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Abstract: Microsystems are widely used in 5G, the Internet of Things, smart electronic devices and
other fields, and signal integrity (SI) determines their performance. Establishing accurate and fast
predictive models and intelligent optimization models for SI in microsystems is extremely essential.
Recently, neural networks (NNs) and heuristic optimization algorithms have been widely used
to predict the SI performance of microsystems. This paper systematically summarizes the neural
network methods applied in the prediction of microsystem SI performance, including artificial neural
network (ANN), deep neural network (DNN), recurrent neural network (RNN), convolutional neural
network (CNN), etc., as well as intelligent algorithms applied in the optimization of microsystem
SI, including genetic algorithm (GA), differential evolution (DE), deep partition tree Bayesian op-
timization (DPTBO), two stage Bayesian optimization (TSBO), etc., and compares and discusses
the characteristics and application fields of the current applied methods. The future development
prospects are also predicted. Finally, the article is summarized.

Keywords: microsystem; signal integrity; neural network; optimization algorithms

1. Introduction

With the development requirements of 5G, Internet of Things (IoT), and artificial
intelligence (AI) for intelligent and high-performance electronic systems, electronic systems
are developing towards high performance, miniaturization, and intelligence, and have been
widely used in high-performance computing, smart medical care, autonomous driving,
IoT, smart wear and additional devices [1–5]. However, as the miniaturization of feature
size gradually approaches the atomic limit, the principle of improving chip performance
along Mole’s law gradually fails [6–8]. Microsystem technology based on advanced pack-
aging is the latest effective means to promote the development of electronic systems to
superior performance and miniaturization [9–11]. Vijayara-ghavan et al. [12] proposed
a high-performance computing microsystem based on 3D integration technology, inte-
grating a CPU, GPU and DRAM to achieve high throughput and efficient computing.
Zaruba et al. [13] used advanced packaging technology to integrate computing cores with
high-bandwidth memory into a high-performance memory microsystem with 25% lower
power consumption than NVIDA Volta. Burd et al. [14] designed a computing microsystem
through advanced packaging technology, with a bandwidth up to 256 GB/s and an energy
efficiency of only 1.2 pj/bit. Vivet [15] et al. designed a high-performance computing
microsystem based on a variety of processes. The designed microsystem has a 96-core
processor and a signal delay of less than 0.6 ns/mm. Fotouhi et al. [16] designed a RF
receiving and transmitting microsystem based on three-dimensional integration technology,
integrating a coupler, transceiver, array waveguide grating router, etc., which improved the
computing performance by 23% and reduced the power consumption by 30%. Based on
3D integration technology, Shulaker et al. [17] proposed a microsystem integrating storage,
computing, and sensors to realize high-performance information processing. Tang et al. [18]
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designed a MEMS gravimeter to achieve extreme sensitivity and a large dynamic range
through a suspension design and optical displacement transducer. Yan et al. [19] designed
a large capacitance trimethylamine sensor with linear sensitivity in the test concentration
range, and developed a prototype sensor based on Co3O4@ZnO. Han et al. [20] used a re-
current neural network approach for noise reduction of 3D axial gyroscopes. Gao et al. [21]
designed a MEMS filter with a highly robust loan expansion capability by matching the
network to broaden and enhance the out-of-band suppression, and applied an aluminum
nitride S0 Lamb wave resonator into the filter to improve the loan expansion capability.
In the design of microsystems, the high density integration of multiple chips through
advanced packaging and high frequency effects, as well as the parasitic differences of
different signal paths, lead to difficulties in the design of low-latency group signals. At the
same time, in a narrow volume, the parasitic effects of the signal path and the microwave
device are more complex and the coupling effects are more pronounced, which makes
it difficult to extract the mapping between the signal path design parameters and the
signal transmission quality. Park et al. [22] proposed a 192-Gb 896-GB/s 12-high stacked
third-generation high-bandwidth memory, and proposed a layout technology based on
deep learning to minimize the signal delay deviation, and the proposed method improves
the maximum read operation time margin by 33%. Mohammadian et al. [23] designed an
optical XOR logic gate based on a ring resonator and a micro-electromechanical system
(MOEMS), and established a finite element model of the optical ring resonator to improve
the wavelength shift. Rochus et al. [24] proposed a nonlinear mechanical and optical loss
of micro-optical mechanical pressure sensor fast modeling method, considering the strong
coupling nonlinear mechanics model, and analyzed the location based on the membrane
size, residual stress, waveguide, optical wavelength and optical machine coupling effect on
the phase rule. TAGHAVI et al. [25] proposed a kind of MOEMS cloth interferometer based
on a closed-loop accelerometer, as the the design of closed-loop MOEMS accelerometer has
a wider measuring range and higher sensitivity.

The system is greatly reduced in size and integrated with multiple components.
Although the system performance is greatly improved, the resulting signal crosstalk, mul-
tiscale, multi-field coupling, and other issues make the signal integrity (SI) design more
complex and time-consuming. In order to ensure the transmission quality of the key signals
of the system, SI has always been the research direction of researchers [26,27]. The intercon-
nect structure and microwave devices are key components for critical signal transmission,
and the quality of their SI directly determines the performance of the system [28]. The
researchers achieved the goal of high-quality signal transmission by modeling, simulating
and optimizing the structure of the interconnection structure and microwave device [29–33].
Approaches to model building fall into two broad categories. The first approach is a de-
tailed model, such as an electromagnetic (EM) model and a finite element model (FEM) [34].
The model is guided by perfect theoretical knowledge, and the established model is ex-
tremely accurate, but its computational cost is extremely steep. The second approach is
the approximate modeling method [35]. By building empirical models of interconnect
structures and microwave devices, or based on equivalent circuit models, the established
models simplify the parasitic effects and are quick to compute, but the accuracy is low.
As the system frequency increases and the system shrinks, the resulting high-frequency
signal crosstalk and multi-field coupling effects exponentially increase the complexity of
the SI design. Based on traditional methods such as Monte Carlo, statistics, and worst-case,
which additionally exacerbate the shortcomings of EM models and equivalent models [36],
in order to improve the efficiency of microsystem SI modeling and simulation, a rapid and
accurate microsystem SI analysis method is urgently required.

In recent years, AI, as a modern discipline, has been widely used in performance
prediction [37–40], floor planning [22,41,42], collaborative optimization [43–45], image
recognition [46–49], defect detection [50–53], micromanufacturing processes [54,55] and
other aspects of research, and has been successfully applied in microsystem SI design.
The application of artificial intelligence methods to microsystem design is commonly
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divided into four steps [56]: (1) clarify the problem to be solved, determine the design
parameters and performance parameters; (2) obtain data; (3) establish a neural networks
model and use the acquired data to train neural networks to achieve performance pre-
diction; and (4) optimize the performance through an intelligent optimization algorithm.
Among them, performance prediction and performance optimization are two of the most
crucial components of AI approaches in microsystem SI design, but a systematic summary
of the algorithms and corresponding application scenarios is lacking.

