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Abstract: In two previous papers, we calculated the dielectrophoresis (DEP) force and corresponding
trajectories of high- and low-conductance 200-µm 2D spheres in a square 1 × 1-mm chamber with
plane-versus-pointed, plane-versus-plane and pointed-versus-pointed electrode configurations by
applying the law of maximum entropy production (LMEP) to the system. Here, we complete these
considerations for configurations with four-pointed electrodes centered on the chamber edges. The
four electrodes were operated in either object-shift mode (two adjacent electrodes opposite the other
two adjacent electrodes), DEP mode (one electrode versus the other three electrodes), or field-cage
mode (two electrodes on opposite edges versus the two electrodes on the other two opposite edges).
As in previous work, we have assumed DC properties for the object and the external media for
simplicity. Nevertheless, every possible polarization ratio of the two media can be modeled this way.
The trajectories of the spherical centers and the corresponding DEP forces were calculated from the
gradients of the system’s total energy dissipation, described by numerically-derived conductance
fields. In each of the three drive modes, very high attractive and repulsive forces were found in
front of pointed electrodes for the high and low-conductance spheres, respectively. The conductance
fields predict bifurcation points, watersheds, and trajectories with multiple endpoints. The high and
low-conductance spheres usually follow similar trajectories, albeit with reversed orientations. In DEP
drive mode, the four-point electrode chamber provides a similar area for DEP measurements as the
classical plane-versus-pointed electrode chamber.

Keywords: AC electro-kinetics; electro-kinetic object manipulation; inhomogeneous object
polarization; microchambers; micro-systems; object manipulation; field-cage; µTAS; MatLab® model;
thermodynamics; energy dissipation; LMEP

1. Introduction

This work is the third in a series of papers on the dielectrophoresis (DEP) behavior
of high and low conductivity 2D spheres in square chambers driven by various combi-
nations of idealized pointed and plane electrodes. In previous work, the chamber was
energized with pointed-versus-plane electrodes [1] and plane-versus-plane and pointed-
versus-pointed electrodes [2]. We have calculated the DEP force and the corresponding
trajectories from the system’s point of view via an approach that uses the positional depen-
dence of the total dissipation [3]. This approach is consistent with the law of maximum
entropy production (LMEP) [4–7]. It assumes that the dissipation in the system increases at
a maximum rate along each DEP trajectory.

One advantage of the approach is that it accurately accounts for the inhomogeneous
field distributions in the chamber and in the object due to the influence of such structures as
chamber walls and electrodes on the field distribution in the object, as well as the influence
of the object’s presence on the field distribution in the chamber, e.g., due to mirror charges.
Another advantage is that the approach to calculating the DEP force uses the relatively
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simple numerical calculation of “the system’s total conductance” (hereafter referred to as
“the system’s conductance”) from the distributions of currents and potentials. The force
acting on the object at a given location is then calculated from the gradient of the change in
the conductance of the system without the need for integration over the volume or surface
area of the object. For details, see discussions in: [1,2,8,9].

Here we complete our considerations using configurations with four-pointed elec-
trodes placed in the center of the square chamber’s edges. The four electrodes were
operated in three drive modes; object-shift mode (two adjacent electrodes opposite the
other two adjacent electrodes), DEP mode (one electrode versus the other three electrodes),
and field-cage mode (two electrodes on opposite edges versus the two electrodes on the
other two opposite edges).

2. Theory

From the system’s point of view, the work done on a volume of material can be stored
as electric or magnetic field energy [3]. Our model uses the third possible mechanism, the
dissipation of electrical energy according to the Rayleigh dissipation function [10], which is
proportional to the conductance of the DEP system. According to the LMEP, the direction
of the fastest increase in dissipation, which in our system corresponds to the fastest increase
in the conductance of the system, determines the direction of thermodynamic evolution of
the system, and thus the direction of DEP translation [2,5].

It is generally accepted that DEP forces arise from the interaction of the object’s induced
in-phase (real) polarization components with the inducing external field. Accordingly, from
the system’s point of view, the DEP force is calculated from the in-phase contributions
to the energy dissipation. Unfortunately, in the overall system, in-phase contributions
to energy dissipation can also arise from the interaction of the out-of-phase components
of the currents with out-of-phase components of the induced polarizations. Moreover,
these contributions to the total dissipation may depend on the object’s position. DEP
force calculations from energy differences must exclude such contributions, which are not
trivial [9]. We use DC properties for the external and object media to avoid the occurrence
of out-of-phase components in the polarizations and currents. It should be mentioned that
another way to avoid out-of-phase components simply is to consider the capacitive charge
work for the whole system for the high-frequency limit [9]. By combining appropriate DC
conductivities for the external medium and the object, the model allows analysis of any
real polarization relationship of the external medium and the object that may occur at a
given frequency for frequency-dependent properties.

The method used below to calculate forces and trajectories has been discussed in
previous works [1,2,9]. In short, 2D “conductance fields” were calculated for each electrode
and sphere/medium conductance configuration. The conductance fields describe the
dependence of the conductance of the system on the position of the sphere’s center. Thus,
the trajectory of the maximum conductance gradient can be found for each starting position
of the sphere. Depending on the structure of the conductance field, DEP trajectories with
different start positions lead to the same or different endpoints.

The gradient in the system’s conductance for position
→
r i was derived numerically

from the vector
→
r i+1 −

→
r i, which was normalized to the step width ∆r = |→r i+1 −

→
r i|,

and points in the direction of the maximum increase in the sheet conductance L2D
DEP:

gradNUM

(
L2D

DEP

)
= MAX

(
∆L2D

DEP
∆r

)→
r i+1 −

→
r i

∆r
(1)

To compare the DEP forces in different chamber setups, a relative DEP force was
derived by normalizing the force to the square of the chamber voltage, the depth of
z = 1 m perpendicular to the sheet plane, and L2D

Basic, the sheet conductance of the chamber
without object:
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→
F

2D

DEP ∼
Z

L2D
Basic

MAX

(
∆L2D

DEP
∆r

)→
r i+1 −

→
r i

∆r
(2)

This is Equation (8) from [2].

3. Materials and Methods

We consider 200-µm 2D spheres suspended in a 1 × 1-mm square chamber, as in
previous work. The 2D conductances of the spheres and the external medium differ by
a factor of ten, combining 1.0 S with 0.1 S and vice versa. The 1 × 1-mm chamber area
consisted of 199 × 199 2D voxels, with only the central 160 × 160 voxels accessible to the
center of the sphere. More details on the geometries of the chambers and objects can be
found in the previous publications [1,2,9].

