
Citation: Wang, M.; Ding, J.; Deng, B.;

He, S.; Iu, H.H.-C. Coexisting Firing

Patterns in an Improved Memristive

Hindmarsh–Rose Neuron Model

with Multi-Frequency Alternating

Current Injection. Micromachines 2023,

14, 2233. https://doi.org/10.3390/

mi14122233

Academic Editor: Zhongrui Wang

Received: 1 November 2023

Revised: 4 December 2023

Accepted: 7 December 2023

Published: 12 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Coexisting Firing Patterns in an Improved Memristive
Hindmarsh–Rose Neuron Model with Multi-Frequency
Alternating Current Injection
Mengjiao Wang 1,* , Jie Ding 1, Bingqing Deng 1, Shaobo He 1 and Herbert Ho-Ching Iu 2

1 School of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China;
202221623094@smail.xtu.edu.cn (J.D.); dengbq1997@163.com (B.D.); heshaobo@xtu.edu.cn (S.H.)

2 School of Electrical, Electronic and Computer Engineering, University of Western Australia,
Crawley, WA 6009, Australia; herbert.iu@uwa.edu.au

* Correspondence: wangmj@xtu.edu.cn

Abstract: With the development of memristor theory, the application of memristor in the field of
the nervous system has achieved remarkable results and has bright development prospects. Flux-
controlled memristor can be used to describe the magnetic induction effect of the neuron. Based
on the Hindmarsh–Rose (HR) neuron model, a new HR neuron model is proposed by introducing
a flux-controlled memristor and a multi-frequency excitation with high–low frequency current
superimposed. Various firing patterns under single and multiple stimuli are investigated. The model
can exhibit different coexisting firing patterns. In addition, when the memristor coupling strength
changes, the multiple stability of the model is eliminated, which is a rare phenomenon. Moreover, an
analog circuit is built to verify the numerical simulation results.

Keywords: flux-controlled memristor; magnetic induction; Hindmarsh–Rose neuron model; coexisting
firing pattern

1. Introduction

Neurons are the basic unit of the nervous system structure, and information is transmit-
ted in the nervous system in the form of electrical pulses. The earliest neuron model is the
Hodgkin–Huxley (HH) neuron proposed in 1952 [1]. Subsequently, the FitzHugh–Nagumo
(FHN) neuron model [2], Morris–Lecar (ML) neuron model [3], HR neuron [4], and Hop-
field neural network [5], which are derived from the HH neuron model, were gradually
proposed. In recent decades, the dynamic behavior based on various neuron and neural
network models has been studied. Among them, HR neurons can effectively simulate the
electrical activities in the brain [6]. Many biological neural electrical activity phenomena
such as silence, spiking firing, bursting firing, periodic oscillation, and even simple chaos
have been verified in the neural model. To study the influence of parameter variation on
the firing patterns of neural nonlinear dynamical system, an improved Hindmarsh–Rose
neural nonlinear dynamical system model was proposed in [7]. Various firing patterns of
neurons can also be observed by changing the initial conditions as discussed in [8], which
indicates the memory effect of the neuronal system. The study of firing patterns and chaotic
dynamics in neurons has gradually become a popular issue in the international academic
community [9].

Furthermore, with the continuous development of memristor theory, the application
of memristor in many fields has achieved remarkable results and has bright development
prospects [10–14]. It has developed rapidly in the fields of memristor neurons and neural
network dynamics. When a neuron is stimulated by electromagnetic radiation, it will accu-
mulate magnetic flux on the cell membrane to generate a magnetically induced current,
and the memristor correlates the relationship between magnetic flux and electric charge.
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Therefore, the flux-controlled memristor can be used to describe the magnetic induction
effect, in order to establish a neuron or neural network model affected by electromagnetic
radiation. At present, the research on using flux-controlled memristor to describe the elec-
tromagnetic induction phenomenon on the cell membrane has gradually emerged. A new
three-dimensional memristive HR neuron model is reported in [15]. The HR neuron model
can show a discrete memristor initial offset boosting behavior, with an infinite number of
discontinuous attractors. By changing the initial value of memristor, the generated firing
patterns can be boosted to different discrete levels. In [16], the memristive HR neuron
model operates in hidden bursting firing patterns when using an electromagnetic induction
current generated by the threshold memristor to replace the external current. The applica-
tion of locally active memristor in a neuron model has gradually emerged [17–20]. Ref. [21]
proposed a new type of locally active and non-volatile memristor, and it was used as a con-
necting autapse, so that both the firing pattern and multistability can be observed. Ref. [22]
proposed a new neuron model based on a simple structure and excellent characteristics
with a locally active memristor, which can exhibit more complex firing behaviors within
the locally active region. Ref. [23] coupled 2D HR neurons to a 3D Hopfield neural net-
work using a memristor as a synapse, in which multiple firing patterns and multistability
were observed. Additionally, multistable coexistence is common in chaotic systems, and
it needs to be eliminated in certain situations [24,25]. For this reason, by introducing a
memristor into the HR model, an interesting phenomenon of multistability disappearance
can be found when the memristor coupling strength changes, which is rarely reported in
previous studies.