This paper focuses on the performance prediction and optimization design of an AI
method in microsystem applications, as shown in Figure 1. The contributions of the present
paper are as follows.

(1) The application of NNs in the prediction of SI performance in microsystems are
summarized;

(2) The application of AI algorithms in the optimization of SI performance in microsys-
tems are summarized;

(3) The characteristics and application scenarios of neural network methods applied to
microsystem signal integrity performance prediction are compared, and the charac-
teristics and application of artificial intelligence algorithms applied to microsystem
signal integrity performance optimization are compared. The above work serves as a
reference for an efficient, fast and intelligent microsystem integration design in the
future.

The subsequent sections of the paper are arranged as follows. Section 2 mainly
introduces the main neural network models applied in the SI design of microsystems,
Section 3 mainly introduces the main intelligent optimization methods applied in the SI
design of microsystems, Section 4 is the discussion and prospects, and finally, Section 5 is
the conclusion.

Figure 1. AI methods of SI design in microsystems.
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2. Fast Prediction of Microsystem Performance by Neural Networks

Neural networks are working structures similar to the human brain, which can
learn the nonlinear mapping relationship between the sampled input and output like
the brain [57]. The structure of a typical neural network typically consists of an input layer,
hidden layers, and an output layer. In the SI design of microsystems, the input layer is
typically the design parameters of the interconnect structure and microwave devices of the
microsystem. There are multiple neural cells in the hidden layer, which are mainly used to
learn the nonlinear mapping relations between the input and output layers. The output
layer is typically a performance parameter that researchers focus on, such as the time-
domain response of a microsystem, frequency-domain response, etc. Depending on the
complexity of the problem under study, the researcher can adjust the number of hidden
layers to adjust the ability of the neural network to learn nonlinear mapping relations.
The more hidden layers, the more complex the nonlinear relationship between the input
and output. Because neural networks have a very strong nonlinear learning ability, they are
widely used in the eye diagram prediction of microsystem interconnection structure [30],
crosstalk analysis [37], frequency domain analysis [58], parasitic parameter extraction [59]
and other fields. The traditional complex and time-consuming EM or FEM can quickly
predict the performance parameters of microsystems [60].

The process of constructing a model for the SI prediction of a microsystem using neural
networks is shown in Figure 2. First, the SI design problem of the microsystem needs to be
defined, and then the EM simulation model of the microsystem SI needs to be constructed
in the HFSS/CST/ADS, and then the design parameters, performance parameters and
the range of design parameters are determined according to the needs of the design
problem. Then, the type of neural network and the structural parameters of the neural
network are determined based on the data characteristics of the type of SI problem, design
parameters, and performance parameters. Then, the experimental design method DoE is
used to generate the data combination between the design parameters and the performance
parameters, the combination of the design parameters and the performance parameters is
obtained through the constructed interconnection structure and the EM simulation model
of the microwave device, and the data are divided into a training dataset, validation set
and test set. Finally, a neural network model trained from the acquired data is used to
construct a neural network rapid prediction model for the SI design of microsystems.

Figure 2. Flow chart of SI prediction model of microsystem constructed by NNs.

Next, neural network architectures that have been successfully applied in the SI design
of microsystems in recent years and their examples are discussed.

2.1. Artificial Neural Network

The artificial neural network (ANN) is a neural network with the simplest structure.
It can learn knowledge of the surrounding environment similar to a brain and store this
knowledge in weights [61]. Its predictive function can be written as follows.

y = f (x) =
M

∑
j=1

k j × G(
N

∑
i=1

wijxi + bj) (1)
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G(x) =
2

1 + e−2x − 1 (2)

where x is the input vector, wij is the full-time connecting the ith input node to the jth hidden
perceptron, and k j is the weight from the jth hidden perceptron to the output node.

For microsystem design, the prediction of the eye diagram of a high-speed interconnec-
tion structure is an essential indicator to evaluate the SI of the microsystem, and numerous
researchers have focused on the prediction of eye height and eye width [57,58]. In order to
solve the problems of time-consuming model establishment by traditional Monte Carlo
method and over-design caused by worst-case design, ANN [57] is applied to the pre-
diction of the eye diagram of an interconnection structure, which is shown in Figure 3a.
The network structure is shown in Figure 3b, which consists of three layers, the input layer,
the hidden layer, and the output layer. Seven key design parameters are considered in the
input layer, namely package impedance Zpkg, PCB trace impedance Zpcb, transmitter mode
upper Zsrc, receiver mode upper Zterm, driver current Is, signal edge rate tr, and device
capacitance Ci. The researchers then obtain a set of simulation or test data that can charac-
terize the mapping between the parameters and performance through orthogonal design
methods, and train artificial neural networks by obtaining data on the relationship between
the parameters and performance. The final input layer has seven nodes, the hidden layer
has twelve nodes, and the output layer has two nodes. The eye height and clock jitter errors
were trained to be 4.5 × 10−5. Finally, the trained neural network is used to predict the eye
height and clock jitter. The results are shown in Figure 3c. The average test errors for eye
height and clock jitter are 0.012 and 0.002, respectively. At the same time, the AI method
can quickly predict the eye map and clock jitter without time-consuming circuit simulation.

At the same time, the problem of signal degradation due to crosstalk between high-
speed interconnected structures becomes particularly relevant [62,63]. In order to solve the
problem that traditional crosstalk analysis requires complete electromagnetic modeling
of the signal transmission path and takes a long time to perform time-domain transient
simulation, multi-layer perceptron neural networks are applied to the crosstalk prediction
of coupled transmission line circuits. First of all, the researchers use ANN to predict the
near-end crosstalk of the coupled strip line, four key design parameters are selected, namely
conductor spacing S, substrate height H, conductor width W and conductor thickness T,
and the output is the near-end crosstalk voltage, then 81 sets of data are sampled by the
DoE method to train the established ANN, and the relationship between the four key
parameters and the near-end crosstalk is trained by the ANN. The performance of the
neural network prediction is R = 0.0075, which indicates that the trained neural network
model has a strong generalization ability.