For each electrode array and each pair of sphere and medium conductance, the
conductance of the chamber was calculated for each of the voxels accessible to the center of
the sphere using a MatLab® routine, resulting in “total conductance matrices” (hereafter
referred to as “conductance matrices”) with 160 × 160 elements [11]. The conductance
matrices were used to derive “conductance fields”, using the matrix values as interpolation
points for the MatLab® quiver line function. The conductance fields are available in
Tables S1–S6 in the Supplementary Materials. More details about the software used for
the calculations can be found in the previous publications. For better visibility of the
inhomogeneous polarization of the sphere in the respective figures, equipotential line
and current line plots were calculated with a MatLab® routine. Within the conductance
fields, the sphere’s center follows trajectories along the conductance gradient, i.e., each
step increases the conductance of the DEP system and hence the dissipation of electric
field energy.

Figure 1 shows the empty chambers’ equipotential and current line distributions with
three different driving modes. In the following, the driving modes in A, B, and C are
denoted as (++−−), (+−+−) and (+++−), respectively, corresponding to the potentials at
the four electrodes. While the field in mode B has only one mirror symmetry line and no
rotational symmetry, modes A and C have more than one mirror symmetry line and one or
more rotational symmetry angles.
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Figure 1. Potential and current line distributions in the 1 × 1-mm chamber without the object. The
four-pointed electrodes were energized with 0.5 V (marked by “+”; in AC-drive, this corresponds
to the 180◦-phase) versus −0.5 V at the counter electrodes (marked by “−“; in AC-drive, this
corresponds to the −180◦-phase). For a clearer presentation of the current and potential distributions,
equidistant current lines were used at x = 0 in A and x = −250 µm in B. For C, two distributions with
equidistant current lines at x =−250 µm and at x = 250 µm were combined. The calculated basic sheet
conductances L2D

Basic for the 100 mS//1 S media are (A): 42.31 mS//422.9 mS, (B): 32.75 mS//327.4 mS
and (C): 46.67 mS//466.5 mS, corresponding to cell constants k2D of approx. 0.423, 0.327 and 0.466,
respectively.
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4. Results and Discussion
4.1. General

Table 1 shows the calculated chamber conductances for the three drive modes of the
chambers without and with the 2D sphere. The table summarizes the effect of the presence
of the spheres at different positions on the periphery of the chamber, at intermediate
positions and at the center position. In each drive mode, the conductances of the chambers
are increased or decreased in the presence of the 2D spheres with high or low-conductance,
respectively, compared to the empty chambers. In each case, the magnitude of the effect,
and thus the electrical work done in the chamber, depends on the sphere’s position.

Table 1. Conductances of the chambers for the drive modes (++−−), (+++−), and (+−+−) (Figure 1)
without (w/o sphere) and with the 2D sphere at different positions in the chamber (A–H) in mS. The
conductances of the spheres and the outside chamber combine either 1.0 S for the sphere with 0.1 S
for the medium (1.0 in 0.1) or 0.1 S for the sphere with 1.0 S for the medium (0.1 in 1.0).

Mode ++−− +++− +−+−
Conductance 1.0-in-0.1 0.1-in-1.0 1.0-in-0.1 0.1-in-1.0 1.0-in-0.1 0.1-in-1.0

Basic (w/o sphere) 42.3103 422.9419 32.7518 327.3895 46.6665 466.4686

Minimum 42.3132 169.6693 32.7567 58.4465 46.6926 176.8777

Mean 43.0311 414.1074 33.2723 321.3707 47.2079 459.3097

Maximum 51.7546 422.9101 72.1644 327.3172 57.8512 466.1858

A 51.6242 172.9551 32.7572 327.3137 46.7797 464.7503

B 42.4985 420.1077 35.0269 217.9206 47.0445 462.2856

C 42.3139 422.9059 72.1854 60.0215 46.8354 464.6568

D 43.0865 414.6169 34.9014 218.8037 57.8507 180.4669

E 43.0702 414.2677 32.8186 326.6342 47.0987 461.7775

F 42.4621 421.2087 33.3379 321.0329 46.7698 465.3648

G 42.9407 416.3622 33.0919 323.8072 46.6926 466.1859

H -- -- 32.9595 325.1618 -- --

The basic, maximum and mean conductance values were taken or calculated from the
199 × 199 conductance matrices (Tables S1–S6, Supplementary Materials), while the con-
ductance values for positions A to H were obtained from a MatLab® routine for calculating
the field distributions.

Misalignment between the extrapolated µm positions and the underlying 199× 199 2D
voxel grid are the leading cause of any slight numerical discrepancies between the minimum
and maximum conductance values and the conductance values for the corresponding object
positions in Table 1; for example, compare the minima and maxima in (+++−) mode with
the conductance values at positions A and C. In the following, the effect of the sphere on
the current and equipotential line distributions is considered in detail.

4.2. (++−−)—Drive Mode (Object-Shift Mode)
4.2.1. Field Distribution and Chamber Conductance

Figure 2 shows results for the 1.0-S sphere in 0.1-S medium. Figure 2A–C show sphere
positions at the edge of the chamber; Figure 2D–F are intermediate positions with respect
to the center position in Figure 2G. Note that the positions in Figure 2A,D have three
siblings, i.e., three different positions with the same (mirror or rotational) symmetric field
distributions. The positions in Figure 2B,C,E,F each have a sibling with mirror symmetric
field distributions.
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Figure 2. Potential and current line distributions for different positions of the 1.0-S sphere in 0.1-S
medium for the (++−−)—drive mode. The position of the electrodes is sketched in G only. The
overall conductances of the chamber are (A): 51.62 mS, (B): 42.50 mS, (C): 42.31 mS, (D): 43.09 mS,
(E): 43.07 mS, (F): 42.46 mS and (G): 42.94 mS (Table 1). The current lines were chosen to be equidistant
at x = 0.

Figure 2A–F reflect the most general case of inhomogeneous polarization of the sphere
in an inhomogeneous external field, as can be seen from the current and equipotential
lines. In Figure 2G, the presence of the sphere distorts the external field, which is mainly
homogeneous without the conducting sphere (see Figure 1A). The current flows mainly in
the upper left and lower right caps in the sphere. The equidistant current lines at x = 0 are
the reason for the seemingly asymmetric current line distribution e.g., in the upper right
corner of Figure 2C. This effect did not occur with equidistant current lines on the diagonal
from the upper left to the lower right corner of the chamber.

The conductance of the chamber increases in the order w/o < C < F < B < G < E < D
< A, where w/o is the conductance without the sphere (Table 1). A and C are the most and
least favorable of the seven positions, according to LMEP. The seven conductances of A-G
are elements of the 160 × 160 conductance matrix (Table S1, Supplementary Materials),
which were used as interpolation points to generate the corresponding conductance field.