For various changes in the internal and external environments of the body, neurons
encode, transmit, and decode the information in different firing patterns (the presence or
absence of action potential, frequency, peak, etc.). Different external stimuli cause different
neural firing patterns and lead to different physiological effects [26–29]. In fact, a neuronal
cell can be thought of as a signal processor that can receive multiple signal inputs at
the same time. Strong stimulation can input enough energy to induce mode transition,
and the angular frequency can slightly modulate the firing rhythm at a certain intensity.
Multiple signal inputs can be equivalent to coherence resonance [30,31]. In addition, the
high–low frequency signal is widely used in neuron models. In [32], the mode transition of
electrical activities in neurons can be investigated when an electrical stimulation with a
high–low frequency current is injected into a new HR neuron model. As discussed in [33],
an improved HR neuron model with the periodic high and low frequency electromagnetic
radiation and the Gaussian white noise is constructed to explore the modes transition in the
electrical activities of neurons. Based on the above ideas, this paper proposed a memristive
HR model with multi-frequency AC injection. Under the effect of both the single and
double excitation signals, we find that the improved model possesses a property of the
coexistence of different firing patterns. In addition, the multistability of the model will be
eliminated when the memristor coupling strength k changes.

The rest of this paper is organized as follows. An improved memristive HR neuron
model with multi-frequency AC injection is constructed in Section 2, and the stability of
the equilibrium points is studied. Section 3 discusses the dynamical behaviors under single
excitation, and the influence of the memristor coupling strength is also illustrated. Different
firing patterns under high–low frequency current are determined in Section 4. The analog
circuit is designed in Section 5, and a summary of the full paper is given in Section 6.

2. Model Description

In recent years, memristors have developed rapidly in the fields of neurons and neural
network dynamics. Memristor neuron network dynamics is a new interdisciplinary subject.
When neuron membrane potential is affected by the external magnetic field, induced current
will react on the neuron membrane potential. This kind of influence can be described by a
flux-controlled memristor [34].
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The HR model is a neuron model [4] described by a set of ordinary differential equa-
tions with cubic nonlinear terms, and it can be described as{

ẋ = y + ax2 − bx3 + I
ẏ = c− dx2 − y

(1)

where x and y denote the membrane potential, and the recovery variable of the neuron,
respectively. a, b, c, and d are positive parameters. I represents the external input current.
A simple generalized flux-controlled memristor model is described as

i = W(ϕ)v
W(ϕ) = α + βϕ2

dϕ
dt = v− ϕ

(2)

where v and i are the input voltage and output currents of the memristor, respectively, ϕ is
the magnetic flux indicated as the state variable, W(ϕ) is the flux-controlled conductance,
and α and β are constant. In this paper, α and β are set to 0 and 0.01, respectively.

By introducing the flux-controlled memristor and injecting two external alternating
currents (ACs), an improved memristive HR neuron model with multi-frequency AC
injection was constructed as follows

ẋ = y + 3x2 − x3 + kW(ϕ)x + I1+I2
ẏ = 1− 5x2 − y
ϕ̇ = x− ϕ

(3)

where I1 = A1 sin(2π f1t), I2 = A2 sin(2π f2t), parameters a = 3, b = 1, c = 1, d = 5, and
k is the memristor coupling strength. x and y denote the membrane potential and the
recovery variable of the neuron, respectively.

