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Abstract: The features of stationary random processes and the small parameter expansion approach
are used in this work to examine the impact of random roughness on the electromagnetic flow in
cylindrical micropipes. Utilizing the perturbation method, the analytical solution until second order
velocity is achieved. The analytical expression of the roughness function g, which is defined as the
deviation of the flow rate ratio with roughness to the case having no roughness in a smooth micropipe,
is obtained by integrating the spectral density. The roughness function can be taken as the functions
of the Hartmann number Ha and the dimensionless wave number A. Two special corrugated walls of
micropipes, i.e., sinusoidal and triangular corrugations, are analyzed in this work. The results reveal
that the magnitude of the roughness function rises as the wave number increases for the same Ha.
The magnitude of the roughness function decreases as the Ha increases for a prescribed wave number.
In the case of sinusoidal corrugation, as the wave number A increases, the Hartmann number Ha
decreases, and the value of { increases. We consider the A ranging from 0 to 15 and the Ha ranging
from O to 5, with { ranging from —2.5 to 27.5. When the A reaches 15, and the Ha is 0, { reaches
the maximum value of 27.5. At this point, the impact of the roughness on the flow rate reaches its
maximum. Similarly, in the case of triangular corrugation, when the A reaches 15 and the Ha is 0, {
reaches the maximum value of 18.7. In addition, the sinusoidal corrugation has a stronger influence
on the flow rate under the same values of Ha and A compared with triangular corrugation.

Keywords: random roughness; electromagnetic flow; roughness function; micropipe

1. Introduction

Many microfluidic devices are used in the chemical, pharmaceutical, biological, and other
industries to separate and transfer substances. Electromagnetic fluid micropumps [1,2] and
electroosmotic micropumps [3—6] are the two primary types of microfluidic devices. Due
to its vast potential for use in the field of separation and analysis, magnetic fluid control
technology is an important research direction [7-9]. Jang and Lee [10] presented a novel
micropump in which the pumping mechanism is based upon magnetohydrodynamic
(MHD) principles and showed experimentally that low-magnitude magnetic fields can be
used to significantly increase the average flow rates in micropumps. After that, Ho [11]
studied the flow characteristics of an electromagnetohydrodynamic (EMHD) micropump
through a rectangular duct. Moghaddam [12] investigated the effect of a high Hartmann
number on the flowing problem for AC- and DC-powered MHD micropumps with a
circular channel. Additionally, a DC MHD micropump that can operate at high DC current
densities was demonstrated by Homsy et al. [13]. Gao and Jian [14] studied the MHD
flow of Jeffrey fluid in a circular microchannel and investigated the effect of the Hartmann
number, dimensionless relaxation time, and retardation time on the velocity and volumetric
flow rate.
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Most previous research has focused on smooth channels. The walls of actual channels
are rough as a result of manufacturing processes or the adsorption of other species like
macromolecules. Since the 1970s, many analytical and computational approaches for
studying the effect of wall roughness on laminar flow have been developed.

Chen et al. [15] investigated the mixing characteristics of electrokinetically-driven
flow in microchannels with different wavy surface configurations. Numerical simulations
were performed to analyze the influence of the wave amplitude and the length of the
wavy section on the mixing efficiency within the microchannel. The research indicated that
surface roughness can be designed artificially to promote mixing. Nishimura et al. [16]
dealt with mass-transfer enhancement and fluid dynamic behavior in a wavy-walled tube
for pulsatile flow. These results indicate that the transport enhancement mechanism for
the wavy-walled tube is quite different from the resonant transport enhancement observed
in the two-dimensional (2-D) wavy-walled channel, and a wavy-walled tube can enhance
mass transfer through special enhancement mechanisms. Ligrani et al. [17] discussed the
effects of near-wall slip induced by surface roughness on the pressure rise and flow rate of a
single rotating-disk viscous micropump operating with Newtonian water. The Stokes flow
problem of viscous fluid in corrugated pipes was considered by Phan-Thien [18]. Chu [19]
investigated the effect of surface roughness on slip flow in an annulus with corrugated
walls. Grant Mills et al. [20] studied the influence of a channel with sinusoidal walls on the
unsteady laminar flow of a Newtonian fluid and established the optimum wall amplitude
and period leading to an unsteady flow at the minimum pressure gradient. Numerous
studies on electromagnetic flow in rough channels have been conducted. Buren et al. [21]
studied the effect of the channel with parallel surface roughness on the EMHD flow. They
investigated the impact of roughness on the flow rate. Furthermore, the impact of a channel
with transverse surface roughness on EMHD flow was investigated by Buren and Jian [22].