Figure 3 shows results for the 0.1-S sphere in a 1.0-S medium. For the low-conductance
sphere, the same chamber positions are considered as in Figure 2. The symmetry and
sibling properties are the same as in Figure 2. Again, the polarization of the sphere is inho-
mogeneous in Figure 3A–F. However, in Figure 3G, it appears to be largely homogeneous.
As in Figure 2, the equidistant current lines at x = 0 are the reason for the slight asymmetries
in the current line distributions in the external medium.
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Figure 3. Potential and current line distributions for different positions of the 0.1-S sphere in 1.0-S
medium for the (++−−)—drive mode. The position of the electrodes is sketched in G only. The con-
ductances of the chamber are (A): 173.0 mS, (B): 420.1 mS, (C): 422.9 mS, (D): 414.6 mS, (E): 414.3 mS,
(F): 421.2 mS and (G): 416.4 mS (Table 1). The current lines were chosen to be equidistant at x = 0.

The conductance of the chamber increases in the order A < E < D < G < B < F < C
< w/o, where w/o is the conductance without the sphere (Table 1). According to the LMEP,
C and A are the most and least favorable of the seven positions. The seven conductances of
A–G are elements of the 160× 160 conductance matrix (Table S2, Supplementary Materials).

4.2.2. Trajectories and Forces

Figures 4 and 5 show conductance fields with trajectories for the high and low-conductance
spheres, respectively. The 19-voxel wide, white frames in Figures 4A and 5A are geometri-
cally inaccessible to the sphere’s center. In Figures 4B,C and 5B,C, sheet conductance and
normalized DEP force are plotted over the same abscissas. In both conductance scenarios,
the chamber conductance increases monotonously along each trajectory toward specific
endpoints (Figures 4B and 5B). The normalized DEP forces in Figures 4C and 5C were
calculated using Equation (2).

The diagonals of the chamber from low left to top right and from top left to low right
are a mirror plane for conductances, trajectories, and forces, respectively (Figure 4A). Both
diagonals are watersheds that divide the chamber into four triangular regions of attraction
for the four stable endpoints E1, E2, E3, and E4, near the electrodes. These endpoints are
located slightly away from the electrode tips because the sphere experiences a lateral bias
generated mainly by the attraction of the nearest counter electrode. This is evident from
the current lines in Figure 2A, where the sphere at the left electrode is displaced toward
the upper counter electrode. Three unstable endpoints (E5, E6 and E7) are saddle points
located on the inverted mirror plane. The trajectories within the mirror planes and the
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triangular planes have one sibling (a1, c1, c2 and d1) and three siblings (b, e, f, g, h, i, and j),
respectively. The trajectories a2, c3 and d2 are three of four siblings.

The three saddle points on the inverted mirror plane create a complex conductance
field structure. As a result, in most cases, the sphere does not move along the shortest
possible trajectory to the endpoints. From the corners, the sphere is deflected toward the
center of the chamber before the trajectories are bent toward one of the nearby electrodes,
e.g., trajectories e, f, g, h, i, and j. Trajectories starting between like-charged electrodes, e.g.,
e, j, and g, have a larger arc than trajectories starting between counter electrodes, and may
even pass the endpoint and move back to the endpoint along the chamber wall.

For improved clarity, trajectory c has been divided into c1, c2, and c3. Section c1 starts
precisely in the corner and ends at the unstable saddle point E5. A slight disturbance
may cause it to run along the vertical watershed to one of the unstable saddle points E6
or E7 (here c2 toward E6), where the sphere can be deflected almost perpendicularly to
either side (c3 or a2) and hit the chamber wall near the electrode, creating a small force
peak (Figure 4C). A higher force peak is generated before the sphere reaches the end point.
The terminal steps lead to negligible changes in the chamber’s conductance, resulting in
minimal forces, according to Equation (2). As noted in previous work [1], the highest
force peaks are generated when the electrode is hit directly, which is almost the case with
trajectory e. The DEP force is zero at the unstable saddle points E5, E6, and E7, but not at
the stable endpoints E1, E2, E3, and E4, where the sphere’s motion stops. Experimentally,
the DEP force at the stable endpoints is compensated for by the wall pressure.
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h2. However, the four stable endpoints are located distant from the electrodes in the cor-

ners of the chamber, and there is no diagonal watershed from low left to top right. On the 

other diagonal, a watershed runs only between the two unstable saddle points E6 and E7, 

with the third unstable saddle point E5, halfway corresponding to the center of the cham-

ber. The bifurcations at both ends of the diagonal watershed make E6 and E7 triple points, 

Figure 4. Single 200-µm, 1.0-S sphere (reddish circles in (A)) in the chamber of Figure 1A with 0.1-S
medium. (A): Conductance field plot with trajectories (a–j). Two watersheds (two diagonal red lines)
separate the four catchment areas of the stable endpoints E1, E2, E3 and E4. E5, E6 and E7 are unstable
saddle points on one of the watersheds. (B): Chamber conductance along the trajectories. The basic,
minimum, mean, and maximum conductances are 42.31 mS (w/o sphere), 42.31 mS (Figure 2C),
42.03 mS, and 51.75 mS (E1–E4, Figure 2A), respectively (Table 1). Trajectories c1, c2, and d1 run
on watersheds and through unstable endpoints. (C): Normalized DEP forces calculated from the
conductance values in (B).



Micromachines 2023, 14, 2042 8 of 22

Micromachines 2023, 14, 2042 8 of 22 
 

 

each with three catchment areas, i.e., an instability at E6 (E7) can deflect the object to one 

of the three endpoints E1, E2, or E4 (E2, E3, or E4). In either case, it is theoretically possible 

for the sphere to move along the watershed and stop at E5 or to pass E5 and continue to E2 

or E4. In the chamber plane, the three watersheds form two pairs of mirror symmetric 

catchment areas, one pair of mutually distant small triangular-like areas with the end-

points E1 and E3 and another neighboring pair of large pentagon-like areas with the end-

points E2 and E4. 

Comparison of Figures 4 and 5 shows that the conductance fields for the high and 

low-conductance spheres have similar symmetry structures. For example, a line repre-

senting a watershed in one of the two figures is the central trajectory of a bundle of trajec-

tories in the other figure. One example is the trajectories h2 and b3 in Figure 5, which cor-

respond to the mirror plane in Figure 4. Another example is the trajectories d and h1 in 

Figure 5, which correspond to the trajectories a1 and d1, respectively, in Figure 4. In Figure 

5, the trajectories h1 and d start at the unstable saddle point E7 in opposite directions, h1 

along the watershed and with d as the central trajectory of a bundle of trajectories with 

the end point E3 (cf. trajectories c and f with end point E1). 

Trajectories between the like-charged electrodes in the larger catchment areas of the 

endpoints E2 and E4, e.g., a, e and g, have larger arcs than trajectories between counter 

electrodes bounded by the curved watersheds. Along the watersheds, the trajectory b is 

divided into sections b1, b2, and b3. Section b1 originates at the top edge of the chamber 

and runs along the curved watershed. For numerical reasons, b1 deviates slightly from the 

watershed before E6, so it turns left at E6 and continues as b2 to E5, where it turns left again 

toward E2. The trajectory h is divided into sections h1 and h2, which are siblings of b2 and 

b3, respectively. Section h1 starts from the saddle point E7 and turns left at E5 toward E4. 