The equilibrium point of the proposed improved memristive HR neuron model can be
obtained by setting the left side of the Equation (3) as equal to zero

0 = y + 3x2 − x3 + kW(ϕ)x + I1+I2
0 = 1− 5x2 − y
0 = x− ϕ

(4)

From 1− 5x2 − y = 0 and x − ϕ = 0, we know that y = 1− 5x2, x = ϕ. Next, let
x = η and the equilibrium point be set to E. Thus, the equilibrium point can be given by

E = (η, 1− 5η2, η) (5)

Then, we can substitute E, α = 0, and β = 0.01 into y + 3x2 − x3 + kW(ϕ)x + I1+I2 = 0,
and the value of η is determined by the real root of the equation

P(η) = (0.01k− 1)η3 − 2η2 + 1 + I1 + I2 = 0 (6)

According to the Cardan discriminant, if there is an equation of f (x) = ax3 + bx2 +
cx + d = 0 and a 6= 0, then p, q, and ∆ can be defined as

p = 3ac−b2

3a2

q = 27a2d−9abc+2b3

27a3

∆ = q2

4 + p3

27

(7)

Then, for the AC-induced HR neuron model proposed in this paper, p = −4
3(0.01k−1)2

q = I1+I2+1
0.01k−1 −

16
27(0.01k−1)3

(8)
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Generally, there are three solutions for Equation (6), which can be given by
η1 = 3

√
− q

2 +
√

∆ + 3
√
− q

2 −
√

∆ + 2
3(0.01k−1)

η2 = − 1−
√

3i
2

3
√
− q

2 +
√

∆− 1+
√

3i
2

3
√
− q

2 −
√

∆ + 2
3(0.01k−1)

η3 = − 1+
√

3i
2

3
√
− q

2 +
√

∆− 1−
√

3i
2

3
√
− q

2 −
√

∆ + 2
3(0.01k−1)

(9)

The discussion is divided into three situations. If ∆ > 0, there is only one real root foot
for Equation (6). If ∆ < 0, there are three real root feet for Equation (6). If ∆ = 0, there are
two real root feet for Equation (6) [31].

The Jacobian matrix at the equilibrium point E can be deduced as

JE =

 6η − 3η2 + 0.01kη2 1 0.02kη2

−10η −1 0
1 0 −1

 (10)

The eigenvalues can be obtained by solving the characteristic polynomial

P(λ) = det(1λ− JE) = λ3 + m1λ2 + m2λ + m3 = 0 (11)

where
m1 = 1

100 (200− 600η + 300η2 − kη2),
m2 = 1

100 (600η2 − 4kη2 − 200η + 100),
m3 = 1

100 (400η + 300η2 − 3kη2).
(12)

The stability of the equilibrium point can be judged by the magnitude of λ. When the
real parts of all eigenvalues λ are negative, the equilibrium point of the system is stable,
and the solution of the system tends to the equilibrium point. When the real parts of all
eigenvalues λ are positive, the equilibrium point is unstable and the solution of the system is
far from the equilibrium point. When the real part of the eigenvalue λ is positive or negative,
the equilibrium point is called the saddle point and is unstable. When k is set to 1, A1 and
A2 are set to 1, and f1 and f2 are set to 0.05; Figure 1 shows the trajectory of the parameter
η, the real part of the eigenvalues λ1, λ2, and the partial real part of the eigenvalues λ3
changing with time. It is obvious that, with the evolution of time, λ1 jumps between positive
and negative, resulting in the changing stability of the equilibrium. The stability of the
equilibrium under these parameters during the whole time interval (5, 25) of a period of
I1 + I2 is discussed in Table 1 in detail. The type of equilibrium will change over time, which
shows that the injected AC in the HR model can generate complex dynamic behaviors.

t

A1 = A2 = 1

f1 = f2 = 0.05

Figure 1. The η-values of the equilibrium point E and the corresponding eigenvalues λ1, λ2, λ3, with
the time evolutions.
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Table 1. The equilibrium point E, three eigenvalues, and its stability for A1 = A2 = 1, f1 = f2 = 0.05.

t Equilibrium λ1, λ2 and λ3 Stability

5, 25 (1, −4, 1) λ1,2 = 1.005± 2.4413i, λ3 = −1 Unstable
11.64, 18.34 (−2.02, −19.402, −2.02) λ1 = −0.1505, λ2 = −25.1599, λ3 = −1 Stable

15 (−2.22, −23.642, −2.22) λ1 = −0.1995, λ2 = −28.8564, λ3 = −1 Stable

3. AC-Induced Complex Dynamical Behaviors under Single Excitation

In this section, when a single excitation I1 is considered and I2 is set to 0, the proposed
model can exhibit complex dynamic behaviors which can be discussed in different aspects.
It is worth mentioning that the MATLAB ODE45 algorithm is used to draw the phase
diagrams, maximum Lyapunov exponent, bifurcation diagrams, and time evolutions.