As the frequency increases, the signal crosstalk between different signal transmission
lines cannot be neglected. On the other hand, ANN is used to predict the crosstalk at the
proximal and distal ends of coupled microstrip transmission lines [37]. First, a physical
model of the microstrip transmission line is constructed, as shown in Figure 3d. In the
microstrip transmission line, six physical parameters and four properties are chosen as the
input and output of the ANN, respectively. The inputs are the substrate height H, conductor
thickness T, conductor width W, spacing S between conductors, conductor length L and
relative dielectric constant Er of the microstrip transmission line, and the outputs are the
maximum near-end crosstalk voltage, the maximum near-end crosstalk occurrence time,
the maximum far-end crosstalk voltage and the maximum far-end crosstalk occurrence
time. ANN is trained, and the result is shown in Figure 3f–h. The correlation coefficient
Rs of maximum near-end crosstalk voltage, maximum near-end crosstalk occurrence time,
maximum far-end crosstalk and maximum crosstalk occurrence time are 0.9424, 0.9330,
0.9524 and 0.8896, respectively, indicating that the established neural networks can properly
characterize the relationship between the parameters and performance.
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Figure 3. (a) Short-channel XDR memory system. Adapted with permission from [57]. (b) Established
ANN model. Adapted with permission from [57]. (c) Eighty-one test cases to verify the approximation
capabilities of the ANN. Adapted with permission from [57]. (d) Geometrical structure of a coupled
stripline. Adapted with permission from [37]. (e) Geometrical structure of a coupled stripline.
Adapted with permission from [37] (f) Testing result of the ANN for crosstalk in striplines. Adapted
with permission from [37]. (g) Maximum near-end crosstalk voltage comparison results. Adapted
with permission from [37]. (h) Comparison of maximum near-end crosstalk occurrence time results.
Adapted with permission from [37].

The microstrip is the other major transmission structure of the microsystem, and its SI
is also crucial for the performance of the microsystem. In order to solve the problem that
it takes time to extract the parasitic parameters of the microstrip transmission line model,
ANN is applied to the rapid prediction of the RLGC matrix of the microstrip line [59].
As shown in Figure 4a, the electromagnetic model includes three sets of difference pairs.
First, it is necessary to determine the modeling parameters, upper and lower bounds,
and performance parameters to be extracted. The physical design parameters chosen for
the six microstrip designs are the width of the wire W, the difference between the pitch S,
the difference between the different pairs of pitch Sp, the height of the preg HP, the height
of the core layer HC, and the relative dielectric constant DK, respectively. Lo, Co, Go, Ro,
Gd, and Rs are chosen as the key performance parameters in the parasitic parameters of
the W model for lossy multi-conductor transmission lines. Since the RLGC matrix of the
microstrip is symmetric and reciprocal, the RLGC matrix can be simplified. Only the 11,
12, 13, 23, and 14 components in the RLGC matrix need to be predicted to represent the
complete 6 × 6 RLGC matrix, so the number of output nodes is 30. Then, 150 sets of
training data are sampled by LHS to train the ANN. The test graph of the six performance
parameters is shown in Figure 4b, and it can be seen that the prediction error of ANN is less
than 5%. Ku et al. [64] proposed an ANN method. First, deterministic and random dither
components are extracted from the eye images, and then vector fitting techniques are used
for preprocessing to reduce the dimensionality of the input data and shorten the training
time. The jitter component of the extreme velocity signal can be efficiently separated by
training both the eye image and the jitter component.
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In the SI design of microsystems, although the general NN method can establish
the mapping relationship between the design parameters and performance parameters of
microsystems, it does not take into account the inherent physical characteristics and elec-
tromagnetic knowledge, which leads to the need for a large amount of data for NNs and re-
duces the modeling efficiency of NNs. In order to solve the above problems, Chen et al. [65]
proposed a knowledge-based NN method to design microwave devices, trained the nine
design parameters of the microstrip filter and its S parameters, used prior knowledge as
the hidden layer of knowledge neurons, and then trained the NN through the particle
swarm optimization algorithm. The microwave filter is designed on this basis. Na et al. [66]
proposed an adaptive algorithm for an automatic model structure for knowledge-based
parametric modeling. L1-norm optimization is used to automatically determine the map-
ping in the knowledge-based model. The proposed method is used to design band-stop
filters and to reduce the modeling time. Zhang et al. [67] proposed a method combin-
ing NN and model order reduction, which solved the problem of pole/zero mismatch
in the modeling of microwave passive devices by NN and improved the modeling accu-
racy. The proposed method was applied to the filter design with an average test error of
only 1.37%.

Figure 4. (a) Target channel for modeling. Adapted with permission from [59]. (b) Validation of
predicted channel RLGC by ANN model. Adapted with permission from [59]. (c) The topology of a
high-speed channel. Adapted with permission from [29]. (d) Model of high-speed channel established
by DNN. Adapted with permission from [29]. (e) Cross-section view of the high-speed channel.
Adapted with permission from [31]. (f) Hierarchical attention-based DNN. Adapted with permission
from [68]. (g) WB-BGA package model. Adapted with permission from [68]. (h) Comparison of EMI
radiation results predicted by DNN model and results measured by far-field experiment. Adapted
with permission from [68].



Micromachines 2023, 14, 344 8 of 24

2.2. Deep Neural Network

As the SI design problem of microsystems becomes more complex, the learning power
of NNs can be improved by increasing the number of hidden layers in order to more
accurately capture the nonlinear mapping between the design parameters and performance
response. Similar to ANN, the structure of a deep neural network (DNN) is divided into
input, hidden and output layers, but the number of hidden layers is increased to h layers.
The relationship between the input layer and the h-th layer can be represented by the
following formula: {

zh
j

}
=
{

xh−1
}[

Wh
]

(3)

where the Lh−1 × Lh matrix [Wh] contains the weights from the h1 layer to the hth layer,
and the output vector xh of the hth hidden layer can be expressed as{

xh
}
= g0(

{
zh
}
+
{

bh
}

) (4)

where g0 is the activation function. bh is the bias of the hth layer.
In the microsystem SI design, DNN is used to predict the eye diagram of the high-speed

channel [29,31,69], and the established high-speed channel model is shown in Figure 4c.
The model of the high-speed channel established by DNN is shown in Figure 4d. Eight
design parameters are used as input, and the eye height and eye width are used as perfor-
mance indicators to evaluate the SI of the high-speed channel. The DNN model is trained
by collecting data, and the training dataset, validation set and test set contain 717, 48 and
476 data, respectively. The established DNN model has three hidden layers, and the three
hidden layers have 100, 300 and 200 nodes, respectively. Finally, the established DNN is
used to predict the eye diagram of the high-speed channel of the microsystem. Most of the
prediction errors are less than 3%.