In both conductance scenarios, a 90° rotation of the electrode drive voltages reverses 

the orientation of the trajectories in the center region of the chamber (Figures 4 and 5). 

Thus, the corresponding switching of the drive voltages could be used to manipulate the 

position of the object in the chamber. 

 

Figure 5. Single 200-µm 2D sphere of 0.1-S (reddish circles in (A)) in the chamber of Figure 1 with 

1.0-S medium. (A): Conductance field plot with trajectories (a–h). Three watersheds (the diagonal 

white line between E6 and E7 and two curved lines through E6 and E7 at the end of the diagonal 

watershed) separate the four catchment areas of the stable endpoints E1, E2, E3 and E4. E5, E6, and E7 

Figure 5. Single 200-µm 2D sphere of 0.1-S (reddish circles in (A)) in the chamber of Figure 1 with
1.0-S medium. (A): Conductance field plot with trajectories (a–h). Three watersheds (the diagonal
white line between E6 and E7 and two curved lines through E6 and E7 at the end of the diagonal
watershed) separate the four catchment areas of the stable endpoints E1, E2, E3 and E4. E5, E6, and E7

are unstable saddle points. (B): Chamber conductance along the trajectories. The basic, minimum,
mean, and maximum conductances are 422.9 mS (w/o sphere), 169.7 mS, 414.1 mS, and 422.9 mS
(E1, E2, E3 and E4, Figure 3C), respectively (Table 1). Trajectories b1, b2, and h1 follow watersheds
and run across unstable endpoints. (C): Normalized DEP forces calculated from the conductance
values in (B). The initial force peak of 75.35 for trajectory a (green) was truncated, and the ordinate
was shortened to increase the resolution for all other trajectories.

The conductance field in Figure 5A has similar symmetry properties to that in Figure 4A,
but with the force directions and trajectories reversed. Force peaks are observed when the
sphere detaches from the chamber wall. The forces are higher the closer the starting point
is to an electrode. Again, trajectories in the volume have three siblings each, e.g., a, c, e,
f, and g. Trajectories on the two diagonals have only one sibling, e.g., b2, b3, d, h1 and h2.
However, the four stable endpoints are located distant from the electrodes in the corners of
the chamber, and there is no diagonal watershed from low left to top right. On the other
diagonal, a watershed runs only between the two unstable saddle points E6 and E7, with
the third unstable saddle point E5, halfway corresponding to the center of the chamber.
The bifurcations at both ends of the diagonal watershed make E6 and E7 triple points, each
with three catchment areas, i.e., an instability at E6 (E7) can deflect the object to one of the
three endpoints E1, E2, or E4 (E2, E3, or E4). In either case, it is theoretically possible for the
sphere to move along the watershed and stop at E5 or to pass E5 and continue to E2 or E4.
In the chamber plane, the three watersheds form two pairs of mirror symmetric catchment
areas, one pair of mutually distant small triangular-like areas with the endpoints E1 and E3
and another neighboring pair of large pentagon-like areas with the endpoints E2 and E4.

Comparison of Figures 4 and 5 shows that the conductance fields for the high and low-
conductance spheres have similar symmetry structures. For example, a line representing a
watershed in one of the two figures is the central trajectory of a bundle of trajectories in
the other figure. One example is the trajectories h2 and b3 in Figure 5, which correspond
to the mirror plane in Figure 4. Another example is the trajectories d and h1 in Figure 5,
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which correspond to the trajectories a1 and d1, respectively, in Figure 4. In Figure 5, the
trajectories h1 and d start at the unstable saddle point E7 in opposite directions, h1 along
the watershed and with d as the central trajectory of a bundle of trajectories with the end
point E3 (cf. trajectories c and f with end point E1).

Trajectories between the like-charged electrodes in the larger catchment areas of the
endpoints E2 and E4, e.g., a, e and g, have larger arcs than trajectories between counter
electrodes bounded by the curved watersheds. Along the watersheds, the trajectory b is
divided into sections b1, b2, and b3. Section b1 originates at the top edge of the chamber
and runs along the curved watershed. For numerical reasons, b1 deviates slightly from the
watershed before E6, so it turns left at E6 and continues as b2 to E5, where it turns left again
toward E2. The trajectory h is divided into sections h1 and h2, which are siblings of b2 and
b3, respectively. Section h1 starts from the saddle point E7 and turns left at E5 toward E4.

In both conductance scenarios, a 90◦ rotation of the electrode drive voltages reverses
the orientation of the trajectories in the center region of the chamber (Figures 4 and 5). Thus,
the corresponding switching of the drive voltages could be used to manipulate the position
of the object in the chamber.

4.3. (+++−)—Drive Mode (DEP Mode)
4.3.1. Field Distribution and Chamber Conductance

In “DEP mode”, one electrode is driven against the other three electrodes. Figure 6
shows the results for the 1.0-S sphere in a 0.1-S medium. The sphere positions were chosen
similarly to the (++−−)—drive mode. However, the DEP (+++−)—drive mode has only
one horizontal mirror symmetry line, which reduces the number of sibling positions. While
positions C, D, G and H are unique, positions A, B, E and F have one sibling.
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Figure 6. Potential and current line distributions for different positions of the 1.0-S sphere in 0.1-S
medium for the (+++−)—drive mode. The position of the electrodes is sketched in (G) only. The con-
ductances of the chamber are (A): 32.76 mS, (B): 35.03 mS, (C): 72.19 mS, (D): 34.90 mS, (E): 32.82 mS,
(F): 33.34 mS, (G): 33.09 mS and (H): 32.96 mS (Table 1). The current lines were chosen to be equidis-
tant at x = −300 µm (A), x = −250 µm (E), x = −200 µm (H), x = 50 µm (B,D,G), x = 250 µm (F) and
x = 300 µm (C).
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Without the sphere, there is hardly any location in the chamber with a homogeneous
external field (Figure 1B), and the sphere is clearly inhomogeneously polarized at all
positions shown in Figure 6A–G. However, comparing the changes in the local fields
along the central axis of the chamber from C to D, we can expect that the object must be
nearly homogeneously polarized at position H, where the object’s presence creates largely
symmetric local and external fields.

In Figure 6, the conductance of the chamber increases in the order w/o < A < H < E
< G < F < D < B < C, where w/o is the conductance without the sphere (Table 1). C and A are
the most and least favorable of the seven positions, according to LMEP. The conductances
of the eight positions A–G are elements of the 160 × 160 conductance matrix (Table S3,
Supplementary Materials).