Phase diagrams, bifurcation diagrams, and Lyapunov exponent diagrams are important
tools in the study of chaos. The phase space structure of a chaotic system can be observed
in the phase diagram, which can help acquire an in-depth understanding of the dynamic
behavior of the system. In addition, the structure of the chaotic system is unstable, and any
small appropriate disturbance will cause a sudden change in the topological structure of
the system. This sudden change is called bifurcation, and we can observe the bifurcation
situation of the system from the bifurcation diagram. The positive Lyapunov exponent is an
important characteristic of a chaotic system. When the Lyapunov exponent is greater than 0,
the system is chaotic.

3.1. Coexisting Asymmetric Firings When A1 Changes

Setting the parameter k as 1, and f1 as 0.5, take A1 as a bifurcation parameter within
the range of (0, 8). The bifurcation diagram with respect to A1 is numerically simulated by
the MATLAB ODE45 algorithm in Figure 2a, in which (5, 0, 0) and (−5, 0, 0) are the initial
values of the red and blue trajectories, respectively. And, the corresponding maximum
Lyapunov exponent graph is shown in Figure 2b, which is consistent with the bifurcation
diagram. As can be seen from Figure 2, the presented neuron model (3) shows a reverse
period-doubling bifurcation under the initial condition of (−5, 0, 0), while the neuron
model is always in a stable periodic state under the initial condition of (5, 0, 0).
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Figure 2. The improved memristor HR neuron model’s coexistence asymmetric attractor behavior for
the initial values (−5, 0, 0) and (5, 0, 0) with respect to the following parameters A1: (a) Bifurcation
diagram; and (b) Maximum Lyapunov exponent.

Choose several representative values of A1 to observe the coexisting behaviors of
asymmetric firings. Then, the phase plane orbits corresponding to different values of A1 are
shown in Figure 3. When A1 = 0.1, the time sequence exhibits a coexistence of fixed-point
and chaotic spiking firing under the symmetric initial conditions of (−5, 0, 0) and (5, 0, 0).
The corresponding phase diagram and time series are drawn in blue and red, which are
shown in Figure 3a and Figure 3b, respectively. When A1 = 3, as shown in Figure 3c,d,
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the coexistence of chaotic bursting firing with multiple spikes and periodic limit cycles is
found in this improved HR model. It can be seen from Figure 3e,f that, when A1 = 5.5, the
coexistence of the periodic spiking firing and periodic limit cycles is found.
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Figure 3. Coexisting firing patterns with different values of A1: (a) Phase diagram when A1 = 0.1;
(b) Time sequences when A1 = 0.1; (c) Phase diagram when A1 = 3; (d) Time sequences when
A1 = 3; (e) Phase diagram when A1 = 5.5; and (f) Time sequences when A1 = 5.5.

3.2. Coexisting Firing Patterns When f1 Changes

Set the parameter k as 1, A1 as 3, take f1 as a bifurcation parameter within the range
of (0.01, 0.1), and the initial conditions are (−5, 0, 0). Then, the bifurcation diagram and
maximum Lyapunov exponent are depicted in Figure 4a and Figure 4b, respectively. It can
be seen from Figure 4 that the improved HR model has rich dynamic behaviors including
chaos, period, periodic windows, crisis scenario, and so on. The maximum Lyapunov
exponent is greater than zero. which means that the model is in a chaotic state. Obviously,
the chaotic region is small in this range, and there is no coexistence phenomenon in this
range. Then, a larger range is chosen, and when f1 is in the range of (0.1, 1), the coexistence
phenomenon appears in the partial region of (0.438, 1), and the bifurcation diagrams under
different initial conditions are depicted in Figure 5a. In contrast to Figure 4, there is a
larger chaotic range in Figure 5, and the maximum Lyapunov exponent spectra shown in
Figure 5b is consistent with the bifurcation diagram.
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Figure 4. Bifurcation diagram and maximum Lyapunov exponent spectra with respect to f1 in the
range of (0.01, 0.1): (a) Bifurcation diagram; and (b) Maximum Lyapunov exponent.
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Figure 5. The improved memristor HR neuron model’s coexistence asymmetric attractor behavior for
the initial values of (−5, 0, 0) and (5, 0, 0) with respect to the following parameters f1: (a) Bifurcation
diagram; and (b) Maximum Lyapunov exponent.