Zhang et al. [31] established the high-speed channel model, as shown in Figure 4e.
The ten key design parameters are selected as input to the DNN, including the relative
dielectric constant E of the substrate, conductivity σ and the thickness H, the width of the
three microstrip lines w1, w2, w3, the thickness t2 and t3 of the microstrip line conductors
2 and 3, the spacing s1 between conductor 1 and conductor 2, the spacing s2 between
conductor 1 and conductor 3, and the output selected eye height of the microstrip line.
Then, the eye diagram of the high-speed channel is analyzed by CST commercial software,
and 12372 sets of data are obtained. The ratios of the training dataset, validation set and
test set are 70%, 15% and 15%, respectively. The DNN structure adopts two hidden layers,
and the corresponding number of hidden units is 12 and 10. The Levenber Marquardt
algorithm is selected as the training algorithm. Mean square error (MSE) basically stabilizes
and is very small after 20 iterations, indicating that the established DNN model can
accurately predict the eye height of the high-speed channel pathway.

Jin et al. [68] predicted electromagnetic interference in wire-bonded ball grid array
(WB-BGA) packages using an attention module-based DNN model, and the WB-BGA
package model and the proposed model are shown in Figure 4g,f, respectively. The input
weights of the DNN are re-derived from a three-layer attention-based module. The input
layer is the seven key structural parameters of the package, namely the relative dielectric
constant of the center dielectric, the relative dielectric constant of the top and bottom
dielectric, the height of the connecting wire, the height of the package cover, the height of
the bump, the radius of the signal vias, and the number of ground vias. The output layer
is 100 electromagnetic interference radiation values of 0.2–20 GHz. In the final training,
100 nerve cells per layer, for a total of five DNN models, the average relative error is
less than 2%, the mean square error MSE is 2.03, and the running time is in the order of
milliseconds. The comparison between the DNN model prediction results and experimental
measurement results is shown in Figure 4h, and the radiation predicted by the proposed
DNN model is in good agreement with the measured results. Jin et al. [70] proposed a
novel DNN structure for microwave components, which takes geometric parameters as
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the input of the multi-layer hiding layer and frequency parameters as the input of the
first part of the hiding layer. The proposed structure can reduce the number of training
parameters in DNN models and predict the performance of filters through the proposed
structure. The maximum number of training parameters is reduced from 1224 to 574, which
considerably reduces the training cost.

2.3. Recurrent Neural Networks

In the time domain response analysis of microsystem SI, more attention is paid to the
analysis of the transmission performance at different time steps. Multiple Newton-style
iterations are usually involved at each time step [71], and ANNs and DNNs only focus on
the scalar fitting of the output response, thus ignoring the connection between different time
nodes in the time-domain response. Recurrent neural networks (RNN) can share weights
and feed their outputs back to recurrent inputs, which helps NNs learn the relationship
between different time nodes in the time series. An expanded RNN structure with a K step
input sequence is shown in Figure 5a, and the structure of RNN is based on a feedback
path from output to input. RNN can be expressed as

ht = gh(xt, ht−1) (5)

yt = g0(ht) (6)

where ht and xt are inputs at hidden state and time t, respectively, and gh and go are
activation functions. However, RNN has the problem of gradient vanishing or gradient
explosion. In order to improve the above problems, the long- and short-term memory
structure (LSTM) is further proposed. The LSTM network is expressed as

it = σ(Wiixt + Whiht−1) (7)

ft = σ
(

Wi f xt + Wh f ht−1

)
(8)

gt = tan h
(

Wigxt + Whght−1

)
(9)

Ot = σ(Wioxt + Whoht−1) (10)

ct = ftct−1 + itgt (11)

ht = ot tan h(ct) (12)

Nguyen et al. [71,72] proposed a RNN method to generate the time-domain response
of the remaining time steps from the SPICE solver, and the PAM2 channel is shown as
Figure 5b. Time-consuming transient simulations performed by replacing the SPICE solver
can be replaced by simple matrix-vector multiplicative inference, further reducing the
computation time. By sampling three voltage transient signals and dividing the normalized
sampled signals into sequence blocks of length k, the transient behavior of the circuit
was solved by using a SPICE emulator. Through RNN training the sampled sequences,
the established NNs model consists of four LSTM units, and each LSTM unit has 20 hidden
units. Through the established RNN model, how to accurately and efficiently predict the
RX voltage, and the prediction voltage at the receiver with LSTM are shown in Figure 5c,
which shows that the voltage can be predicted accurately.

y = f (h ∗ x) = f

(
m=∞

∑
m=−∞

x[n]h[m − n]

)
(13)
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Figure 5. (a) Unrolled RNN with an input sequence of K steps. Adapted with permission from [71].
(b) PAM2 channel. Adapted with permission from [71]. (c) Predicted voltage at the receiver VRX
with a LSTM network. Adapted with permission from [71]. (d) Proposed CAE-based CNN model.
Adapted with permission from [73]. (e) The comparison results between the traditional CNN and the
proposed convolutional encoder. Adapted with permission from [73].

2.4. Convolutional Neural Network

The frequency domain response is another important aspect of the microsystem SI
design, and the use of ANN, DNN and other fully connected networks for training discrete
frequencies. CNN, by the convolution layer, pooling layer, fully connected layer, has
the main role of feature extraction, downsampling, and classification to minimize the loss of
NN by the layer down function weight value layer by layer inverse adjustment, to further
improve the accuracy of network training.

Ren [73] et al. proposed a NN model based on a convolutional autoencoder (CAE),
as shown in Figure 5d. The mapping relationship between the image feature and S parame-
ter of the planar filter is learned by the encoder and dense layer. CAE modeling steps are
as follows: (1) determine the shape of the filter, frequency range of S parameter and target;
(2) generate data sets, and obtain different coupling matrices to generate S parameters
by changing the design parameters such as length and gap; (3) train the model, split the
low-pass filter image into Px × Py pixels, and extract the encoder through the unsupervised
learning training model; and (4) connect the dense layer to the encoder, and construct the
dense layer through transfer learning. The comparison results between the traditional CNN
and the proposed convolutional encoder are shown in Figure 5e. The average calculation
error of the traditional CNN model is 4.5 × 10−2, while that of the proposed convolutional
encoder is 1 × 10−2, indicating that the proposed convolutional encoder can effectively
improve the accuracy of the prediction model.
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Torun [74] et al. proposed a spectrum transposed convolution network (S-TCNN) to
solve the problems of the large number of geometric parameters, low design efficiency
and low training efficiency in the design of solenoid inductors. The proposed S-TCNN
architecture is shown in Figure 6a and the geometry of the solenoidal inductor is shown in
Figure 6b. It uses a one-dimensional Kernel to achieve a feature extraction of the frequency
axis with a normalized mean square error (NMSE) of 15.2%. A comparison of S-TCNN and
FC-NN to EM simulations is shown in Figure 6c, and realizes accurate modeling of the core
solenoid inductor with a small amount of data.

