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Abstract: Recent years have witnessed a spurt of progress in the application of the encoding and
decoding of neural activities to drug screening, diseases diagnosis, and brain–computer interactions.
To overcome the constraints of the complexity of the brain and the ethical considerations of in vivo
research, neural chip platforms integrating microfluidic devices and microelectrode arrays have been
raised, which can not only customize growth paths for neurons in vitro but also monitor and modulate
the specialized neural networks grown on chips. Therefore, this article reviews the developmental
history of chip platforms integrating microfluidic devices and microelectrode arrays. First, we review
the design and application of advanced microelectrode arrays and microfluidic devices. After, we
introduce the fabrication process of neural chip platforms. Finally, we highlight the recent progress
on this type of chip platform as a research tool in the field of brain science and neuroscience, focusing
on neuropharmacology, neurological diseases, and simplified brain models. This is a detailed and
comprehensive review of neural chip platforms. This work aims to fulfill the following three goals:
(1) summarize the latest design patterns and fabrication schemes of such platforms, providing a
reference for the development of other new platforms; (2) generalize several important applications
of chip platforms in the field of neurology, which will attract the attention of scientists in the field;
and (3) propose the developmental direction of neural chip platforms integrating microfluidic devices
and microelectrode arrays.

Keywords: microelectrode array; microfluidics; neural applications; nanomaterials; micro-electro-
mechanical system

1. Introduction

The brain is the most complex organ in human beings and the most sophisticated
structure of nature. It is composed of hundreds of billions of neurons and their intercon-
nected networks [1]. The complexity of the human brain can even be comparable to that
of galaxies in the universe. Vazza et al. found that, although the formation process of the
human brain neural network is completely different from that of the Milky Way cosmic
network in the universe, they have formed a very similar organizational structure [2]. It is
precisely because of the complexity of the brain that human beings have advanced func-
tions, such as thinking, learning, perception, and decision making. Many diseases, such as
epilepsy [3], Parkinson’s disease [4], and Alzheimer’s disease [5], are also closely related
to the complexity of neural networks. To reveal the potential mechanism of the complex
brain, scientists from different disciplines have made continuous efforts to develop and
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propose a neural chip platform [6] or brain-on-chip [7] for the research of major brain topics
such as neuropharmacology, the diagnosis of nervous system diseases, and next-generation
artificial intelligence [8]. Among the technologies involved in the neural chip platform,
the microelectrode array (MEA) and microfluidic devices play pivotal roles. In particular,
the MEA [9] bears the responsibility of recording neural information, while microfluidic
devices play prominent roles in customizing the topology of in vitro neural networks.

The development of in vitro MEAs aims to explore the potential mechanism of produc-
tion, processing, and transmission of neural information in the brain [10]. In vitro MEAs
have been used by scientists from different disciplines for drug screening [11,12], biosen-
sors [13,14], and pathological mechanism research [15,16] because of their noninvasiveness,
high biocompatibility, high controllability, and the ability to read and modulate signals
of neural cultures bidirectionally [17]. In the next generation of artificial intelligence that
combines artificial intelligence with the brain, a neural chip platform with in vitro MEAs as
the core component also shines brightly. The neurons cultured on an MEA, as an intelligent
controller, successfully control the traveling of the mechanical trolley [18]. Furthermore,
the Central Labs Company successfully taught the neurons on an MEA to play the classic
video game Pong by electrical stimulation [19].

Although the neural chip platform containing only in vitro MEAs can cultivate
2D [20,21] or 3D [22] neural networks, the connections formed by neuron cultures in vitro
are mostly complex and random, which is quite different from the brain network with
specific functional connections. In addition, biochemical conditions in different regions of
the brain are also different, and in vitro MEAs do not have the ability to provide a differ-
entiated biochemical environment for local neural networks. Therefore, the neural chip
platform continues to introduce a technology that can modularize and control the growth
of neurons to build an in vitro model more suitable for the brain and use it in related re-
search. Microfluidics is a technology to precisely control and manipulate microscale fluids,
especially submicron structures [23,24]. We can use these characteristics of microfluidic
technology to manufacture various microstructural units at the micron to submicron level,
such as fluid channels [25], control channels [26], etc. These microstructures can modularize
the neural network cultured in vitro while maintaining customized connections between
modules [27,28]. It can be seen that the neural chip platform combining in vitro MEAs
and microfluidic devices is not only a simplified platform in vitro for the brain but also a
platform for neural information modulation and detection, which is a crucial tool in the
research of nerves and their interdisciplinary subjects.