Typically, a sinusoidal function was used to represent the wall roughness. However,
during real manufacturing, the wall roughness is frequently random. Therefore, it is neces-
sary to expand the investigations to include random roughness in addition to sinusoidal
roughness. Phan-Thien [23] was the first to apply the theory of stationary random pro-
cess to the Stokes flow of incompressible Newtonian fluids between parallel plates with
transverse stationary random surface roughness. The results were in strong accord with
those of Wang [24] when the wall roughness reduces to the sinusoidal one. Following that,
Phan-Thien [25] extended the previous results to channels and pipes with parallel station-
ary random surface roughness. Faltas et al. [26] investigated the influence of stationary
random surfaces on the modified micropolar Brinkman model and particularly evaluated
the influence of the corrugations on the pressure gradient and the flow rate. Very re-
cently, by utilizing the perturbation method based upon stationary random function theory,
Ma et al. [27] studied the effect of small random transverse wall roughness in a parallel
plate microchannel on Electromagnetohydrodynamic (EMHD) flow.

However, the problem of the effect of random roughness on the electromagnetic flow
in a micropipe has not been investigated. By utilizing the characteristics of stationary
random processes, the small parameter expansion approach is primarily employed in this
research to investigate the impact of random roughness on the electromagnetic flow in
micropipes. The analytical solution until second order velocity is achieved in Section 2.
Two specific examples, i.e., sinusoidal corrugation and triangular corrugation, are taken
into consideration in Section 3. The effect of dimensionless parameters on the roughness
function in the above two special examples is investigated in Section 4. Section 5 concludes
the study.

2. Mathematical Formulation

The EMHD flow inside a micropipe with stationary random surface roughness is
shown in Figure 1. The cylindrical coordinate system (r*, 0, z*) is established, and the mean
radius is R. The pipe is exposed to orthogonal magnetic and electric fields. The magnetic
induction intensity B* of the constant magnetic field is oriented vertically upward with
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the magnitude By, and the direction of the electric field strength E* with the magnitude
Ey is from the outside to the inside. The combined effect of the electric and magnetic fields
produces the Lorentz force J* x B* in the z-axis. The current density is J* = o(E* + u* x B¥),
where ¢ stands for conductivity, and the velocity in cylindrical coordinate system is given as
w¥(u*,v*,w*). It is assumed that the fluid flow is along the z-direction; i.e., u* =0, v* =0, and
w*(r*,0) # 0, and the velocity w* in the z-direction is the function of r* and 6 for steady flow.
For a small magnetic Reynolds number, the momentum equation and induced magnetic
field equation can be decoupled, and the Navier-Stokes equation of MHD flow in the
micropipe can be expressed as
w*  1ow* 1 d*w* oBy? , P*—0EyB

)

e Triae  p YT T
where u is the dynamic viscosity, P* = 0p*/dx* is the pressure gradient,
7* = p* — um|Bo|>/87 [28] is the modified pressure by magnetic pressure, and i, is
the magnetic permeability. The rough wall of the micropipe can be written as R[1 + en ()],
where n(f) is a random process, and ¢ < 1 is a perturbation parameter. The no-slip
boundary condition at #* = R[1 + en(6)] can be expressed as

w*[R(1+¢en(0)),0] =0. ()

> Z

Figure 1. Sketch of the EMHD flow inside a micropipe with stationary random surface roughness.

Assuming that n(0) is a stationary random process and its mean is zero:

(n(0)) =0, 6)
and the spectral representation of n(6) by Fourier-Stieltjes integrals is:
oo
n(8) = / 6Pk (w), @)

where w is the frequency domain parameter, and h(w) is the spectral process of the n(6).
The spectral process increment dh(w) has the following properties:

(dh(w)) =0, ®)

(@) ~{ari) o ©
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where the ~ represents the complex conjugate, and F(w) is a function defined by the
correlation function of n(6).

