation of the following applications: oil/water separation,
drug delivery, tissue engineering, etc. [171–173].
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The after-treatment of the electrospun nanofibers also opens up the potential for
more advanced applications. The most popular treatment is the carbonization process
at high temperatures. There, electrospun nanofibers are converted into materials with
different compositions depending on the carbonization conditions. The conditions that
contribute to the properties and structure of the outcome material are the electrospun
solution component, carbonized temperature, environment, and heating rate. While the
polymer can act as the precursor that is converted into carbon material, it can also serve
as the template for the structure formation of metal or metal oxide. Though the high
surface area of the product nanofibers can improve the performance in the application by
prioritizing the interaction between the active material and the working environment, their
low physical properties limit their use in the mentioned applications. Instead, excellent
electrical conductivities make them ideal materials for the development of applications
involving electrochemical activities [24].

3.1. Oil/Water Separation

Oil/water separation is important for the protection of the environment from oil
pollution and its deleterious effects [174]. Due to its facile process and various structural
designs, the electrospun fiber membrane is considered a good material for the application
of oil/water separation. These modifications mainly focus on improving the interaction
between the surface of nanofibers and the surrounding environment. Loading inorganic
nanoparticles into the hydrophilic polymer can greatly improve the hydrophilicity of
the filter membrane. Jiang et al. manufactured an effective oil/water separation mem-
brane through a one-step electrospinning process using a poly(vinylidene fluoride)-silica
(PVDF−SiO2) blend solution (Figure 17a) [175]. The SiO2 nanoparticles also provide a
rough surface to PVDF nanofibers, which increases the solid–liquid contact area, leading
to higher geometric hydrophobicity. Because of the hydrophobic SiO2, the PVDF−SiO2
nanofibers membrane has super-hydrophobic and super-lipophilic properties, when com-
pared to the pure poly(vinylidene fluoride) (PVDF) fibers. Consequently, the PVDF−SiO2
nanofibers exhibited a separation flux of 2963 L·m−2h−1 and a separation efficiency value
of 99.4%, which indicates its suitability for use for oil/water separation. Du et al. rep-
resented a functional separation membrane through a one-step electrospinning method.
They produced a PVDF/PVP−TiO2 hydrophilic nanofiber membrane by using a blend
solution (Figure 17b) [176]. While PVDF as a base material can provide good mechanical
strength and chemical resistance, PVP assists the hydrophilicity of the TiO2. The TiO2
allows membranes to have self-cleaning ability, pollution prevention, and antibacterial
properties. Membranes of the three ingredients showed high separation efficiency for
n-hexadecane, petroleum ether, and edible oil. Likewise, the PVDF/PVP−TiO2 nanofiber
fulfilled high oil–water separation and anti-fouling properties.

In another example, Wang et al. produced a switchable oil–water separation membrane
based on natural loofah and PVDF through side-by-side nozzles (Figure 17c) [177]. The
difference in surface tension between the PVDF and loofah solution provides the driving
force to form a core–shell structure. The natural loofah/PVDF nanofibers behave especially
as a switchable oil/water separator that allows oil separation in dry conditions, and
water separation in wet conditions. As such, the PVDF/loofah-based Janus membrane
produced by side-by-side nozzles effectively achieves a core–shell structure for effective
oil/water separation.
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Figure 17. (a) The fabrication of PVDF-SiO2 nanofiber membrane and its application in oil–water
separation [175]. Copyright 2020, Wiley. (b) Fabrication procedure of PVDF/PVP-TiO2 hydrophilic
filter through one-step electrospinning method [176]. Copyright 2021, Elsevier. Copyright 2022, Else-
vier. (c) Core–shell structure of loofah–PVDF membrane and its oil–water separation behavior [177].
Copyright 2020, American Chemical Society.