Figure 6. (a) Proposed S-TCNN architecture. Adapted with permission from [74]. (b) Geometry
of the solenoidal inductor. Adapted with permission from [74]. (c) Comparison of S-TCNN and
FC-NN to EM simulations. Adapted with permission from [74]. (d) Block diagram summary of the
operations performed in CEL and PEL. Adapted with permission from [75]. (e) Geometry of the
differential PTH structure. Adapted with permission from [75]. (f) Passivity characterization of the
predicted S-parameters. Adapted with permission from [75].

Then, Torun [75] et al. used the S-TCNN to predict the frequency response of large
bandwidths, and added a causal execution layer (CEL) and a passive execution layer
(PEL) to improve the causality and passivity of the model. The Block diagram summary
of the operations performed in CEL and PEL is shown in Figure 6d. The model of the
differential PTH pair and differential BGA pair is established, which is shown in Figure 6e.
The input layer is the structural parameter, and the output layer is the S parameter, which
can realize the prediction of the S parameter of 0.1–100 GHz and the step size is 100 MHZ,
and the normalized mean square error is less than 6%. The Block diagram summary of the
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operations performed in CEL and PEL is shown in Figure 6f, and the proposed method can
ensure the passivity of prediction results.

2.5. Summary

NN-based prediction methods have been widely used in SI prediction. The comparison
of SI prediction algorithms is shown in Table 1. At present, ANNs and DNNs are still the
dominant ones, and they are widely used in the analysis of microsystem interconnection
structures, microwave devices in the time-domain, and cross-talk. Due to the limited
number of hidden layers in ANN, it is suitable for microsystem SI prediction with a simple
relationship between design parameters and performance parameters. DNN has a higher
number of hidden layers than ANN, so it can predict the signal completeness with a
complex relationship between the design and performance parameters, but the amount of
data used for training also increases. These two NNs only focus on error reduction on scalar
data and do not reflect the physics of SI prediction in microsystems. For high-dimensional
prediction in the time and frequency domain, reducing the dimensionality of the high-
dimensional input data through data preprocessing and then training with ANN and DNN
is an effective approach. On the other hand, NN structures that can capture the relevance
of input data can be used for prediction. RNN and CNN can capture the time-domain and
frequency-domain correlations of the input parameters, respectively. Therefore, RNN and
CNN are suitable for performance prediction of high-dimensional problems with time and
frequency domain responses, respectively, and can increase the extrapolation capability
to some extent. In addition, STCNN + CEL + PEL can further ensure the causality and
passivity in performance prediction and reduce the amount of data required for training
due to the addition of the causal forcing layer and passive layer. Although it is possible to
improve the performance of NN compared to traditional methods, from design parameters
to the speed of mapping between them, the direct use of classical NN methods still incurs
a large training cost. By conducting an in-depth analysis of the SI problem to be solved,
the NN performance prediction method can be built with relevant knowledge to reduce the
training cost and improve the extrapolation ability of the NN. Fast performance prediction
methods for microsystem SI based on NNs offer the possibility of intelligent optimization
of SI.

Table 1. Comparison of SI prediction algorithms.

Ref. Application
Fields

Design
Variables Methods Passivity,

Causality Advantage Deficiency

[30]
Predicted

channel eye
height and jitter

5 ANN No High speed

Requiring a
large amount of
data and fewer
design variables

[37]

Predicted the
crosstalk of

coupled strip
line and

microstrip

4–6 ANN No High speed

Requiring a
large amount of
data and fewer
design variables

[59]
Predicted

channel loss
and crosstalk

6 ANN No High speed

Requiring a
large amount of
data and fewer
design variables

[29]

Predicted
channel eye

height and eye
weight

8 DNN No High accuracy
Requiring a

large amount
of data

[31]
Predicted

channel eye
height

10 DNN No High accuracy
Requiring a

large amount
of data
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Table 1. Cont.

Ref. Application
Fields Design Variables Methods Passivity,

Causality Advantage Deficiency

[68]

Predicted the
maximum 3m

radiated electric
field

7
Hierarchical

attention-based
DNN

No High accuracy
and low cost

Fewer
design variables

[71] Predicted the
voltage waves 3 RNN No

Strong
extrapolation

ability

Gradient
disappears and

gradient explodes

[73]
Predicted the

S-parameter of
BPF

4 CNN No Processing high
dimensional data

Requiring a large
amount of data

[74] Predicted the
inductance 8 STCNN No

High speed,
accuracy,

and require less
data

Poor physical con-
sistency

[75]

Predicted the
frequency

response of PTH
pair and BGA

pair

8–13 STCNN + CEL +
PEL Yes

High accuracy,
physical

consistency,
and requiring a
small amount of

data

Lower speed

[65]

Predicted the
frequency

response of
microstrip

hairpin filter

6 ANN +
Knowledge Yes

High accuracy,
and requiring a
small amount of

data

Requiring
the knowledge

[66]

Predicted the
frequency

response of
microstrip filter

7 ANN +
Knowledge Yes

High accuracy,
and requiring a
small amount of

data

Requiring
the knowledge

[67]

Predicted the
frequency

response of
three-pole

H-plane filter

9 ANN +
Knowledge Yes

High accuracy,
and requiring a
small amount of

data

Requiring
the knowledge

3. Intelligent Optimization Method for Microsystem Design

The previous sections mainly describe the rapid prediction of interconnection struc-
ture and microwave device design performance by AI methods during the SI design of
microsystems without full-wave or circuit simulation. However, if the SI performance
of the microsystem does not meet the requirements, the performance parameters of the
microsystem must be optimized [31]. With the shrinking of the size of the microsystem and
the increase in the frequency of signal transmission, the influence of the design parameters
of the interconnection structure and the microwave device on multiple performance param-
eters is more complicated [76]. In addition, the trade-off between different performance
parameters is also more complicated; that is, the improvement of one performance param-
eter will lead to the degradation of additional performance parameters [32]. Therefore,
traditional optimization methods based on empirical knowledge and statistical methods
need to undergo a time-consuming trial and error process [31], and the robustness of the
optimization crosses. However, the heuristic optimization algorithm based on AI has
been widely used in the interconnection structure of microsystems and the optimization
design of microwave devices in recent years because of its strong global and local search
capabilities [29,31,59], which considerably improve the design and optimization efficiency
of SI in microsystems.