’ — too /
<(979)=<nwqu>:/“ 900 4F (), @)
The correlation function of n(f) can be expressed as a Fourier integral:

+oo
C(1) = / e f(w)dw. 8)

f(w) is the spectral density of n(6), expressed as
flw) = 5= [ eiercyin ©)

2/ - '

Then, the relation (6) becomes

(ah(w) @@ ) = { P 0 if w#w (10)

wydw ifw=uw

Assuming that the scale of velocity is known to be U, utilizing R and uU/2R? as the
length and pressure scales, respectively, the nondimensional governing equations of (1)
and (2) become

Pw  1ow 1 %w 5
57 ?W+ZW_H{1W—P_HQS’ (11)
w[l+en(0)] =0, (12)

2px . . .
where S = % \/% , Ha = RBy %, and P = % are the dimensionless electric parameter,

the Hartmann number, and the dimensionless pressure gradient, respectively. Using the
small parameter expansion method, the solution can be assumed as the form

w(r,0) = wy(r,0) + ewy (r,0) + 2wy (r,0) + 0(83), (13)
By substituting (13) into (11), the governing equations for powers of ¢ are as follows:

o%w 10w
0. 0, 1t9%0 2 _Dp_
e 572 + 5y Ha*wy = P — Has$, (14)

o P 10w 1P
T oor? r or r2 00?

— Ha*wy =0, (15)

Pw; 10w 1 o%w
2.9 %2 L 22 L S0 ™2 Halw, =
e 52 - or + 2 502 Ha*w, = 0. (16)
By substituting (13) into the boundary conditions (12) and employing the Taylor
expansion for the average position of the pipe walls (r = 1), we obtain the boundary

condition as

wo(1) + e{wl(l,Q) + naw(’(l)} + 82{w2(1,9) + (o) L0 | 1n2(9)a2w°(1)} + O<£3) ~0. (17)

or or 2 or?
On collecting terms of equal powers of ¢, we obtain the boundary conditions for

Equations (14)—(16), respectively:
wo(1) =0, (18)
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w1(1,6) = —n(e) 0L, 19)
or
B owy(1,60) 1 , . d*wp(1)
wy(1,0) = —n(H) 5 S (9) 57 (20)
From Equations (14) and (18), the leading-order solution can be solved as
_ HaS—-P Ip(Ha-r)
wy(r) = oo <1 o (Ha) ), (21)

where I; represents the first kind of modified Bessel function of the order k.
Substituting the leading-order solution into condition (19), the second-order boundary
condition can be expressed as

HaS — P)I[;(Ha) (HaS — P)I;(Ha)

wi(1,0) = n(@)( = /+Oo e“Pdh(w) (22)
nve Ha-Io(Ha) Ha-Ip(Ha) J-w

The first order solution w(r,0) is considered as a spectral representation, which is
suggested by the condition (22)

wy(r,0) = (Hl;_lsa_.;:gll_}fl?a)/;m @1(r)e“Pdh(w). (23)

The ordinary differential equation with respect to ¢y is obtained by substituting the
solution (23) into the first-order Equation (15):

dzgol 1deq w? 5
dr2+rdr<r2+Hﬂ>(p1:0. (24)

The general solution of Equation (24) is
¢1(r,w) = Al,(Ha -r) + BKy(Ha - 1), (25)
where A and B are arbitrary constants. The boundary condition of Equation (24) is
¢1(L,w) =1 (26)

Since ¢1(0,w) has a finite value, and K,(0) trends to infinite, B is equal to 0. From
condition (26) and general solution (25), Equation (24) can be solved as

I,(Ha-r)

¢1(r,w) = T (Ha) 27)

Substituting expression (27) into (23), the analytic expression of w (r,6) becomes

(HaS — P);(Ha) [+ I,(Ha-r)

_ iwf
@(7,0) = /_w O ) (28)

Taking the leading-order and first-order solutions into condition (20), the second-order
boundary condition is written as

HoS—P [+ 0 o,
wa(1,0) = 47 Ha/ / 0 dn(w)dh(w), 29)

where D(w) is

Iy—1(Ha) + I,y11(Ha)

D(w) = —2I1(Ha) o (Ha)

+ L,(Ha) + Iy(Ha). (30)
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The second order solution w(r,8) is considered as a spectral representation, which is
suggested by the condition (29):

w(r0) = G oy | T gl @) an()ane. (1)

The ordinary differential equation satisfied by ¢;,(r) can be obtained by substituting
Equation (31) into Equation (16):
2, 1dgy |[(w—-w')? 2
— + - |————+H =0. 2
dr2  r dr o HHE e =0 (32)

The general solution of Equation (32) is
¢2(r,w) = Al,_v(Ha-r)+BK,_(Ha-r), (33)
where A and B are arbitrary constants. The boundary condition of Equation (30) is
¢2(1,w) = D(w). (34)

Similarly, since ¢»(0,w) has a finite value, B is equal to 0. From condition (34) and
general solution (33), the solution of Equation (32) can be written as

D(w)