3.2. Tissue Engineering

Tissue engineering, known as regenerative medicine, has in recent years been de-
veloped rapidly as an effective treatment method for tissue injuries by providing the
appropriate physiological microenvironment. One of the most important components of
tissue engineering is the scaffold that supports the growth of cells and provides a vec-
tor that delivers the biochemical factors [178]. Because the different properties can be
found in different kinds of tissue, the requirements of the scaffold can also be highly spe-
cific. In addition to the high porosity and the ability to be aligned, the wide choices of
materials allow the electrospinning of nanofiber products with a diversity of properties.
Therefore, electrospinning can be considered a powerful tool to manufacture scaffolds
for tissue engineering.

In bone tissue engineering, the prioritized properties of the scaffold are the high poros-
ity and mechanical properties of the membrane. Since electrospun nanofibers can construct
a membrane with extraordinarily high porosity, fillers can be added to the nanofibers to
improve their mechanical properties. In addition to the polyhydroxybutyrate (PHB) matrix
in the nanofibers, Toloue et al. added chitosan and alumina nanowires as the filler for
the nanofibers (Figure 18a) [179]. The composite nanofibers have their physical strength
significantly improved, which makes them suitable to act as scaffolds for bone tissue
engineering. The fillers also help stabilize the nanofibers in the aqueous environment, pre-
venting the structure of nanofibers from collapsing during the construction period of tissue.
For use in cardiac tissue engineering, the scaffold built from electrospun nanofibers must
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have good electrical conductivity and elasticity to mimic the cardiac function. Talebi et al.
proposed the composite nanofibers built of a network of polycaprolactone, chitosan, and
polypyrrole (Figure 18b) [180]. The membrane fibers have good electrical conductivity
thanks to the graphene and polypyrrole segments. As more graphene was introduced
into the material, the electrical conductivity was also enhanced. The scaffold material
with more graphene contained also expresses outstanding mechanical strength, suitable
to be applied in the application of cardiac tissue development. However, the amount of
graphene filler being higher than 1.5% can significantly reduce the mechanical proper-
ties. In the scaffold for nerve tissue engineering, physical strength is no longer a priority.
Here, the alignment of nanofibers needs to be the focus of attention. The alignment of
the nanofibers in the membrane can guide the neurite extension through a lesion site for
regeneration. Biocompatible PLA nanofibers were aligned following a single direction by
Wang et al. (Figure 18c) [181]. The authors showed the positive effect of nanofiber align-
ment over the culture of nerve tissue and also presented the influence of the diameter of the
fibers. On the other hand, the development of scaffolds for skin engineering should be con-
sidered angiogenesis, gas exchange, moisture maintenance, and the mass transport of tissue.
Therefore, while electrospinning can provide a membrane constructed from nanofibers
that have suitable properties, the scaffold still needs to have physical properties that match
that of the native skin tissue, especially the high stretchability. Norouzi et al. used the
hybrid between poly(lactic-co-glycolic acid) and gelatin as material for electrospinning
(Figure 18d) [182]. The fibers could later be collected as a stretchable membrane (up to 90%)
that can be used in skin tissue engineering and wound dressing. Until now, many efforts
have been carried out to mimic vascular tissue. However, its own structure resembling a
small diameter hollow tube is the biggest challenge that needs to be overcome. However,
electrospinning can overcome such small size fabrication by reducing the diameter of the
rotated drum collector. The well-oriented nanofibers can provide a suitable scaffold for the
cultivation of vascular cells. However, one issue that remains during the production of
electrospun scaffolds is that the removal of nanofibers can damage the microstructure. To
overcome the limitation, Mi et al. modified the collector into a bundle of copper wires as
demonstrated in Figure 18e for the fabrication of a tube scaffold [183]. When the rotating
speed increased during the operation of the electrospinning system, the centrifugal force
made the satellite copper wires expand affecting the initial diameter of the tube. Thereafter,
the thickness of the tube bound the wire collector and created a wavy configuration on the
inner layers. The reported nanofiber tube not only be easily collected, but its structure is
also similar to the zero stress state of the blood vessel.

