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Abstract: This paper proposes an acoustic bubble and magnetic actuation-based microrobot for
enhancing multiphase drug delivery efficiency. The proposed device can encapsulate multiphase
drugs, including liquids, using the two bubbles embedded within the microtube. Additionally, using
the magnetic actuation of the loaded magnetic liquid metal, it can deliver drugs to target cells. This
study visualized the flow patterns generated by the oscillating bubble within the tube to validate the
drug release principle. In addition, to investigate the effect of the oscillation properties of the inner
bubble on drug release, the oscillation amplitude of the inner bubble was measured under various
experimental variables using a high-speed camera. Subsequently, we designed a microrobot capable
of encapsulating bubbles, drugs, and magnetic liquid metal and fabricated it using microfabrication
technology based on ultra-precision 3D printing. As a proof of concept, we demonstrated the
transport and drug release of the microrobot encapsulating the drug in a Y-shaped channel simulating
a blood vessel. The proposed device is anticipated to enhance the efficiency of drug therapy by
minimizing drug side effects, reducing drug administration frequency, and improving the stability of
the drug within the body. This paper is expected to be applicable not only to targeted drug delivery
but also to various biomedical fields, such as minimally invasive surgery and cell manipulation, by
effectively delivering multiphase drugs using the simple structure of a microrobot.

Keywords: microrobot; acoustic bubble; target drug delivery technology; cavitational microstreaming;
magnetic liquid metal

1. Introduction

According to the World Health Organization (WHO), cancer is one of the leading
causes of mortality globally [1,2]. Treatments for these cancers include surgical treatment
for the direct removal of cancer cells as well as chemotherapy for drug administration to
treat the cancer cells [3,4]. Among them, chemotherapy is widely used for cancer treatment
because it administers drugs through oral and intravenous injections, allowing quick drug
delivery to all organs through the bloodstream [5,6]. However, while cancer treatment
with chemotherapy can effectively remove cancer cells, the drugs administered can also
affect healthy cells, causing side effects such as hair loss, loss of appetite, and emesis [7].
Recently, there has been a great deal of research into targeted drug therapy to reduce the
side effects of chemotherapy and increase the effectiveness of treatment [8–10]. These
therapies can increase absorption by preventing premature degradation of the drug while
minimizing the impact on healthy cells by focusing the drug on target cells [11–14]. As a
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way to improve the efficiency of targeted drug therapy, targeted drug delivery technologies
using microrobots is gaining prominence [15].

Targeted drug delivery technology using microrobots utilizes various control sys-
tems to precisely control drugs through untethered manipulation even in the viscous
environment of the body, enabling effective delivery of drugs to target cells through min-
imally invasive surgery [16–18]. As a result, many research groups are continuing their
investigations into microrobots for targeted drug delivery. The primary research areas for
microrobots include developing methods to effectively propel and locomote them to the
target sites using various energy-conversion mechanisms as well as ensuring the efficient
delivery of therapeutic agents to the target cells [19].

Firstly, in the field of microrobotic propulsion research, many research groups are
investigating various propulsion techniques based on chemical reactions, biology, and
principles such as acoustic wave and magnetic fields [20,21]. Among these techniques,
propulsion methods using magnetic fields are gaining attention in biomedical applications
due to their ability to precisely control microrobots remotely and penetrate biological
tissues without causing adverse reactions [22,23]. The working principle of a magnetic field
is applied in two main ways: a magnetic gradient force using a gradient magnetic field and
magnetic torque using a uniform magnetic field [24]. Conventional propulsion methods for
microrobots have utilized magnetic torque to align magnetic materials and the magnetic
gradient force for propulsion [25]. Yesin et al. and Jeong et al. conducted research using a
propulsion method that combined uniform and gradient magnetic fields generated by a
pair of Helmholtz and Maxwell coils, achieving precise control of microrobots in 2D and 3D
space, respectively [26,27]. However, the magnetic gradient force was proportional to the
size of the microrobot, so a strong magnetic gradient force was required to apply this at the
microscale [28]. High electric currents to generate strong magnetic gradient forces result
in a great deal of joule heat, which has the potential to negatively affect biological tissue,
making it unsuitable for biomedical applications [29]. For the above reasons, a propulsion
method with a helical mechanism that generates a translational corkscrew movement
within a magnetic torque-based rotating magnetic field has been developed, which has
advantages for propulsion in a low Reynolds number of viscous environments in the
body [30,31]. Honda et al. introduced rotating magnetic-field-based helical wires followed
by a propulsion method that uses artificial helical flagella, which was inspired by the
flagellar motion of bacteria in Zhang et al. [32,33]. However, the propulsion method using
a rotating magnetic field merely induced a simple rotational motion in the microrobots;
hence, the development of an auxiliary helical mechanism is essential to achieve propulsion
and to convert rotational motion into translational motion.