P2(r,w) = mlw,w/(Ha 7). (35)

Substituting expression (35) into (31), the analytic expression of w;(,0) becomes

+o0 j 4 (")
wy(r,0) = Zﬁsmp/ / I H,Z ——— Ly (Ha - r)e Y ih(w)dh(w).  (36)
oo w— OJ

The rate of flow per unit length in the micropipe is obtained as

Q= /01+£n(9) (wo(f’) + ewy (1, 0) + 2w, (r, 9))rdr. (37)

The formula (37) can be expanded in the Taylor series about the mean wall positions
r=1:
Q= fo wo(r)rdr + s(fo w1 (r,0)rdr +wo(1)n (9)) +

38
€ (fo wy(r,0)rdr + wy(1,0)n(0) + duigr()(g)z>‘ (38)

Taking the average of formula (38), we obtain the expression as

2
=/ wo(r)rdr+82<< [ a0 + an (1,6)m0)) + <dw;f1)’“§>>>. 9)

The portions of the second-order term of ¢ taking the mean value are shown, respec-
tively,

<f01w2(r,6)rdr> = [fo [t %fo w_w (Ha 1) - rdr . eilw=w"e <dh(w)dh(w’)>

+oo (HaS—P)I;(Ha)D(w)
= IS et (@)

, (40)

(wi(1,0)-n(0)) = [13 t?%l(w 0 { dh(w )dh(w’)>

(41)
Ha$S PI H
= 1o ) f(w)dew
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<alw;r(l)n(g)z> _ [t +oo_(HanP)Il(Ha)ei(w_w/)9<dh(w)m>

—oo J—o00 2Ha Io(Hﬂ) (42)
400 (HaS—P)L(Ha)
—oco  2Ha-Io( Ilia f( Jdw
The mean rate of flow Qp in a smooth micropipe is described as
1 HaS—P (HaS— P)I;(Ha)
= dr = - 4
Qo /o wo(r)rdr = = Ha3ly(Ha) (43)
Formula (39) can be arranged in the form of
Q) _y 27 (Ha), (44)
Qo

where {(Ha) = [~ "% ¢(Ha,w) f(w)dw is defined as a deviation in the flow rate ratio with
roughness to the case having no roughness in a smooth micropipe and

(Ha,w) Ha2L(Ha)[2L (Ha) - (Io_1(Ha) + Ly11(Ha)) — L,(Ha) - (I,(Ha) + Ip(Ha))]
sLRa W) = 21y(Ha) - Io(Ha) - (Ha - Io(Ha) — 21, (Ha)) '

Assuming n(6) holds Dirichlet’s condition, it can be expressed as a Fourier sinusoidal series:

(45)

= i by sin(kAB), (46)

where by is the amplitude, and A is the wave number. The correlation function and spectral
density function of n(6), respectively, are [22-24]

C(7) = (n(O)n(6+ 7)) = ;; B2 cos (kAT), 47)
fw) = 5= /N T it Z B2(8(co — KA) + 8(w + kA)), (48)

where 6(-) is the generalized Dirac function.

3. Two Special Examples
3.1. Sinusoidal Corrugation

Using the results of the prior investigation, we consider two types of corrugations.
The stationary random process n(f) reduces to sin(A8) when the micropipe has sinusoidal
corrugation. According to (46), we can obtain that by =1 and by = 0, k > 2 for n(9) = sin(A)
(Figure 2). Formula (44) in this situation can be written as

{Q)

o = 1—€271(Ha, M), (49)

& = ya(Ha, ). 50)
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Figure 2. Cross section of a cylindrical pipe with sinusoidal roughness. (a) e =0.15,A =5, (b) e = 0.1,
A =10.
3.2. Triangular Corrugation

When the micropipe has triangular corrugation (Figure 3), the stationary random
process 1(0) reduces to

2
ZA0 0<O< 3y
n@)=4¢2-210 L<o<I. (51)

AP .

e

(a)

Figure 3. Cross section of a cylindrical pipe with triangular roughness. (a) e =0.15,A =5, (b) e = 0.1,
A =10.
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Expanding (51) into a sinusoidal series, the radius of the micropipe with triangular
corrugation is obtained:

r=1+¢)_ b,sin(2n—1)Af, (52)

n=1

where b, = 8(—1)"~1/(7?(2n — 1)?). Formula (44) in this situation can be written as

Qzl—e‘z{z (Ha,A)
0, , (53)

_ 1 & 64¢(Ha A)

2
: 2/5 mi(2n— 1)

(54)

4. Results and Discussion

Based on the reference [29], the range of dimensionless parameters is estimated as
follows. The radius of the pipe is R~10-500 um, viscosity #~1073-1.5 x 1073 kg/(ms),
electrical conductivity c~2.2 x 10~* S/m, and the strength of magnetic field B~0.01-1 T.
The order of the Hartmann number O(Ha) ranges from 0 to 5, and the order of S ranges
from 0 to 6 x 10°.