Figure 7 shows the results for the 0.1-S sphere in a 1.0-S medium. For the low-
conductance sphere, the same chamber positions are considered as in Figure 6. The
symmetry and sibling properties are the same as in Figure 6. Again, the polarization of the
sphere is inhomogeneous at all positions.
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ized DEP force are plotted over the same abscissas. In both conductance scenarios, the 
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catchment areas with stable endpoints on the electrodes (E1 and E3) or near the electrodes 

Figure 7. Potential and current line distributions for different positions of the 0.1-S sphere in 1.0-S
medium for the (+++−)—drive mode. The position of the electrodes is sketched only in (G). The con-
ductances of the chamber are (A): 327.3 mS, (B): 217.9 mS, (C): 60.02 mS, (D): 218.8 mS, (E): 326.6 mS,
(F): 321.0 mS, (G): 323.8 mS and (H): 325.2 mS (Table 1). The current lines were chosen to be equidis-
tant at x = −300 µm (A), x = −250 µm (E), x = −200 µm (H), x = 50 µm (B,D,G), x = 250 µm (F) and
x = 300 µm (C).

With the sphere in the upper right corner (not shown), the conductance is 325.2 mS, i.e.,
position A is a better hiding position where the presence of the sphere has a smaller effect
on the conductance. Clearly, the sphere’s presence at position A has the least influence
on the conductance of the chamber and the difference between A and w/o is minimal.
The conductance of the chamber increases in the order C < B < D < F < G < H < E < A
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< w/o (Table 1). A and C are the most and least favorable of the seven positions, according
to LMEP.

The conductances of the eight positions are elements of the 160 × 160 conductance
matrix (Table S4, Supplementary Materials).

4.3.2. Trajectories and Forces

Figures 8 and 9 show conductance fields with trajectories for the high and low-
conductance spheres, respectively. In Figures 8B,C and 9B,C, sheet conductance and
normalized DEP force are plotted over the same abscissas. In both conductance scenarios,
the chamber conductance increases monotonically along each trajectory toward specific
endpoints (Figures 8B and 9B). The normalized DEP forces in Figures 8C and 9C were
calculated using Equation (2). The horizontal centerline is a mirror plane for watersheds,
conductances, trajectories, and forces (Figures 8A and 9A).

For the high-conductance sphere, three watersheds divide the chamber into four
catchment areas with stable endpoints on the electrodes (E1 and E3) or near the electrodes
(E2 and E4) (Figure 8A). The latter two are located somewhat away from the electrode
tips because the sphere experiences a lateral bias generated mainly by the attraction of
the single negative electrode. Each watershed has one saddle point (E5, E6, and E7). E5
is an unstable saddle point located at the intersection of the mirror plane and the curved
vertical watershed.
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Figure 8. Single 200-µm, 1.0-S sphere (reddish circles in (A)) in the chamber of Figure 1B with 0.1-S
medium. (A): Conductance field plot with trajectories (a–k). Three watersheds (curved white lines)
with unstable saddle points E5, E6, and E7 separate four catchment areas for the stable endpoints E1,
E2, E3, and E4. (B): Chamber conductance along the trajectories. The basic, minimum, mean, and
maximum conductances are 32.75 mS (w/o sphere), 32.76 mS (Figure 6A), 33.27 mS, and 72.19 mS
(E3; Figure 6C), respectively (Table 1). (C): Normalized DEP forces calculated from the conductance
values in (B). The arrows mark the ends of trajectories.
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Note that the attractive force for the high-conductance sphere in front of the pointed 

electrode is almost twice as high as the repulsive force for the low-conductance sphere 

(trajectories a in Figures 8 and 9). We suppose this is due to the superimposed attractive 

Figure 9. Single 200-µm 2D sphere of 0.1-S (reddish circles in (A)) in the chamber of Figure 1B with
1.0-S medium. (A): Conductance field plot with trajectories (a–k). Three watersheds (horizontal
symmetry line, two curved white lines) with the unstable saddle points E5, E6, and E7 separate four
catchment areas for the stable endpoints E1, E2, E3, and E4. (B): Chamber conductance along the
trajectories. The basic, minimum, mean, and maximum conductances are 327.4 mS (w/o sphere),
58.45 mS (Figure 7C), 321.4 mS, and 327.3 mS (E1, E4; Figure 7A), respectively (Table 1). (C): Nor-
malized DEP forces calculated from the conductance values in (B). The arrows mark the ends of
trajectories.

Trajectories a and b within the mirror planes have no siblings; all other trajectories have
one sibling. Trajectories a and b start from the unstable saddle point E5 on the symmetry
line into opposite directions, straight to E3 and E1, respectively. Except for these trajectories,
the sphere does not move along the shortest possible trajectory to the endpoints. From the
corner regions, the sphere is deflected to the center of the chamber before the trajectories are
redirected toward one of the nearby electrodes, e.g., trajectories c, d, f, i, and k. Trajectories
starting in the catchment areas of E2 and E4 can pass the endpoint and then move along the
chamber wall back to the endpoint, e.g., f and i. E3 at the single counter electrode has the
largest catchment area, and the trajectories ending at E3 can be long, e.g., e, j, and l.

The highest force peak is generated when trajectory a hits the electrode directly.
However, the force peak of trajectory b is generated in an area where the conductance
changes are very moderate, and the forces generated are small (Figure 8B). Small additional
force peaks are generated when the sphere hits the chamber wall near the electrode before
moving along the wall to the endpoint (Figure 8C, trajectories c, j and h). Another higher
force peak is generated before the sphere reaches the endpoint. The terminal steps within
the conductance field often lead to negligible changes in the chamber’s conductance,
resulting in very small forces. The DEP force is zero at the unstable saddle points E5
(Figure 6H), E6, and E7, but not at the stable endpoints E1, E2, E3, and E4, where the motion
of the sphere comes to a stop, and the DEP force is (experimentally) compensated by the
wall pressure.

The conductance field for the low-conductance sphere in Figure 9A has similar sym-
metry properties to that in Figure 8A but with reversed force directions and trajectories.
Accordingly, force peaks are observed when the sphere detaches from the chamber wall.
The forces are higher the closer the starting point of a trajectory is to an electrode (Figure 9C).
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The DEP force is zero at the saddle points E5, E6, and E7 but not at the stable endpoints E1,
E2, E3, and E4.

A straight watershed on the mirror symmetry line and two symmetrical, curved
watersheds divide the chamber into two pairs of catchment areas with the stable endpoints
E1, E2, E3 and E4 at the corners of the chamber. While the straight watershed is the
borderline between the two large catchment areas with stable endpoints E1 and E4, the
two curved watersheds bound two catchment areas with stable endpoints E2 and E3. Each
watershed has one saddle point (E5, E6, and E7).

The unstable saddle points E6 and E7 are in slightly different locations than for the
high-conductance sphere in Figure 8. E5 is at the same location for both conductance
scenarios. The trajectories a and b along the mirror symmetry line have no sibling, and
all other trajectories have one sibling. From areas near an electrode, the sphere moves
within the respective catchment area of the start point before it is deflected toward the
corresponding stable endpoint in one of the near corners (e.g., trajectory c). In general, the
sphere does not move along the shortest possible path to an endpoint. Only trajectories a
and b on the mirror symmetry line are straight and can theoretically end at E5.