3.3. Influence of Coupling Strength k on Dynamics

As we all know, multistability depends on the initial condition of the systems, and
is a common phenomenon in dynamical systems. However, sometimes it is necessary to
avoid multistability when designing commercial devices with certain special characteristics,
which often brings an inconvenience to the design. In this study, through numerical
simulation, it can be found that the coexistence phenomenon can be eliminated when k is
less than −6.9. This is an interesting phenomenon which is rarely reported before. Details
are discussed below.

When A1 is equal to 3 and f1 is equal to 0.5, set k = −7, for which the phase diagrams
and corresponding time series are shown in Figure 6, where the initial condition of the
blue track is (−5, 0, 0) and the initial condition of the red track is (5, 0, 0). It is evident
that the blue trajectory is in a state of chaotic bursting fire during the whole time range,
while the red trajectory enters into chaotic bursting fire from the periodic orbit when t is
approximately equal to 270. Similarly, when k = −10, and f1 = 0.5, A1 = 0.1, as shown in
Figure 7, the blue trajectory is always in a state of spiking while the red trajectory enters
into the spiking state after t = 200. It can be seen from these two sets of parameters that
the memristor coupling strength k can eliminate the coexistence phenomenon with the
time evolution when k is less than −6.9 and the proposed neuron model will eventually
enter into a stable state under any initial conditions. This phenomenon makes a great
contribution to multistability control.
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Figure 6. For the initial values (−5, 0, 0) (blue track) and (5, 0, 0) (red track), the coexisting firing
patterns are eliminated at t = 270 when k = −7: (a) phase diagram; and (b) time series.
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Figure 7. For initial values (−5, 0, 0) (blue track) and (5, 0, 0) (red track), the coexisting firing patterns
are eliminated at t = 200 when k = −10: (a) Phase diagram, (b) Time series.

4. Different Firing Patterns Are Driven by High–Low-Frequency Current

The application of two frequency signals is rife in neural systems, and it plays a
significant role in the biological field, such as that the neural cell behaviors under high–low-
frequency ultrasonic irradiation can be examined. Then, the dynamical behaviors under
high–low-frequency current are worth discussing. In this section, f1 is regarded as a high-
frequency electromagnetic radiation, and f2 is regarded as a low-frequency electromagnetic
radiation. When k = 1, A1 = A2 = 3, and f1 = 0.5, the initial condition is (−5, 0, 0), with
the increase in low frequency f2, the electrical activities of the HR neuron are investigated
in Table 2. When f2 = 0.002, the model presents a periodic bursting firing pattern with
chaotic spiking per bursting, and when f2 = 0.02, there is a periodic bursting firing pattern
with three spikes per bursting. When f2 = 0.04, a period-2 spiking pattern is found, and
the model presents a chaotic spiking pattern when f2 = 0.07. The three corresponding
three Lyapunov exponents are also calculated in Table 2. Obviously, the quiescent state
between the two bursts becomes shorter as the frequency increases. These different mode
transitions can be achieved by adjusting the value of f2.
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Table 2. Different firing patterns under low frequency f2.

LEs f2 Firing Patterns

LE1 = −0.0536
LE2 = −1.0056
LE3 = −16.7675

f2 = 0.002
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LE2 = −1.0062
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x

LE1 = −0.0129
LE2 = −1.0062
LE3 = −16.8427
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LE1 = 0.0276
LE2 = −1.0065
LE3 = −14.0263

f2 = 0.07
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x

5. Circuit Implementation

To prove that multiple firing patterns of the HR neuron model under the multi-
frequency AC injection can be realized in hardware circuits, we carry out circuit implementa-
tion. In this section, the circuit schematic will be analyzed and designed. The amplifiers and
the multipliers are selected as UA741 and AD633JN. They are both under the supply voltage
±15 V. And, the gain of the multiplier is 0.1. In order to complete the circuit implementation,
the following transformation is taken out. Let τ = τ0t where the integral constant τ0 is the
time-scaling factor and τ0 = 1

RC= 10,000. Set C = 50 nF, then R can be solved as 2 kΩ.
To verify the MATLAB simulation results, the circuit schematic was designed in

Figure 8. When k = 1, the circuit equivalent equation derivation process is:

1. Variable-scale reduction transformation. Since the range of the attractor does not
exceed the dynamic range of ±13 V, variable-scale reduction transformation of variety
is not required.