The influence of Ha on {; is shown in Figure 4a, when the wave number A =0, 1, 3, 5, 10,
and 15. A larger wave number means a rougher wall. {1 represents the deviation between
the flow rate of a rough wall with sinusoidal corrugation and the flow rate of a smooth
wall. {; is positive, and it approaches 0 with the increase in Ha when the wave number is
3,5, 10, and 15, which indicates that roughness has an impeding effect on flow, and the
effect is gradually weakened with the increase in Ha. This phenomenon also occurs in the
electromagnetic flow between microparallel plates with transversely wavy surfaces [22] and
electromagnetic flow in microchannels with random surface roughness [27]. In particular,
when the wave number is 0 and 1, the deviation is negative, and it approaches 0 with the
increase in Ha, which means that roughness has a promoting effect on the flow, and the
effect also weakens with the increase in Ha.

(@ _ \ _ )

30 - 30 . T 1
e A=0 = A\=5 ° Ha=0.1 ?
25 A=1 - A=10/] 251 + Ha=0.5 o ¢ 9
= A=3 - A=15]] ||  Ha=1 o
20 2011 Ha=1.5 . 9
151 | 15.:Ha=3 ° . s
o3 el . : o Ha=5 ) . x
10 | 10 ., 2
LT T ey @ «
BAABAAAAAAAAAAAAAAA, -An.:\A“_\_ﬁ_:"““n”u"““o"”"’ f
0r oooqoooocl00‘300""’“"““"“""“;09.":::zz;i 0 & '
sooooc00000008 8
0 1 2 3 - 5 0 5 10 15
Ha A

Figure 4. The variations in the sinusoidal corrugation function {; with (a) Ha for different A, (b) A for
different Ha.

The influence of A on (; is shown in Figure 4b when the Hartmann number
Ha =0.1,05,1, 1.5, 3, and 5. The deviation {; progressively increases from zero with
the increase in wave number when the wave number is greater than 2. Since the deviation
{1 is positive, it is clear that roughness impedes the flow on micropipe, and this effect
steadily reinforces as the wave number grows. This conclusion is consistent with the
conclusion in reference [22,27]. The deviation {; approaches to 0 from a negative value



Micromachines 2023, 14, 2054

10 0f 13

with an increase in A from 0 to 2, which also means that the roughness has a promoting
effect on the flow, and the effect weakens with an increase in the wave number. A similar
phenomenon also appears in Ref. [26], perhaps because the method has certain errors in

the case of a small wave number.

The influence of Ha on {5 is shown in Figure 5a when the wave number A =0, 1,
3,5, 10, and 15. {, represents the deviation between the flow rate of a rough wall with
triangular corrugation and the flow rate of a smooth wall. The influence of A on (5 is
shown in Figure 5b when Ha = 0.1, 0.5, 1, 1.5, 3, and 5. There are a few differences between
Figures 4 and 5. Figure 6 compares the two cases in detail.

(a)

b
o0 (b)
o Ha=0.1
15_' nai?S
a= °
4 Ha=1.5 o
10}| = Ha=3 o °
= * Ha=5 b4 3
@ & ®
5t % 3 * "
e - <
R o x *
Ox & CI
]
0 5 10
A

15

Figure 5. The variations in the triangular corrugation function {, with (a) Ha for different A, (b) A for

20
o A=0 = \=5
= A=1 -+ A=10
15 - A=3 - A=15
10
o~
B R T
Sresees P800 gg,,
DI'""‘""".’;3;E:E',SSEBGS-’,-.’Ea;a.muaa.cu.se.snu.\;a'u:;-.,;-rén;n
0 1 2 3 4
Ha
different Ha.
a
20 (@) : : .
0 (A=0 . (5 A=0
nna,;_.m“a _ _
15l S, (A5 o (A5 |
e e, | (4 A=10 + ¢ =10
10 T, f40tnang,
ey, "-‘AAAAM_U
L Freea,, e Aaa
5 ooconnnmnnnnt
or 556566660000000000000000000000
Lisaesa0000000000°7
—5l . )
0 1 2 3 4 5
Ha

(b)

30
o C1 Ha=0.1 « C2 Ha=0.1
25 a Ha=1 .CQHa:1
20/ . ¢ Ha=5 . (,Ha=5
Q
15| o &
~ g 4 .
10 g 2 o, 2
8 y
5¢ 8 &
L0
0: 5 = °
é
0 5 10
A

15

Figure 6. (a) depicts the change curves of 1 and {; in relation to Ha when A = 0, 5, and 10; (b) depicts

the change curves of {7 and {, in relation to A when Ha = 0.1, 1, and 5.