Note that the attractive force for the high-conductance sphere in front of the pointed
electrode is almost twice as high as the repulsive force for the low-conductance sphere (tra-
jectories a in Figures 8 and 9). We suppose this is due to the superimposed attractive force
of the mirror charges of the pointed electrode induced inside the high-conductance sphere.

4.3.3. Relevance for DEP Measurements

The DEP mode was modeled to show how different drive modes may extend the
application range of the four-pointed electrode chamber. The comparison shows that
the conductance field and, thus the force field in DEP mode in the relevant area of the
chamber is quite similar to that of the classical DEP chambers with plane-versus-pointed
electrodes [1]. In the four-pointed electrode setup, the additional top and bottom electrodes
generate additional attractive and repulsive forces for the high and low-conductance
spheres, which are not observed in the plane-versus-pointed electrode chamber. In the case
of the high-conductance sphere, the additional electrodes do introduce two additional end
points with their own catchment areas. Figure S1 in the supplementary materials presents
an overlay of Figures 8 and 9 showing the partly reversible DEP force in the chamber. It is
obvious that the two additional electrodes help to shape the field in the central region of
the chamber. Most likely, the gradient can be further improved by adjusting their drive
voltage. However, such investigations are beyond the scope of this work. Even in the coarse
(+++−) drive mode, the conductance fields along the line of symmetry are very similar to
the plane-versus-pointed electrode configuration for both conductance cases (Figure 10).

When comparing the conductance fields for the high and low-conductance spheres in
DEP mode, it is noticeable that both fields have an unstable saddle point on the symmetry
line near the left electrode. For the high-conductance sphere, this point is also found in
the plane-versus-pointed electrode configuration [1]. The conductance field near the left
wall of the four-pointed electrode chamber is quite different from that in the plane-versus-
pointed electrode chamber, where the plane counter electrode forms the left chamber wall.
However, DEP measurements in front of the left chamber wall are not meaningful for either
chamber. While the DEP forces near the left-pointed electrode are similar to those near
the right-pointed electrode (Figure 10B), the DEP forces in front of the plane electrode are
superimposed by mirror charge interactions [2].
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Figure 10. Normalized DEP forces and DEP force reversibility along the chamber’s symmetry line in
the DEP mode. (A): Normalized DEP forces acting on the 1.0-S (full line, corresponding to trajectories
a and b in Figure 8) and 0.1-S spheres (dashed line, corresponding to trajectories a and b in Figure 9).
(B): Zoom of A. The forces vanish for x = −201 µm for both spheres at the bifurcation points E5

(Figures 8 and 9). (C): DEP force reversibility as calculated from the quotient of the normalized
DEP forces on the 1.0-S and 0.1-S spheres using the data of Tables S3 and S4, which are summarized
in Table S7, Supplementary Materials). The horizontal line marks the force ratio of −1, i.e., ideal
reversibility, which can be assumed to be within the “reversibility range” −60 µm < x < 270 µm.

In the plane-versus-pointed electrode chamber, DEP measurements would preferably
be conducted along the symmetry line in the “dipole range” [1], which largely corresponds
to the “reversibility range” in Figure 10C. These ranges feature force reversal for the
conducting and nonconducting spheres and are roughly identical in the two chamber
designs, i.e., in this region, the DEP mode mimics the classic DEP configuration with plane-
versus-pointed electrodes. However, the degree of inhomogeneity of the object polarization
depends on the size and position of the object, which affects the detection of internal
structures, especially when the frequency dependence of the DEP forces is measured on
relatively large objects (compare positions H, G, and C in Figures 6 and 7, respectively).

The changing inhomogeneity affects the magnitude of the positive and negative DEP
forces. It is therefore recommended to register positive and negative DEP velocities over the
same distances within the reversibility range and to use the same chamber positions when
using compensation methods, e.g., to detect the critical frequencies of DEP [12], which were
later also referred to as “cross-over frequencies” [13].
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4.4. (+−+−)—Drive Mode (Field-Cage Mode)
4.4.1. Field Distribution and Chamber Conductance

In the “field-cage” or “trapping” mode, two electrodes at opposite edges are driven
against the two electrodes at the other two opposite edges. Note that only low-conductance
(low polarizable) objects but no high-conductance (high polarizable) objects are trapped at
locations distant from the electrodes, i.e., at the center of the chamber.

Figure 11 shows the results for the 1.0-S sphere in the 0.1-S medium. However, the
field-cage mode has simultaneous horizontal, vertical and diagonal mirror symmetry lines,
increasing the number of sibling positions. While the center position G is unique, positions
A through F each have three siblings. In Figure 11, the sphere is clearly inhomogeneously
polarized at all positions. The conductance of the chamber increases in the order w/o < G
< F < A < C < B < E < D. Accordingly, D and G are the most and least favorable positions,
according to LMEP. The conductances of the seven positions are elements of the 160 × 160
conductance matrix (Table S5, Supplementary Materials). When equidistant current lines
were chosen at x = 40 µm for calculating the equipotential and current lines, all current lines
from the left negative electrode ended on either the top or bottom electrode. Additional
runs were performed for the right half of the chamber to complete the plots.
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Figure 11. Potential and current line distributions for different positions of the 1.0-S sphere in 0.1-S
medium. The location of the electrodes is sketched only in (G). The conductances of the chamber are
(A): 46.78 mS, (B): 47.04 mS, (C): 46.84 mS, (D): 57.85 mS, (E): 47.10 mS, (F): 46.77 mS and (G): 46.69 mS
(Table 1). Equipotential and current lines were combined from separate calculations for the left and
right halves of the chamber, with current lines chosen to be equidistant at x = −40 µm and x = 40 µm,
respectively.
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Figure 12 shows the results for the 0.1-S sphere in a 1.0-S medium. The sphere positions
were chosen as in Figure 11 because the symmetry and sibling properties were the same.
Also, in Figure 12, the sphere is inhomogeneously polarized at all positions.
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Figure 12. Potential and current line distributions for different positions of the 0.1-S sphere in 1.0-S
medium. The position of the electrodes is sketched only in (G). The conductances of the chamber are
(A): 464.8 mS, (B): 462.3 mS, (C): 464.7 mS, (D): 180.5 mS, (E): 461.8 mS, (F): 465.4 mS and (G): 466.2 mS
(Table 1). Equipotential and current lines were combined from separate calculations for the left and
right halves of the chamber, with current lines chosen to be equidistant at x = −40 µm and x = 40 µm,
respectively.

The conductance of the chamber increases in the order D < E < B < C < A < F < G
< w/o. Accordingly, G and D are the most and least favorable positions, according to LMEP.
The conductances of the seven positions are elements of the 160 × 160 conductance matrix
(Table S6, Supplementary Materials).