Secondly, in the field of drug manipulation, many research groups are investigating
methods for efficient drug control to target cells, leveraging mechanisms such as magnetic
actuation, environmentally responsive polymers, and gaseous bubbles. Geo et al. proposed
a nanowire-based microrobot that delivers loaded drugs to target cells using the magnetic
attraction of polymeric particles fabricated by encapsulating Ni segments and magnetic
nanoparticles [34]. The proposed microrobot demonstrated drug delivery by capturing
drug-loaded polymeric particles using magnetic actuation and delivering them to targeted
cancer cells. For drug delivery, methods using polymer-based stimuli-responsive hydrogels
can rapidly change their properties in response to shifts in temperature or pH, enabling
applications in new fields of targeted drug delivery technologies [35–37]. Li et al. proposed
a magnetically propelled, pH-responsive microgripper that integrated pH-sensitive hydro-
gels with magnetic actuation for drug control [38]. The proposed microgripper utilized
trapping and unfolding motions in pH-varying solutions to deliver drugs to target cells.
However, such drug delivery mechanisms have limitations in that they cannot control
liquid-phase drugs, which have a higher penetration rate than solid-phase drugs in an
aqueous medium due to the difficulty in completely sealing the drug. Hence, Jeong et al.
proposed a microrobot utilizing gaseous bubbles for the control of liquid-phase drugs and
conducted research on controlling the encapsulated drug to target cells using selective
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acoustic actuation [39]. However, this study utilized a dual-channel structure that sepa-
rated the microtube for drug delivery from the one for drug diffusion, resulting in a larger
size of the robot, and it did not include research results on viscosity to reflect the actual
blood environment.

This paper presents a microrobot using a magnetic liquid metal for transportation
to target cells and acoustic bubbles for efficient drug manipulation. We present a novel
propulsion mechanism that harnesses the magnetic liquid metal’s deformable properties,
enabling efficient microrobot movement in diverse environments. Furthermore, we demon-
strate the wireless manipulation of multiphase drugs with varying physical properties
in an aqueous medium using only gaseous bubbles, eliminating the need for complex
mechanical mechanisms. This study presents a novel method for delivering multiphase
drugs by analyzing the oscillation properties of acoustically excited bubbles within the
microrobot under various experimental variables. The proposed microrobot consists of
a microtube, a magnetic liquid metal carrier, and a mounted blade on the body of the
microrobot, as shown in Figure 1a. Within the microtube, drugs are encapsulated using
two bubbles of different volumes (an inner and outer bubble, respectively). For magnetic
actuation, the magnetic liquid metal is loaded into the liquid metal carrier. Upon applying
a magnetic field to the magnetic liquid metal, the microrobot encapsulating the drug is
transported to the target cells (Figure 1(b1)). After the drug is transported to the target
tissues, applying an acoustic wave of a natural frequency to an inner bubble embedded
within the microtube causes the inner bubble to oscillate, generating a microstreaming
flow (Figure 1(b2)). Through this process, the outer bubble covering the entrance of the
tube is removed, allowing the encapsulated drug to be released from the microtube and
delivered to the target tissues (Figure 1(b3)). This paper is expected to be applicable not
only to targeted drug delivery but also to various biomedical fields, such as minimally
invasive surgery and cell manipulation, by effectively delivering multiphase drugs using a
simple structure of microrobot.
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2. Principle