3.3. Supercapacitor

Supercapacitors could improve performance by varying the morphology of electro-
spun nanofibers. In particular, porous carbon nanofibers are actively studied to maximize
the supercapacitor performance due to their high surface-to-volume ratio with the elec-
trolyte, thereby efficiently transporting electrons in the longitudinal direction. For instance,
Nam et al. electrospun the solutions using mixed PAN and PS to obtain polymer nanofibers
(Figure 19a) [184]. During carbonization, PS is used as a sacrificial substance to generate
pores inside the multiporous carbon nanofibers. The carbon material has a high-capacity
value of 202.4 F·g−1 at a current density of 1 A·g−1. Moreover, to improve the capacitance
performance, introducing heterogeneous elements to the CNF’s surface by oxygen plasma
treatment was conducted. As a result, the capacity value is enhanced more than 1.5 times
the non-plasma-treated CNFs (358.2 F·g−1 at 1 A·g−1). In another approach, Serrano et al.
developed a strategy to generate flexible porous CNFs derived from electrospun PMMA-
block-PAN copolymers nanofibers (Figure 19b) [185]. The porous carbon fibers (PCFs)
have different shapes depending on humidity due to the vapor-induced phase separation.
Therefore, electrical double-layer capacitance and flexibility were effectively achieved at
an intermediate range of 70% RH, showing 249 F·g−1 capacitance value and 97.3% cycling
stability. In an effort to further improve the supercapacitor performance, Acharya et al.
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are attracted by the moderated thermal transformation ability of metal−organic frame-
works (MOFs), which empowers the synthesis of nanomaterials with precisely controlled
porosities and morphologies (Figure 19c) [186]. Here, iron MOF and MIL-88A were used as
the source of Fe2O3/nanoporous carbon (NPC) and Fe3C, respectively. Through electro-
spinning using a mixed solution of MIL-88A, PMMA, and PAN, following hydrothermal
treatment and carbonization to obtain Fe2O3/NPC decorated on Fe3C implanted porous
carbon nanofibers. The resulting MOF-derived electrode materials exhibit a high specific
capacitance of 531 F·g−1 at 1 A·g−1. It is worth noting that porosity plays an important
role in enhancing supercapacitor performance, and highly porous supercapacitor electrode
materials can simply be obtained using an electrospinning system.
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Figure 19. (a) The oxygen-plasma-treated multiporous CNFs showed the highest capacity value
compared with other ones [184]. Copyright 2023, MDPI. (b) The PMMA−PAN fibers under a
relative humidity of 70% and its gravimetric capacitance [185]. Copyright 2022, American Chem-
ical Society. (c) Tetragonal rod-like nanomaterials interconnected with carbon nanofiber surfaces
used as super-capacitor electrodes exhibited high specified capacitance [186]. Copyright 2023,
American Chemical Society.