4.4.2. Trajectories and Forces

Figures 13 and 14 show the conductance fields with the trajectories for the high
and low-conductance spheres, respectively. The symmetry properties of the plots are as
described above. Obviously, the field-cage mode has the highest number of mirror and
rotational symmetries. The diagonals of the chamber from the lower left to upper right and
from the upper left to lower right, and the horizontal and vertical lines are mirror planes or
inverted mirror planes for the conductances, trajectories, and forces (Figure 1C).

For the high-conductance sphere, the two diagonals are watersheds that divide the
chamber into four triangular catchment areas with the four stable endpoints E2, E3, E4
and E5 at the electrodes. Both diagonals have the common unstable endpoint E1 at their
intersection in the chamber’s center. On both diagonals, there are two additional unstable
saddle points near the intersections of the diagonals, with the lines connecting adjacent
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electrode tips (E7, E9 and E6, E8). From E1, eight straight trajectories run either to one of the
four endpoints at the electrodes or along the diagonals to the unstable saddle points E6,
E7, E8, or E9. Trajectories along one of the four mirror symmetry lines have three siblings,
e.g., b, n, j. Trajectories starting in the chamber volume (apart from mirror symmetry lines)
are curved and have seven siblings. They all hit the chamber wall before running to the
endpoints at the nearest electrode., e.g., a, c, d, e, f, g, h, i, k, l, m. Approaching the endpoint
E6, the sphere moving along trajectories j or n may be deflected perpendicularly, depending
on the nature of a possible slight perturbation, and then continue along either trajectory a or
l, hitting the chamber wall near an electrode and generating a small force peak (Figure 13C).

The highest force peaks are observed at trajectories b and d, which hit the electrode
directly and almost directly, respectively. The DEP force is zero at the unstable endpoint
E1 and at the unstable saddle points E6, E7, E8, E9, but not at the stable endpoints E2, E3,
E4, E5. Again, except for the direct electrode hit (trajectory b), from Equation (2) only
minimal forces result for the end steps within the conductance field. Experimentally, when
the sphere’s motion stops, the DEP force at the terminal point is compensated for by the
pressure on the electrode.

The conductance field for the low-conductance sphere in Figure 14A has similar
symmetry properties to that of the high-conductance sphere (Figure 13A), but with the
directions of the forces and trajectories reversed. Accordingly, force peaks are observed
when the sphere detaches from the chamber walls (trajectories a, e, and d). Forces are
higher when the starting point of a trajectory is near an electrode (trajectories f and g) and
highest when trajectories originate directly from an electrode (trajectories c and d).
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Figure 13. Single 200-µm, 1.0-S sphere (reddish circles in (A)) in the chamber of Figure 1C with 0.1-S
medium. (A): Conductance field plot with trajectories (a–n). Two diagonal watersheds separate the
four catchment areas of the stable endpoints E2, E3, E4 and E5. E1 is a single unstable point precisely
in the chamber’s center. (B): Chamber conductance along the trajectories. The basic, minimum, mean,
and maximum conductances are 46.67 mS (w/o sphere), 46.69 mS (Figure 11G), 47.21, and 57.85 mS
(E2, E3, E4, E5; Figure 11D). (C): Normalized DEP forces calculated from the conductance values in
(B). The arrows mark the end of the trajectories.
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Figure 14. Single 200-µm 2D sphere of 0.1-S (reddish circles in (A)) in the chamber of Figure 1C
with 1.0-S medium. (A): Conductance field plot with trajectories (a–i). Four watersheds (white lines
cutting off the chamber’s corners) separate the five catchment areas of the stable endpoints E1–E5.
E6–E9 are unstable saddle points in the middle of the watersheds. (B): Chamber conductance along
the trajectories. The basic (w/o sphere), minimum, mean, and maximum conductances are 466.5 mS,
176.9 mS (Figure 12D), 459.3 mS, and 466.2 mS (E1; Figure 12G), respectively. (C): Normalized DEP
forces calculated from the conductance values in (B).

The large central catchment area with central stable endpoint E1 is surrounded by
four separate, nearly triangular catchment areas with stable endpoints E2–E5 at the corners
of the chamber. Nearly straight watersheds separate the five catchment areas. The four
watersheds have unstable saddle points (E6–E9) located at the intersection between the
watersheds and the diagonals of the chamber. The effective DEP forces are zero at E1 and
at the unstable saddle points E6–E9, but not at the stable endpoints E2–E5. As with the
high-conductance sphere, trajectories along one of the four mirror symmetry lines have
three siblings, for example, c, d, h, and i. In-plane trajectories have seven siblings, e.g., a, b,
e, f, g. Within a radius of about 250 µm, the sphere is deflected straight or almost straight
to E1, the central endpoint of the field cage.

Unlike in DEP mode, at the electrode, the repulsive forces for the low-conductance
sphere are much larger than the attractive forces for the high-conductance sphere. However,
this property is clearly advantageous for trapping experiments.

5. General Discussion
5.1. Conductance Fields, Electric Work and Dissipation

Modeling of AC-electrokinetic effects such as electroorientation, DEP, electrorotation,
or mutual attraction is usually based on quasi-electrostatic approaches from the object’s
perspective [12–16]. The approaches use lossy media properties, although they assume
that the systems are in an equilibrium state without energy dissipation by resistive and
displacement currents. Moreover, any electrokinetic movement must in itself lead to a
dissipation of energy, and, surprisingly, the experimental observations and the models are
in good agreement.

In general, objects that are higher and lower polarizable than the suspension medium
are assumed to move in (positive DEP) or against (negative DEP) the direction of the field
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gradient. This view is largely correct, especially for small objects with a largely homoge-
neous polarization. They can “sense” and track the electric field gradient very locally and
with little distortion of the external field. However, the description of their polarization
with the Clausius-Mossotti factor, which assumes homogeneous object polarization, may
become problematic in microchambers [17]. Inhomogeneous object polarization becomes
more likely when the objects are relatively large with respect to the chamber [15,16,18–21].
In such cases, the total DEP force must be derived from the superposition of the polarization
contributions of the entire object volume with the inhomogeneous external field.

We have shown that positive and negative DEP synchronously increases the total
effective permittivity and conductivity, i.e., the total polarizability and dissipation of the
DEP system [9]. Accordingly, the DEP force can be derived from the increase in dissipation
of the electric field energy in ohmic heat or the capacitive charge work in the system.
While a small portion of the energy causes the DEP translation, the translation increases
the conductance of the DEP system. In turn, total electrical work and energy dissipation
increase as the DEP progresses.

To model the position dependence of the dissipation, we have introduced the conduc-
tance field, which is the DC or low-frequency equivalent of the capacitance (work) field. In
both fields, the energy field gradient describes the DEP forces and DEP trajectories.