The process of using an AI method to optimize the microsystem is shown in Figure 7.
First, it is necessary to determine the optimized design parameters and performance
parameters and initialize the algorithm, and then design the optimized target function
according to the performance parameters that need to be optimized, and it is used as the
fitness function of the optimization algorithm. The fitness function of the algorithm is then
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used to evaluate the quality of the individual performance parameters via the established
fitness function. Finally, the optimization ends when the error between the fitness function
corresponding to the optimized performance parameter and the globally optimal fitness
function is smaller than a set accuracy threshold or the number of iterations reaches a
preset value.

Figure 7. The process of using an AI method to optimize the microsystem.

Next, the SI optimization algorithms applied in microsystems in recent years will
be summarized.

3.1. Genetic Algorithm

The genetic algorithm (GA) is designed and proposed in accordance with the laws
of biological evolution in nature, simulating the natural selection of Darwin’s theory of
biological evolution and computational models of the biological evolution processes of
genetic mechanisms. Original individuals are intelligently selected through crossover and
mutation operators until the average fitness function and the maximum fitness function
converge to achieve efficient optimization.

Step 1: Initialization. Initialize evolutionary algebra and groups;
Step 2: Evaluate individuals. Evaluate the quality of individuals in the group according

to the moderate function;
Step 3: Selection. Select the dominant individual in the population;
Step 4: Crossover. The chromosome parts of the selected dominant individuals are

swapped to create new offspring;
Step 5: Mutation. Make random changes in certain chromosome values of the gener-

ated new individual;
Step 6: Algorithm termination condition. The number of iterations reaches the maxi-

mum number, or the difference between the current fitness value and the optimal fitness
value is less than the set threshold.

At present, GA is applied in the crosstalk optimization [59] and eye height [31] of
the microsystem interconnection structure. In [59], the GA optimization algorithm is
applied to optimize the loss and crosstalk of the transmission line. First, the relationship
between the design parameters and performance parameters of the transmission line is
quickly predicted through the established ANN model, and then 6 are selected. The
design parameters and 5 performance parameters are optimized, namely differential mode
impedance (ZDIFF), common mode impedance (ZCOMM), attenuation constant (a), near-end
crosstalk (NEXT) and far-end crosstalk (FEXT). The optimization is carried out by using
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the linear accumulation of errors between multiple performance parameters and the target
design specification as the fitness function of the optimization function. The optimized
W, S, SP, HP, HC, and dk are 5.2 mil, 10 mil, 50 mil, 4.9 mil, 4.3 mil, 3 mil, respectively.
Finally, the optimized design parameters are brought into the electromagnetic simulation
model of the CST to verify the performance parameters, and the verification result is
shown in Figure 8a. Zhang et al. [31] built a fast prediction model of an eye map by DNN,
and the structural model is shown in Figure 8b. Then, ten key design parameters are jointly
optimized using the GA, and the best fitness value is 0.999. Then, CST software is used
to verify the eye map, and the result is shown in Figure 8c. In addition, the eye height is
0.998. Therefore, GA can efficiently perform the collaborative optimization of multiple
parameters. Zhu et al. [77] proposed a kind of ANN and GA wire-bonding interconnect
performance optimization method, with the optimal time reduced to 0.2 from 7.63 h, and
improved the optimization efficiency. Odaira et al. [78] created an eye diagram based on
the GA optimization method, where the proposed methods were be elevated and eyes
width increased 3.07 times and 1.06 times, respectively.

Figure 8. (a) Validation of channel optimization result by GA. Adapted with permission from [59].
(b) Structure and dimension of a high-speed channel. Adapted with permission from [31]. (c) Eye
diagram obtained by the CST commercial software based on the optimized ten parameters. Adapted
with permission from [31]. (d) Structure of x-band filter. Adapted with permission from [79].
(e) Structure of bandpass filter. Adapted with permission from [79]. (f) Structure of the high-speed
channel. Adapted with permission from [80]. (g) Performance comparison between DPTBO algorithm
and other algorithms. Adapted with permission from [80]. (h) Two-chip SiP IVR Architecture.
Adapted with permission from [81].
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3.2. Differential Evolution

The differential evolution (DE) algorithm [82] is a global evolutionary algorithm that
aims to find the design variable x with the maximum estimated return rate. Its optimization
process is divided into four steps [83].

Step 1: Initialization of the parameter vectors.
Step 2: Mutation. Subtract the two candidate design parameters to generate a differ-

ence vector, which is then weighted and added to the third candidate design. The mutation
vector can be expressed as

Vi(g + 1) = Xr1(g) + F(Xr2(g)− Xr3(g)) (14)

where r1, r2 and r3 are random integers of mutual exclusion. Fs is the scaling factor, which
represents the differential vector weights.

Step 3: Cross. The mutation vector vi, G and the target vector xi, G are recombined to
form a new test vector ui, G

Step 4: Selection. Choose the better of the estimated values between the test vector
and the target vector.

In order to solve the problems of poor optimization quality and low efficiency due to
the increase of sensitive design parameters when using traditional optimization methods
to optimize filter performance, Zhang et al. [79] used the DE algorithm to optimize filter
performance benefits. First, for the x-band filter with 11 sensitive design variables (as shown
in Figure 8d), the sensitive design parameters are x = [l1, l2, l3, l4, l5, k12, k23, k34, k45, qe1, qe2],
the constraint is 2 between the operating frequency of 9.8 GHz–9.85 GHz, and the pass rate
is estimated to be 47.5% through 40 electromagnetic simulations. Therefore, a fast prediction
model of the filter is first established through a radial basis function NN, the S-parameters
are optimized by DE Algorithm, the optimized design parameters with the highest pass rate
are: x* = [18.941, 19.991, 19.817, 19.749, 18.770, 4.383, 4.387, 5.516, 4.977, 8.465, 8.958] mm,
and the pass rate can reach 82.5%. Compared with the traditional optimization method,
the pass rate of the filter design can be greatly improved. Then, use the DE Algorithm to
optimize the design parameters of the C-band bandpass filter. The model of the established
bandpass filter is shown in Figure 8e. Fourteen sensitive design parameters are selected
for optimization. The optimized pass rate can reach 97.2%, which is 41.2% higher than the
traditional method. Therefore, the DE algorithm can effectively optimize the performance
of the filter.