The following describes the operating principle of the proposed device. When a
hydrophobic microtube with one end sealed is submerged in an aqueous medium, a
column-shaped gaseous bubble is automatically trapped inside. When the gaseous bubble
trapped inside the microtube is acoustically excited, the bubble oscillates (expands and
contracts) due to its compressibility [40]. During the oscillation of the acoustic bubble,
the meniscus of the bubble periodically moves within the microtube, and this movement
generates intersecting flow patterns at the entrance of the microtube. According to fluid
mechanics, if the Reynolds number (Re = ρUL/µ) is not too small, two different flow
patterns occur at the entrance to the microtube [41]. Here, ρ is the density of the fluid, U is
the flow velocity, and L is a characteristic dimension that typically represents the diameter
of the bubble. One of the flow patterns is an inflowing omnidirectional flow, while the other
is an outflowing unidirectional jet; these two patterns alternately form at the entrance of the
microtube. Consequently, the two asymmetric flow patterns merge into a singular jet flow
(microstreaming flow) due to the high momentum flux [42,43]. The acoustically excited
gaseous bubble inside a microtube with one end sealed behaves as a damped harmonic
oscillator [44–46]. The natural frequency of a bubble is approximately given as [46]:

f0 =
1

2π

√
κP0

ρL0LB
(1)

The natural frequency of a bubble is approximately 1 ≤ κ ≤ γ, where γ (1.4 for air)
κ is the specific heat ratio of the gas in the bubble. Here, κ is determined to be 1.2 based
on the studies by Chen and Prosperetti [44]. P0 is the pressure at steady state, ρ is the
density of the liquid medium, L0 is the length of the liquid filling the microtube, and
LB is the length of the bubble within the microtube. The integrated equation with these
variables indicates that the natural frequency of the bubble is a function dependent on the
length of the bubble, LB. Additionally, the bubble inside the tube can achieve its maximum
oscillation amplitude at its natural frequency, and the intensity of the microstreaming flow
is simultaneously maximized.

3. Results and Discussion
3.1. Experiment Setup and Methods

Figure 2 shows the experimental setup for analyzing the oscillation properties of the
acoustically excited bubble. A disk-shaped piezoactuator (MFT-27T 4.1A1, KEPO Co.,
Ningbo, China) was used for the acoustic excitation, and a function generator (33210A,
Agilent Co., Santa Clara, CA, USA) and an amplifier (PZD700, Trek Co., Lockport, NY, USA)
were used to apply an alternating current. The piezoactuator was attached to the bottom of
the chamber (8 (L) × 4.5 (W) × 2.5 (H) cm3) using an adhesive (3M, CAT. No. 237). The
oscillation properties of the bubble were observed through a zoom lens (VZMTM 450io,
Edmund Optics., Barrington, NJ, USA) mounted on a high-speed camera (Phantom Micro
eX4, Vision Research Inc., Wayne, NJ, USA).

In Figure 3, we visualize the flow patterns generated by the oscillating bubble within
the tube to validate the proposed drug release principle. To observe the flow within the tube,
a glass tube with high permeability (length: 4 mm) was used; to increase the stability of the
bubble, parylene-C was deposited on the inside surface using chemical vapor deposition
(CVD). The fluid mixed with fluorescent particles (8 µm dia., FF1015-01, Fluostar, EBM
Co., Tokyo, Japan) was injected into the middle spot of a sealed-end glass tube using a
microsyringe to form an inner bubble (length: 2 mm). Subsequently, the glass tube was
submerged in an aqueous medium to automatically form an outer bubble separating the
inner fluid from the aqueous medium. To observe the oscillation of the bubble within
the glass tube, an acoustic wave was applied to the inner bubble (applied voltage: 15
Vrms; frequency: 1.1 kHz). At this time, the applied acoustic wave corresponded to the
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natural frequency of the inner bubble. Figure 3(a1–a3) sequentially show the initial state,
compressed state, and expanded state of a bubble oscillated by an acoustic wave.
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Figure 3. (a1–a3) Sequential snapshots of the oscillations of two bubbles (inner and outer) generated
by the acoustically excited inner bubble within a glass tube; (b1,b2) microstreaming flow visualization
of two bubbles oscillated by an inner bubble within a glass tube.