The influence of Ha on deviation {; and {, with Ha when A =0, 5, and 10 is depicted
in Figure 6a. Figure 6b depicts the influence of A on deviation {; and {, when Ha=0.1, 1,
and 5. The graph indicates that (; is greater than ; for the same Ha and A. This means that
compared with triangular corrugation, sinusoidal corrugation has a larger resistant effect
on flow. This conclusion is similar to the conclusion in Ref. [26].

Figure 7 depicts the mean velocity distribution in the micropipe with both sinu-
soidal corrugation and triangular corrugation when P = —0.5, S =8, Ha = 0.5, A =5, and
€ = 0.1. Taking the average of velocity is essentially equivalent to taking the average of the
surface roughness. This method is essentially used to transform the flow problem within
micropipes with roughness into the problem within smooth micropipes. Because different
roughness types have different effects on the flow inside the micropipes, this leads to differ-
ent velocity distributions. The velocity distribution we obtained is actually the corrected
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velocity distributions of different types of roughness within smooth micropipes. From
Figure 7a,b, it can be observed that at the same dimensionless parameters, the velocity dis-
tribution within micropipes with triangular corrugation is generally larger than that within
micropipes with sinusoidal corrugation. The reason for this is that sinusoidal corrugation
has a stronger influence on the flow rate compared with triangular corrugation. Under the
same corrugation parameters, sinusoidal corrugation has a larger resistant effect on flow,
resulting in lower flow velocities. This more intuitively demonstrates our conclusion about
the influence of these two types of corrugated surfaces on flow rate.

(a) _ w

=
(4]
rsind

0 . o
reosd rcos#

Figure 7. Mean velocity distribution in the micropipe with (a) sinusoidal corrugation and (b) triangu-
lar corrugation. P=—0.5,5=8,Ha=05,A=5,e=0.1.

5. Conclusions

The effect of random roughness on the electromagnetic flow in a micropipe is in-
vestigated using random function theory. The random corrugation function ¢, which is
a measure of the flow rate deviation from the situation with no pipeline roughness, is
analytically expressed by expanding the velocity with small parameters and using some
stationary random process features. Two particular micropipes with sinusoidal and tri-
angular corrugations are explored in this work. By examining graphical fluctuations in
the roughness function concerning the Hartmann number Ha and wave number A, it is
revealed that the effect of roughness on the flow rate decreases with an increase in Ha
and increases with an increase in the wave number A. The sinusoidal corrugation has a
stronger influence on the flow rate under the same values of Ha and A compared with
triangular corrugation. The mean velocity distribution indicates that the overall velocity
within the micropipe with sinusoidal corrugation is relatively low. This is primarily due to
the larger impact of sinusoidal corrugation on the flow rate. Meanwhile, this implies that
the influence in obstructing the flow is more pronounced. This method is essentially used
to transform the flow problem within micropipes with roughness into the problem within
smooth micropipes to study the influence of roughness on the flow rate, and the velocity
distribution will be different according to the different roughness types. This method is not
only effective for a given corrugation but also effective for random roughness.
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Abbreviations

The bold font represents vectors and the normal font represents scalars.
(r0,x)  cylindrical coordinate system

magnetic field

the magnitude of the magnetic field

electric field

the magnitude of the electric field

electrical current density

velocity vector

specific conductance

components of velocity vector

pressure of the liquid

channel radius

dynamic viscosity

stationary random functions

amplitude of the corrugation

interval random function

real non-decreasing bounded functions

flw) spectral densities of #(6)

R 2R IRV R IR TN EIE
—_ —_ ~ (=] (=]
Ee 2 8

~— S

C correlation function
I modified Bessel function of the first kind
K, modified Bessel function of the second kind
Ha Hartmann number
S dimensionless electric field strength
Q flow rate per unit length
Qo the mean rate of flow in smooth micropipe
¢ corrugation function
A wave number
1 the Dirac generalized function
0 phase difference
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