3.3. Deep Partition Tree Bayesian Optimization

The deep partition tree Bayesian optimization (DPT-BO) algorithm is a high-dimensional
global optimization method proposed to address the problem that the number of simula-
tions required for convergence of traditional BO algorithms grows exponentially with the
number of optimization parameters [80], and is therefore not suitable for high-dimensional
optimization. When training an additive Gaussian process model, DPT-BO uses full addi-
tivity decomposition to consider the interaction between the parameters, which makes the
algorithm more suitable for high-frequency design optimization. By using a different deep
partition tree approach, the auxiliary optimization step in the BO algorithm is eliminated
and the high-dimensional sample space can be covered quickly with fast convergence.
The procedure of the deep partition tree Bayesian optimization algorithm is as follows.

Step 1: Enter the sample space.
Step 2: Train an additive Gaussian process model.
Step 3: Group input parameters according to their sensitivity to f (x).
Step 4: PI, EI and UCB are used as acquisition functions to avoid bias.
Step 5: Using the deep hierarchical partition tree method, the region is expanded in

the vertical direction and then partitioned in the horizontal direction to generate additional
candidate points.



Micromachines 2023, 14, 344 17 of 24

Step 6: Select the candidate that maximizes the value of the obtained function as the
sampling point and evaluate the objective function value at the sampling point. If the target
requirement is met, the optimal value is output. Otherwise, the loop continues.

The DPT-BO optimization algorithm [80] was applied to optimize the SI of the mi-
crostrip line, and the structure of the microstrip is shown in Figure 8f. First, the surrogate
model of the microstrip is built using the GP method, and then ten control parameters
are optimized by the DPT-BO. The GP model is used to determine the RLGC matrix for
each cell of the microstrip, which is converted into an S-parameter and then cascaded to
form an interconnect channel of the length 10 mm. ADS generates an eye map by bit-
by-bit simulation using the channel’s S-parameter, and the generated eye width and eye
height are fed back to the optimization algorithm for the next iteration. A performance
comparison between the DPTBO algorithm and other algorithms is shown in Figure 8g,
and the proposed algorithm converges quickly in a high-dimensional design. After opti-
mization with DPT-BO, the eye width and eye height are 53.13 ps and 0.54 V, respectively.
Additionally, the internal jitter is 8.12 ps, and the convergence rate is 1.41 times, 1.48 times
and 1.19 times faster than that of TSBO, respectively.

3.4. Two-Stage Bayesian Optimization

The two-stage Bayesian optimization (TSBO) algorithm uses two phases of optimiza-
tion [84], namely the rapid exploration phase and pure development phase, to reduce
the number of simulations needed to find the optimal design point, and thus reduce the
computational overhead. The process of the two-stage Bayesian optimization algorithm
is divided into two stages. In the first stage, the region containing the global optimal is
quickly found in the sample space, and the optimal collection function is determined. In the
second stage, the optimal acquisition function is used in the region selected in the first stage
to fine-tune the optimization problem and improve the accuracy, and the specific algorithm
steps are as follows:

Step 1: Enter the sample space.
Step 2: Divide the sample space X into a two-dimensional hyperrectangular region to

generate candidate points.
Step 3: Use PI, EI, and UCB as fetch functions in sequence. After obtaining a specified

number of observations, the algorithm exits the sequential strategy and selects the method
with the maximum gain as the acquisition function.

Step 4: Select the candidate point that maximizes the value of the obtained function as
the sampling point; evaluate the objective function value of the sampling point; and select
the region where the sampling point resides as the new region.

Step 5: Output the current optimal value, and enter the second stage optimization
when the Euclidean distance between the current sampling point and the previous sampling
point is sufficient (phase switching standard).

Step 6: Carry out a more detailed regional division within a small enough region
optimized in the first stage to generate candidate points.

Step 7: Select the candidate point that maximizes the value of the obtained function as
the sampling point; evaluate the objective function value of the sampling point; and select
the new area.

Step 8: Output the current optimal value and continue the loop until the target
requirement is met.

TSBO is applied to the collaborative optimization of the clock deviation and tempera-
ture gradient to improve the SI of 3D integrated circuits. A total of five control parameters
are considered [81]. The temperature gradient optimized by TSBO is 23.5 ◦C and the
clock deviation is 86.0 ps, which are both better than IMGPO and the nonlinear solver.
The convergence rate of TSBO for the lowest temperature gradient is 3.76 times faster than
IMGPO and 3.96 times faster than the nonlinear solver, respectively. TSBO is also used for
the multi-objective collaborative optimization of the integrated voltage regulator (IVR) [81],
and the two-chip SiP IVR architecture is shown in Figure 8h. Ten control parameters are
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used to optimize the two objectives of maximizing the power efficiency of the integrated
voltage regulator and minimizing the embedded inductance region. The inductance size is
determined by TSBO, and then input into the full-wave solver (Ansys HFSS Ver. 2015.2.,
Ansys Maxwell Ver. 2015.2.) to extract the two-port Z matrix. Inductance and a previously
developed step-down converter model are then used to calculate the IVR efficiency. The cal-
culated efficiency is combined with the inductance region and fed back to the TSBO for
the next iteration. After TSBO optimization, the peak efficiency of IVR can reach 85.1%.
The embedded electromagnetic inductor covers an area of 5.1 mm2, resulting in a 5.7%
increase in efficiency and a 56.1% reduction in area compared to the manually tuned design.
Moreover, TSBO reduces the CPU time required to complete the optimization by 72.4%,
57.4% and 56.7% compared to the nonlinear solvers GP-UCB and IMGPO, respectively.

3.5. Summary

Optimization methods based on evolutionary algorithms have been widely used to
optimize SI in microsystems. Most of the aforementioned optimization methods are based
on established NN prediction models, which can accelerate the iteration speed. A compari-
son of specific optimization algorithms is shown in Table 2. Evolutionary algorithms such
as GA and DE have been proposed earlier and are more mature and, therefore, less difficult
to apply. Currently, they have been applied to eye image, crosstalk, and filter optimization,
and the efficiency and effectiveness of the optimization have been improved to some extent.
However, due to the structural nature of genetic algorithms, the number of populations and
the running time are exponentially large and, hence, computationally slow in the case of
increasing populations or high-dimensional optimization. DPTBO uses the deep partition
number method to quickly cover the high-dimensional space, which improves the ability
of Bayesian optimization algorithms in high-dimensional problems. Thus, DPT-BO is more
suitable for the collaborative optimization of high-dimensional design parameters, but its
structure is complicated. TSBO accelerates its convergence by splitting the optimization
part into fast exploration and optimization phases, but the high-dimensional problem limits
its application.

Table 2. Comparison of SI optimization algorithms.