Next, we visualized the microstreaming flow induced by bubble oscillations within
the glass tube (Figure 3(b1,b2)). To visualize the microstreaming flow, we illuminated
the fluorescent particles using a 532-nm-laser source (MGL H-532 nm, Changchun New
Industries Optoelectronics Tech Co., Changchun, China). Based on the experimental
results, a violent microstreaming flow was observed within the fluid between the inner
bubble and the outer bubble due to the oscillations of the acoustically excited inner bubble.
Furthermore, the microstreaming flow generated by the two bubbles could interact to push
the outer bubble out of the tube.

3.2. Experimental Variables: Bubble Length

This study investigated the oscillation properties of the inner bubble relative to its
length within a microrobot to examine the effect of the oscillation amplitude of the inner
bubble on drug release. Firstly, the oscillation amplitude of the inner bubble was measured
at different acoustic frequencies using three different lengths (1 mm, 2 mm, and 3 mm) of
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the inner bubble as variables (Figure 4). Here, oscillation amplitude refers to the difference
in length between the maximum expansion and compression states of the bubble. In this
experiment, the natural frequency of the bubble was derived from the point at which the
bubble exhibited its maximum oscillation amplitude. For the experiment, a hydrophobic
Teflon tube (diameter: 400 µm) was used. A liquid drug solution (0.03 wt %, safranin
solution) was injected into the middle spot of the tube using a microsyringe to generate an
inner bubble. During this process, the drug was injected into the microtube, leaving a gap
of 0.3 mm from its entrance. Subsequently, the Teflon tube was submerged in an aqueous
medium to form an outer bubble. In the experiment depicted in Figure 4, the length of the
outer bubble was consistently maintained at 0.3 mm. The experimental results revealed that
as the length of the inner bubble increased, both the oscillation amplitude and the natural
frequency of the inner bubble decreased. The maximum oscillation amplitude of the inner
bubble was observed when its length was 1 mm. At this time, the frequency of the applied
acoustic wave matched the natural frequency of the inner bubble ( f Inner,0 = 2.5 kHz).
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3 mm lengths) at various acoustic frequencies for drug release and outer bubble removal.

Secondly, the oscillation amplitude of the inner bubble was measured at different
acoustic frequencies using three different lengths (0.3 mm, 0.6 mm, and 0.9 mm) of the
outer bubble as variables (Figure 5). We used the same fabrication method as in our
previous experiments. Through previous experiments, the length of the inner bubble was
consistently maintained at 1 mm, where it exhibited the maximum oscillation amplitude
at its natural frequency. The experimental results indicated that as the length of the outer
bubble increased, both the oscillation amplitude and the natural frequency of the inner
bubble decreased. The maximum oscillation amplitude of the outer bubble was observed
when its length was 0.3 mm. At this time, the frequency of the applied acoustic wave
matched the natural frequency of the inner bubble ( f Inner,0 = 2.5 kHz).

3.3. Experimental Variables: Experimental Fluid Viscosity

To investigate the impact of experimental fluid viscosity on drug release, we examined
the oscillation properties of the inner bubble while varying the drug viscosity and the
surrounding medium. Figure 6 shows the effect of the viscosity of a drug encapsulated in
two bubbles in a microtube on the oscillation properties of the inner bubble. The oscillation
amplitude of the inner bubble was measured for drugs with three different viscosities (1 cP,
2.5 cP, and 6 cP) across various acoustic frequencies. In the experiment shown in Figure 6,
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the viscosity of the medium surrounding the microtube was consistently maintained at 1 cP.
Based on the experimental results, while the increase in drug viscosity did not affect the
natural frequency of the inner bubble, a decreasing trend in the oscillation amplitude of the
inner bubble was observed.
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Figure 7 shows the effect of the viscosity of the medium surrounding the microtube on
the oscillation properties of the inner bubble. The oscillation amplitude of the inner bubble
was measured for medium with three different viscosities (1, 6, and 10 cP) across various
acoustic frequencies. In the experiment in Figure 7, the viscosity of the drug inside the robot
was consistently maintained at 1 cP. Based on the experimental results, as the viscosity of
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the medium surrounding the microtube increased, a decrease in both the natural frequency
and the oscillation amplitude of the inner bubble was observed. As a result, as the viscosity
of the experimental fluid increased, the amplitude of inner bubble oscillation decreased,
thus experimentally confirming the difficulties associated with drug release.
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3.4. Multiphase Drug Release Experiments