3.4. Battery Electrode

Since the early years of the 21st century, researchers have believed that to improve
the capacity of lithium batteries, the graphite anode should be replaced by another anode
material that has a relatively small molecular weight, low density, a favorable stoichiomet-
ric ratio for accepting Li, and higher retention ability during repeated charge–discharge
cycles [187]. Metal oxide (MO) has emerged as an ideal material to replace graphite because
of both its superior capacity and its low cost and facile synthesis [188,189]. However,
the naturally poor electrical conductivity and resistance to pulverization during lithia-
tion/delithiation remain challenges. To address these issues, experts approached the
electrospinning technique to fabricate metal oxide nanofibers [190]. Cobalt oxide (Co3O4)
and nickel oxide (NiO) nanofibers were obtained as alternative anode materials through a
similar process [191,192]. However, their capacity and retention are still insufficient to meet
the demand for large-scale applications. The combination of metal oxides opened a new ori-
entation towards improving anode materials due to the abundant electrochemical activities,
more redox reactions, and especially the synergistic effect between two different metals.
For example, Dai et al. designed an anode for lithium-ion batteries with NiO/Co3O4
nanotubes encapsulated with reduced graphene oxide using an electrospinning technique
(Figure 20a) [193]. As a result, the anode showed large lithium-ion storage capability
(~1206 mAh·g−1 at 0.1 A·g−1 after 100 cycles), and high-rate capacity and cycle stability.
Here, the reversible reaction of the lithium-ion with NiO and Co3O4 (conversion-type
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capacity), the pore of the tubular structure, and the surface of reduced graphene oxide
(adsorption-type capacity) all contribute to the specific capacity. Another interesting case
is Liu et al.’s fabrication of lithium-ion batteries anode from one-dimension hierarchical
coral-like CoTiO3/Co3O4/TiO2 hybrid nanobelts via a two-step electrospinning calcination
strategy (Figure 20b) [194]. This electrode material offers a combination of advantages
from metal components (CoTiO3 (enhancing cyclic stability), Co3O4 (high theoretical spe-
cific capacity), and TiO2 (improvement of structural stability)), and all advantages are
reflected in the electrochemical performance (capacity of 722.3 mAh·g−1 at 100 mA·g−1

after 250 cycles). Moreover, the unique coral-like nanobelt structures benefit the lithium
ions transformation, and then provide excellent support for the specific capacity.

One group that cannot be ignored in the family of alternative anode materials is
the intercalation-type metal oxide materials (e.g., Li4Ti5O12, CuFe2O4, ZnCo2O4, and
TiNb24O62) which are well-known for their low-toxicity, reduction total cost, and tunability
of working voltage and energy density by varying the metal ratio [195–197]. However, like
other metal oxide groups, this material must have a tailored design in the nanostructures
to shorten the dispersion distances of lithium ions and enhance the specific capacity. For
example, instead of using solvent–thermal or template methods (which are complex and
require additional templates) to generate TiNb24O62 porous nanoparticles, Zhu et al. used
simple electrospinning with a subsequent hydrogenation method to create the material in
the form of a one-dimensional nanowire with lots of oxygen vacancies (Figure 20c) [198].
As expected, the designed material exhibits a faster lithium-ion diffusion path and more
pseudo-capacity behavior activity than the bulk material. The electrospinning technique
can be seen to have played a significant role in enriching the structural morphology and
improving the electrochemical performance of lithium-ion batteries.
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3.5. Chemical Sensor

Electrochemical sensors enable the export of electrical signals produced by interac-
tions between the analytes [199]. The material of electrochemical sensors could be obtained
by attaching metal or metal oxide to the surface of CNFs. Phan et al. report a strategy
to generate nickel-decorated multidimensional CNFs via electrospinning combined with
oxygen plasma treatment and carbonization (Figure 21a) [200]. Here, nickel particle-coated
carbon nanotubes sprout on the surface of the CNFs through the catalytic reaction of nickel
and decomposed PVP during the carbonization. This creates a large active surface area
supporting rapid electron transfer leading to effective electrochemical detection. As a
result, this CNFs-based electrochemical sensor has a high sensitivity (25.29 µA·µM−1 cm−2

for 0.027 cm2 active surface area) and a low limit detection (0.5 nM) to acetaminophen
molecules. Based on facile electrospinning and electrodeposition, Yin et al. fabricated
packed cobalt oxide nanograins on nitrogen-doped CNFs to assemble a dopamine electro-
chemical sensor (Figure 21b) [201]. The high surface area of the carbon nanofiber matrix
and the homogeneous dispersion of Co3O4 led to effective dopamine detection. In addition,
the carbon skeleton supports electron transfer within the electrode surfaces. This sensor
showed a low limit detection (9 nM) over a wide range of concentrations of (0.01 to 100)
µM, superior sensitivity, and excellent selectivity for dopamine detection.
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Figure 21. (a) Nickel-decorated multidimensional CNFs applied in acetaminophen detection [200].
Copyright 2023, Elsevier. (b) Cobalt oxide nano-grains on nitrogen-doped CNFs applied in dopamine
detection [201]. Copyright 2022, Elsevier.