For frequency-dependent models, especially for biological cells, the DEP system’s
apparent (or complex) specific permittivity or conductivity can be described by the Maxwell-
Wagner mixing equation [22,23]. After separating the reactive and active components of the
capacitive charge work and dissipated energy, respectively, it was shown that the DEP is
driven exclusively by the active components of the object’s polarization [9]. As in electrical
machines, the reactive part is out-of-phase with the active component and performs no DEP
work. The assumption of DC properties for the object and the external medium prevents
problems in separating reactive contributions in the electric work conducted on the DEP
system. However, this simplification does not reduce the complexity of the field-induced
object behavior.

5.2. Thermodynamic Aspects

Previous work has compared the thermodynamic aspects of our new approach with
existing approaches [8,9]. Since both the electric field and the DEP force are vector parame-
ters, the LMEP approach does not violate the Curie-Prigogine principle, which prohibits
scalar and vector quantities coupling in isotropic systems. Assuming thermal equilibrium
under the condition of constant field strength, which is generally applied to DEP chambers,
the entropy production corresponds to the dissipation of electrical energy, which is itself
proportional to the conductivity or conductance of the DEP system and the square of the
field strength [10].

One alternative assumption would be that the DEP system is close to equilibrium
in a linear range and applying the electrode voltage causes only a slight deviation from
equilibrium. Then, according to the Prigogine principle, DEP should cause the system
to approach a new “field-on equilibrium” by minimizing entropy production [24–26].
However, the system is clearly nonlinear since its conductance and energy dissipation
change with the field-induced DEP, even if thermal effects on parameters such as viscosities,
conductivities, and permittivities are neglected. However, after the field is turned off, the
Prigogine principle could regulate the path of the system back to the equilibrium state
without entropy production and with a random position of the sphere. Nevertheless, the
required diffusion of cell-size objects will take significantly longer than DEP.

In experiments and theory, DEP increases the overall polarizability and, more generally,
decreases the system’s impedance. The corresponding increase in dissipation of electrical
energy appears to be consistent with the Prigogine-Glansdorff principle, which allows only
positive changes in entropy production due to an induced effect in dissipative structures
and indicates that the system tends to follow the LMEP, i.e., the proposed fourth law of
thermodynamics, which is contrary to the Prigogine principle [4–7].
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Although our work shows that the LMEP provides a phenomenological criterion
for AC-electrokinetic effects, entropy production, like many thermodynamic parameters,
cannot directly explain the origin of the force at the level of individual objects [14].

6. Conclusions

Possibly, the main conclusion is that DEP itself can generally be viewed as a conditional
polarization mechanism, even if it is slow in terms of the field oscillation in AC fields [8,9].
This argument is based on the more general view that positive and negative DEP are
interpreted from the perspective of the object as displacement of a lower polarizable
medium by a higher polarizable medium, where the higher polarizable medium can be
either the object itself (positive DEP) or the external medium (negative DEP). From this
consideration, it is immediately clear that the DEP for a suspension of objects must lead
to an increase in polarizability for the whole system. This is the basis for modeling DEP
in a given system by combining the system’s approach with the “conductance field”, the
“capacitance field” or more generally, a “polarizability field” of the system. The fields
describe the conductance of the system as a function of the object’s position in the DEP
chamber. In the system, the DEP translation of objects follows field gradients while being
retarded by the viscous properties of the suspension.

Calculations with smaller and larger spheres in the DEP systems have shown that the
properties of the chambers discussed here as watersheds, saddle points, and catchment
areas are qualitatively identical over a wide range of relative sizes of chamber to sphere.
This was also found in initial calculations on 3D models, which require considerably more
computing time than the 2D models.

The system’s perspective of DEP allows the consideration of an inhomogeneous object
polarization and its interaction with an inhomogeneous external field. The calculation of
the resulting interaction forces is simplified since the forces can directly be derived from
differences in the system’s conductance (or capacitance). This permits a description of the
contributions of effects such as induced multipoles or inhomogeneities of the external field
induced only by the object’s presence, etc., which are tedious to model in object approaches.
Moreover, the attractive forces between neighboring objects can easily be modeled and
compared with analytical multipole models in which each object is subjected to the field
created by the inhomogeneous polarization of the other object [27].

Up to now, it has been shown that the LMEP approach works for the electroorientation
of ellipsoidal objects [8], for DEP in multiple electrode configurations and for the calculation
of mirror charge-induced forces [1,2,9]. For example, LMEP modeling of AC-electrokinetic
effects can be extended to nonspherical objects, multibody systems, or Janus particles [28]
to compute combined orientation, translation, and aggregation patterns [14,16,20]. Other
examples include objects inducing attractive mirror charges on flat electrode surfaces
and pointed electrodes inducing mirror charges in large objects. Another problem is the
induction of repulsive mirror charges on nonconducting chamber walls [2]. However, the
superposition of DEP translation with induced fluid currents can complicate the registration
of object trajectories in real systems.

The system approach represents a significant simplification for numerical modeling
of DEP force fields in microfluidic systems. This can be helpful in the search for optimal
electrode drive modes for the manipulation and positioning of biological objects and
colloidal particles [13–15,17–21,23]. The four-electrode system considered here can be
readily used for electro-rotation of objects [11,13,15,21]. The selective switching of drive
voltages and AC phases at the electrodes can be used to manipulate and position the object
in multi-electrode chambers [29,30].

In a subsequent paper, we plan to investigate the experimental behavior of cells and
colloidal objects in microchambers with four electrodes and compare it with the behavior
expected from to our new theory. However, especially for negative DEP, it has already been
observed that the DEP forces in some areas, such as near saddle points, are minimal and
may not overcome sedimentation, surface friction, and subsequent adhesion.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/mi14112042/s1, Table S1: Excel sheet with the conductance
matrix and trajectory coordinates for Figure 4: 1.0-S sphere in the electrode chamber with 0.1-S
medium in the (++−−) drive mode; Table S2: Excel sheet with the conductance matrix and trajectory
coordinates for Figure 5: 0.1-S sphere in the electrode chamber with 1.0-S medium in the (++−−)
drive mode; Table S3: Excel sheet with the conductance matrix and trajectory coordinates for Figure 8:
1.0-S sphere in the electrode chamber with 0.1-S medium in the (+++−) drive mode; Table S4: Excel
sheet with the conductance matrix and trajectory coordinates for Figure 9: 0.1-S sphere in the electrode
chamber with 1.0-S medium in the (+++−) drive mode; Table S5: Excel sheet with the conductance
matrix and trajectory coordinates for Figure 13: 1.0-S sphere in the electrode chamber with 0.1-S
medium in the (+−+−) drive mode; Table S6: Excel sheet with the conductance matrix and trajectory
coordinates for Figure 14: 0.1-S sphere in the electrode chamber with 1.0-S medium in the (+−+−)
drive mode; Table S7: Excel sheet for Figure 10 on DEP forces and DEP force reversibility along the
chamber’s symmetry line in the (+++−) DEP mode; Figure S1: Overlay of Figures 8 and 9 on the
reversibility of the DEP force in the chamber.
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