Figure 8 shows the results of an experiment using acoustic bubbles to release drugs
in multiphase (liquid and solid phases) with different physical properties. The inside of
the Teflon tube (length: 2 mm; diameter: 400 µm) consisted of an inner bubble and an
outer bubble (length: 1.0, 0.3 mm, respectively), with liquid- and solid-phase materials
trapped between the two bubbles, respectively. For drug release, an acoustic wave cor-
responding to the natural frequency of the inner bubble was applied (2.5 kHz). For the
liquid drug release experiments, we utilized a chemical reaction solution (Pb(NO3)2) as
the liquid-phase drug and a KI solution as the medium surrounding the microtube. Upon
applying an acoustic wave at the natural frequency to the inner bubble, it was observed
that the encapsulated drug was released out of the microtube and underwent a chemical
reaction (Pb(NO3)2 + 2KI → PbI2+2KNO3 ) with the medium surrounding the micro-
tube (Figure 8(a1,a2)). In the solid drug release experiments, we used glass beads (70 µm
dia, CAT. No 5212, Sigmund Lindner Co., Warmensteinach, Germany) as the solid-phase
drug. We confirmed the sealing of solid drugs using bubbles and the release of solid
drugs utilizing the oscillation properties of the bubbles (Figure 8(b1,b2)). As a result, by
successfully demonstrating the release of multiphase drugs, we experimentally verified the
drug delivery capability utilizing the superior opening and closing abilities of the bubble.

3.5. Design and Fabrication of Microrobots

The proposed microrobot was composed of several key components: a microtube
(diameter: 400 µm, length: 2 mm) for drug encapsulation, a liquid metal carrier (diameter:
800 µm, length: 2 mm) to load the magnetic liquid metal, and a helical blade designed for
propulsion (Figure 9). Based on prior experimental results, the microtube was designed
with optimized lengths for the inner and outer bubbles (1.0 and 0.3 mm, respectively) to
maximize drug release.
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The propulsion of microrobots using rotating magnetic fields is advantageous for
efficient propulsion in high-viscosity, low-Reynolds-number environments, and this is
being utilized by many research groups [30–33]. For propulsion within a rotating magnetic
field, the shape of the microrobot is designed to be helical, converting rotational motion
into translational motion. The propulsion efficiency is maximized when the helical blade on
the robot body has a pitch angle of 45◦ [47]. Therefore, in this study, we designed the blades
on the microrobot’s body with reference to the results of previous research (Figure 9a).
Next, a magnetic liquid metal was fabricated for the magnetic actuation of the microrobot.
Gallium-based liquid metal simultaneously exhibits the properties of metal and the fluidity
of a liquid, notably providing the potential for infinite shape deformation. However, it
easily oxidizes in oxygen-rich environments and does not exhibit magnetic properties. To
solve this problem, a magnetic liquid metal was fabricated that prevents oxidation and
possesses magnetic properties. The magnetic liquid metal was fabricated by triggering
the intercalation chemical reaction of liquid metal with Fe particles (diameter: 5 µm) and
HCl solution (37 wt %) [48]. Through this process, a magnetic liquid metal coated with Fe
particles on its surface was fabricated (Figure 9(b1–b3)). The fabricated magnetic liquid
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metal was loaded into the lower carrier of the microrobot, allowing the microrobot to be
transported by a magnetic field (Figure 9c). Finally, Figure 9d shows the fabrication of the
designed microrobot using ultra-precision 3D-printer-based microfabrication technology
(microArchTM S240, Jive Solutions Co., Hwasong, Republic of Korea). The microrobot was
fabricated using medical-grade resin and deposited with parylene-C to enhance biocom-
patibility, making it suitable for various applications, including medical devices and the
biomedical field [49,50].