2. Time-scale transformation:
dx

d(τ0t) =
R7

10R1
x2 + R7

R2
y− R7

100R3
x3 + R7

10R4
W(ϕ)x + R7

R5
I1 +

R7
R6

I2
dy

d(τ0t) =
R11
R9
− R11

10R8
x2 − R11

R10
y

dϕ
d(τ0t) =

R14
R12

x− R14
R13

ϕ

(13)

3. Differential–integral conversion:
x = 1

RC
∫
[ R7

10R1
x2 + R7

R2
y− R7

100R3
x3 + R7

10R4
W(ϕ)x + R7

R5
I1 +

R7
R6

I2]dt
y = 1

RC
∫
[ R11

R9
− R11

10R8
x2 − R11

R10
y]dt

ϕ = 1
RC
∫
[ R14

R12
x− R14

R13
ϕ]dt

(14)
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4. Because the inverse addition proportional arithmetic unit is used in the circuit, the
Equation (14) is normalized to:

x = 1
RC
∫
[ R7

10R1
(−x)x + R7

R2
(−y)− R7

100R3
x3 + R7

10R4
W(ϕ)(−x) + R7

R5
I1 +

R7
R6

I2]dt
y = 1

RC
∫
[ R11

R9
− R11

10R8
x2 − R11

R10
y]dt

ϕ = 1
RC
∫
[ R14

R12
(−x)− R14

R13
ϕ]dt

(15)

where the memductance function equivalent circuit is

W(ϕ) =
Ro

10R15
ϕ2 (16)

In order to make the values of resistances as integral as possible, set R7 = 300 kΩ and
R11 = R14 = 100 kΩ. Then, by comparing the corresponding coefficients in Equation (15)
with Equation (3), all the values of the circuit parameters can be obtained in Table 3 in detail.
Finally, the multisim simulation is constructed based on the component parameters above.
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Figure 8. Circuit implementation of the improved memristive HR neuron model.

Table 3. Circuit parameters of the improved HR neuron model.

Parameters Significations Value

R, R8 Resistance 2 kΩ
R3 Resistance 3 kΩ

Ro, R1 Resistance 10 kΩ
R4 Resistance 30 kΩ

R9, R10, R11, R12, R13, R14, R15 Resistance 100 kΩ
R2, R5, R6, R7 Resistance 300 kΩ

C Capacitor 50 nF

When only the external current I1 is connected to the circuit, and the amplitude A1 is
3 and 5.5, respectively, the frequency f1 is equal to 5 kHz. Then the corresponding phase
diagrams in the oscilloscope are shown in Figure 9. When A1 is equal to 3, a chaotic bursting
firing pattern is obtained, and when A1 is equal to 5.5, a periodic spiking firing pattern is
obtained which is completely consistent with the numerical simulation in Figure 3. The
circuit of two external currents is also constructed. Set the amplitudes A1 = A2 = 3 and
f1 as 5 kHz, then adjust the value of f2 to 20 Hz, 200 Hz, 400 Hz, and 700 Hz. The time
series in the oscilloscope are shown in Figure 10. These are a periodic bursting fire pattern
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with chaotic spiking per bursting; a periodic bursting fire pattern with periodic-3 spiking
per bursting; a periodic-2 spiking firing pattern; and a chaotic spiking firing pattern. The
numerical simulation results are verified accurately through analog circuit simulation.
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Figure 9. Phase diagram of circuit simulation: (a) Chaotic bursting; and (b) Periodic spiking.

(a) (b)

(c) (d)

Figure 10. Time series under different f2: (a) f2 = 20 Hz; (b) f2 = 200 Hz; (c) f2 = 400 Hz; and
(d) f2 = 700 Hz.

6. Conclusions

In this paper, we constructed an improved memristive HR neuron model with multi-
frequency AC injection. Then, the equilibrium of the model is analyzed. When the model
is under single excitation, it can produce the coexistence of different firing patterns. With
the introduction of the memristor, it can be found that the multistability of the model is
eliminated when the memristor coupling strength k is less than −6.9. Additionally, when
the external current is a high–low frequency excitation, the system can exhibit different
kinds of firing patterns under the changing low frequency. Finally, the circuit experiment is
carried out to verify the validity of the numerical simulation results.
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