Ref. Application Fields
Number of

Optimization
Parameters

Methods Advantage Deficiency

[59] Optimize channel
loss and crosstalk 6 GA High robustness and

simple structure

Small optimization
dimension and

slow convergence

[31] Optimize the eye
height 10 GA High robustness and

simple structure

Small optimization
dimension and

slow convergence

[79] Optimize the pass
rate of filters 11, 14 DE High robustness and

simple structure
Small optimiza-
tion dimension

[80]
Optimize the eye

diagram, S
parameters and WPT

10, 14, 32 DPTBO High optimization
dimension Complex structure

[81]
Optimize the clock

deviation and
temperature gradient

10 TSBO Fast convergence Small optimiza-
tion dimension

4. Discussions and Outlook

It can be seen from the design example of SI discussed in this paper that AI approaches
have been widely used in the field of performance prediction and optimization of SI in
microsystems. In the context of SI prediction in microsystems, NNs are the main AI
methods, which are mainly used in high-speed signal path-eye map prediction, crosstalk
prediction, parasitic parameter prediction, frequency response prediction, etc. Using the
obtained data to train a NN, the traditional electromagnetic/circuit simulation model is
replaced by NN, which greatly improves the efficiency of the simulation. For different
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application scenarios, the NN structure suitable for the problem should be selected based
on the characteristics of different NNs. The architecture of ANN is simple and therefore
suitable for SI prediction in microsystems with relatively simple input and output quantities.
DNN increases the number of hidden layers on top of ANN, thus increasing the ability
to map between the design and performance parameters and improving the prediction
accuracy. However, additional training data are needed to determine the weights between
different layers, which increases the training cost. ANN and DNN only focus on the
scalar patchwork between the design parameters and performance and do not reflect the
correlation between performance in the time and frequency domain. The RNN constructs
the correlations before and after the time domain by adding feedback paths, and the CNN
constructs the correlations between different frequency points by convolutional layers.
Therefore, these two types of NNs are suitable for performance prediction in both time
and frequency domains. In addition, when predicting performance, prior knowledge
can be added to the hidden layer of NN to reduce the amount of training, and ensure the
electromagnetic characteristics of the structure and device itself. Following the development
of fast predictive models of NN performance, heuristic optimization algorithms have been
widely used in the optimization of SI in microsystems. Classical algorithms such as GA
and DE are relatively mature, have strong optimization robustness, and are robust in the
optimization process for low dimensional parameters. The DPTBO method combines
deep partition trees to quickly traverse the high-dimensional design space, and thus has a
clear advantage in high-dimensional optimization problems. TSBO splits the optimization
problem into two stages, which can quickly locate the target region and then accurately
search for the optimal solution. Hence, it has a significant impact on the need for fast
convergence. The combination of fast prediction models and optimization algorithms for
microsystem SI can replace traditional simulation models based on electromagnetism and
optimization methods that rely on expert experience or statistics, and considerably increase
the efficiency of design and optimization.

In the future, the system volume will be further reduced, multi-field coupling effects
will be more severe, and the trade-off relation between multiple software iterations and
multiple performance metrics will be complicated, which will lead to a lower efficiency
when using traditional analysis methods. In addition, the meshing and solution times will
be further improved when the multi-scale components are integrated in microsystems. AI
methods may be an effective approach to solve the above problems. By solving for the
weights of the hidden layers, the flow of data from the design parameters to performance
metrics during the multi-software iteration can be constructed to reduce the design diffi-
culty. In addition, NN models can be constructed to skip steps such as grid partitioning and
time-consuming steps due to cross-scale effects, thus improving the simulation efficiency.
Although the AI approach can considerably improve the design efficiency of microsystem
SI, various challenges remain. (1) Extreme training cost. The accuracy of NN training is
closely related to the number of samples, and electromagnetic/circuit simulations are still
required to obtain the data, which still consume a significant amount of the training cost.
Although the DoE method can reduce the number of combinations of the acquired data to
a certain extent, it still cannot determine the minimum amount of training data required
to ensure the accuracy of the predictive model. (2) Extrapolation ability. Currently, most
NNs have excellent predictive performance within the training set, but poor predictive
performance, that is, poor extrapolation ability, once the design parameters jump out of
the design space. Improving the extrapolation performance can reduce the training cost to
some extent and further reduce the design cycle. (3) Reverse design. Currently, most stud-
ies focus on fast prediction of the corresponding performance parameters through design
parameters. However, in practical engineering problems, the performance requirements
are generally known first and the design parameters need to be addressed. Therefore, it is
more important to investigate the inverse design methods to solve engineering problems.
(4) High-dimensional optimization problem. In complex microsystems, the coupling ef-
fects between the parameters are more pronounced, and the relationships between multiple



Micromachines 2023, 14, 344 20 of 24

design parameters are more complex. Therefore, dimensionality reduction optimization
methods should be studied or AI methods suitable for higher dimensions should be devel-
oped to shorten the design cycle of microsystems.

5. Conclusions

This paper introduces the application of AI technology in microsystem SI performance
prediction and optimization design, and summarizes and compares the characteristics
of the main NNs methods of performance prediction and their application scenarios in
microsystem SI design. Then summarizes and compares the characteristics of optimization
design methods and application scenarios in microsystem SI optimization design. Finally,
different prediction algorithms and optimization algorithms are discussed and compared.
The main conclusions are as follows:

1. NNs can be used to quickly predict the SI of microsystems, but to ensure the accuracy
of the prediction, a large amount of data needs to be obtained to train NNs.

2. The SI prediction problem with independent design parameters, a small number of
design parameters and performance parameters, and a relatively simple mapping
relationship can generally be solved by NNs such as ANN or DNN; if there is a certain
correlation between the design parameters, RNN or CNN can be selected. Problems
that have a certain physical significance and need to ensure that the constructed
network has physical properties such as causality and passivity must add relevant
knowledge according to the specific problem as a priori to ensure its characteristics.

3. The heuristic optimization algorithm can improve the optimization efficiency of the
optimal SI solution, and the combination of the established fast prediction model
based on NN can further reduce the iteration time.
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Abbreviations
The following abbreviations are used in this manuscript:

SI Signal Integrity
AI Artificial Intelligence
NN Neural Network
EM Electromagnetic
FEM Finite Element Model
ANN Artificial Neural Network
DNN Deep Neural Network
RNN Recurrent Neural Networks
CNN Convolutional Neural Network
CAE Convolutional autoencoder
STCNN Spectrum Transposed Convolution Network
CEL Causal Execution Layer
PEL Passive Execution Layer
GA Genetic Algorithm
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DE Linear dichroism
BO Bayesian Optimization
DPTBO Deep Partition Tree Bayesian Optimization
TSBO Two-stage Bayesian optimization
NEXT Near-end crosstalk
FEXT Far-end crosstalk
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