Figure 10 shows the experimental results to verify the magnetic actuation of the mag-
netic liquid metal. A circular-shaped permanent magnet (NdFeB) was used to manipulate
the magnetic liquid metal using a magnetic field. In this study, the magnetic flux density
applied to the microrobot was recorded at 300 gauss as measured with a gauss meter
(Model SG-9115, Segye Scientific Co., Ltd., Seongnam, Republic of Korea). As the distance
between the permanent magnet and the microrobot increased, the magnetic field density
decreased, which tended to reduce the movement of the microrobot. A microrobot was
placed on top of a slide glass (thickness: 0.1 mm) and a permanent magnet on the bottom,
and the microrobot was moved horizontally via the movement of the magnet to verify the
transport of the magnetic liquid metal by the magnetic force. In future studies, we plan to
conduct investigations into wireless propulsion methods using electromagnetic forces and
to perform transporting experiments of microrobots in experimental fluids with a viscosity
similar to blood.
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3.6. Experimental Demonstrations

As a proof of concept, the proposed targeted drug delivery technology was demon-
strated using the fabricated microrobot in a Y-shaped channel filled with water (Figure 11).
The microrobot, loaded with magnetic liquid metal, was first transported to the target
tissues through magnetic actuation (Figure 11(a1–a3)). Subsequently, an acoustic wave was
applied to the inner bubble embedded in the microtube, and the outer bubble was pushed
out by the oscillation of the inner bubble. This action released the drug. Following the drug
release, the remaining inner bubble induced a microstreaming flow, leading to the diffusion
of the drug (Figure 11(b1–b3)).
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Figure 11. Sequential snapshots of the proposed targeted drug delivery technology: (a1–a3) magnetic
actuation of a fabricated microrobot in a Y-shaped channel filled with water; (b1–b3) drug manipula-
tion (carrying and releasing) by acoustically controlling bubbles embedded in the microrobot.

4. Conclusions

This study introduces a novel microrobot for multiphase drug delivery that combines
acoustic bubbles and magnetic actuation to enhance efficiency. We experimentally validated
magnetic actuation for transporting microrobots to target tissues and acoustic bubble
actuation for effective drug delivery. To confirm the drug release principle, we visualized
the flow patterns generated by the oscillating inner and outer bubbles within the microtube.
As a result, drug release was confirmed due to the interaction between the two bubbles.
We investigated the oscillation properties of the inner bubble within the microrobot while
considering the physical properties of the embedded bubble and the experimental fluid.
The results show that as the length of the bubble and the viscosity of the experimental
fluid increased, the oscillation amplitude of the inner bubble decreased, experimentally
confirming the difficulties of drug release. Experiments were conducted on the release of
multiphase drugs with different physical properties using acoustic bubbles. The natural
frequency of the inner bubble was applied for drug release, and the proposed technology
was experimentally validated by demonstrating drug release in liquid (Pb(NO3)2) and solid
(glass beads) phases. Finally, we verified the magnetic actuation of a microrobot loaded
with magnetic liquid metal by utilizing a microrobot fabricated through ultra-precision
3D-printing-based microfabrication technology. Subsequently, by acoustically exciting the
inner bubble, we successfully released the encapsulated drug, providing experimental
validation for the proposed targeted drug delivery technology. This innovative technology
enables the simple control of various multiphase drugs (solid- and liquid-phase) using a
straightforward microrobot structure. In addition, it can enhance drug delivery efficiency
by utilizing a drug delivery method using microrobots with fewer side effects, in contrast
to traditional methods such as oral or intravenous injection. The proposed technology
holds promise not only for targeted drug delivery but also for applications across various
biomedical fields, including minimally invasive surgery and cell manipulation.
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