In recent years, attention to electrospinning metal oxide nanofibers in gas sensing ap-
plications has increased due to their unique structures and good electrical properties [202].
Needless to say, the unique morphology facilitates the efficient penetration of the target
gas into the active metal oxide layer, which is the main reason for the high sensitivity
of metal oxide gas sensors. Another approach to enhance sensor performance is to use
noble metals to decorate metal oxide nanofibers. Using electrospinning combined with
the calcination process, Jang et al. easily decorated Pt homogenous catalyst carriers on
porous SnO2 nanotubes (Figure 22a) [203]. Here, PS was added into the electrospun so-
lution as a sacrificial template to generate meso- and macro-pores on material structure.
Moreover, noble metals dispersed in the material work as effective catalysts by decreasing
the activation energy of gas chemisorption. These two metrics create a synergistic effect
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to significantly improve the selectivity and sensitivity of the sensors. In detail, the sen-
sor showed superior selectivity against other interfering gases (including H2S, toluene,
pentane, CO, NO, NH3, CH4, and H2) and the capability of detecting low-level acetone
(10 ppb). To induce a change in the surface of nanofibers, as well as the addition of a hetero-
component to the as-spun solution, exposing the nanofiber to oxygen plasma also promotes
an increase in the sensor’s response. For example, oxygen-plasma-treated ZnO nanofibers
show excellent acetone-sensing properties, due to their specific surface area and porosity
increase (Figure 22b) [204]. After plasma treatment, more pores and a larger specific surface
area were achieved on ZnO nanofibers. Moreover, the bandgap of oxygen-exposed ZnO
nanofibers significantly changed to near Fermi level, leading to charge transfer and further
expansion of the charge depletion region [205]. As a result, ZnO nanofibers exposed to
plasma oxygen gas exhibited an approximately two-fold increase in response sensitivity,
compared to untreated nanofibers.
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Figure 22. (a) Pt acts as a catalyst contributing to enhanced selectivity and sensitivity of Pt porous
SnO2 nanotubes [203]. Copyright 2016, Wiley. (b) Oxygen-plasma-treated ZnO nanofibers show
excellent acetone-sensing properties over the untreated ones [204]. Copyright 2020, American
Chemical Society.

4. Conclusions

Electrospinning is a method of manufacturing nanofibers. Though the materials for the
electrospinning processes are usually polymer solutions, the treatments on the nanofibers
and extensive choices of materials allow many kinds of materials to be produced. To
date, the materials that can be provided by electrospinning include polymer, polymer
composite, metal, and metal oxide nanofibers. On the other hand, modifications to the
electrospinning system configuration can lead to various changes in the collected nanofiber
membrane. Firstly, not only does the use of special nozzles and collectors alter the morphol-
ogy of the electrospun nanofibers, but the combination of different solvents and materials
in one single electrospun solution can also lead to the same results. Furthermore, the
after-treatment carried out on the nanofibers can convert them into different materials.
Especially carbon nanofibers, which have a significantly high surface area created from the
removal of sacrificing materials, can be harvested from the carbonization of electrospun
nanofibers. Secondly, the addition of extra parts, which are used to control the pathway of
the electrical field, can align the nanofibers following a designed pattern. In short, there
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is no limitation in the morphology and alignment of nanofibers that can be produced by
electrospinning, opening up the potential to be further developed in the future. However,
the disadvantages of the electrospinning process are that it is highly dependent on the
environment humidity and stability of the power source, restricting the use of the technique
in specific conditions. The applications of these nanofibers were also introduced in the
review. It is clear that the electrospun nanofibers have been used in many applications,
from simple applications, such as sound absorption and air purification, to highly advanced
applications, like sensors, catalysts, and energy storage. The electrospinning method has
great potential to provide materials with excellent properties, while it also offers many
opportunities for further improvement.
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