The purpose of this review is to discuss the latest trends in neural chip platforms
integrating microfluidic devices and microelectrode arrays. For our purpose, we divided
this article into three parts: First, the latest research progress on MEAs and microfluidic
devices in the field of neural science is introduced, and the design and fabrication of
microelectrode arrays and microfluidic devices are introduced. Next, we describe the latest
developments on microfluidic and microelectrode array neural chip platforms from three
popular application fields, namely, neuropharmacology, neural diseases, and simplified
brain models. Finally, we put forward the development direction of the platform. A
schematic diagram of this overview is shown in Figure 1.
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Figure 1. The framework of this article. (A) Microelectrode array and PDMS-based microfluidic de-
vices. Materials and fabrication methods of microelectrode array and PDMS-based microfluidic de-
vices. (B) The structure and usage of neural chip platforms (the fluorescence-staining diagram cited 
from Lewandowska et al. [29]) (C) Application of neural chip platforms, including neuropharma-
cology research, neurological diseases, and simplified brain models. (Created with http://BioRen-
der.com.(accessed on 10 January 2023)) 
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Generally, microelectrodes, with diameters ranging from several microns to tens of 
microns, are patterned and arranged onto flexible or rigid substrates to produce MEAs by 
semiconductor micromachining technology. The MEA has both neural recording and 
modulation functions, among which neural modulation refers to the electrical stimulation 
of neuron cells through microelectrodes. Due to the small-sized feature of microelec-
trodes, MEAs can detect neural information with a high time–space resolution. The MEA 
can not only detect the local field potential (LFP) generated by multiple neuron activities 
but can also accurately record the action potential of a single neuron [30,31]. Therefore, 
MEAs have been used by scientists as an important research tool to further understand 
the spatial and temporal dynamics of the brain. 

MEAs can be divided into implantable MEAs [32] and in vitro MEAs [33] according 
to detection objects. The detection object of implantable MEAs is generally the mamma-
lian brain, while the detection objects of in vitro MEAs are biological samples, such as cells 
and brain slices. Compared with implantable MEAs, in vitro MEAs have the advantages 
of noninvasiveness and fewer ethical constraints. In vitro-cultured simple and controlla-
ble neural networks are more suitable for research concerning neural disease mechanisms 
[34], neural drug screening [35], new-generation brain–computer interfaces [36], etc., com-
pared with complex networks in the brain. In addition, the in vitro microelectrode array 
is also an important part of the neural chip platform, the function of which is to detect and 
modulate changes in neuronal activities [37]. 

Figure 1. The framework of this article. (A) Microelectrode array and PDMS-based microfluidic
devices. Materials and fabrication methods of microelectrode array and PDMS-based microflu-
idic devices. (B) The structure and usage of neural chip platforms (the fluorescence-staining di-
agram cited from Lewandowska et al. [29]) (C) Application of neural chip platforms, including
neuropharmacology research, neurological diseases, and simplified brain models. (Created with
http://BioRender.com (accessed on 10 January 2023)).

2. An Important Tool for the Modulation and Recording of Neural Information:
Microelectrode Arrays
2.1. In Vitro MEAs

Generally, microelectrodes, with diameters ranging from several microns to tens of
microns, are patterned and arranged onto flexible or rigid substrates to produce MEAs
by semiconductor micromachining technology. The MEA has both neural recording and
modulation functions, among which neural modulation refers to the electrical stimulation
of neuron cells through microelectrodes. Due to the small-sized feature of microelectrodes,
MEAs can detect neural information with a high time–space resolution. The MEA can not
only detect the local field potential (LFP) generated by multiple neuron activities but can
also accurately record the action potential of a single neuron [30,31]. Therefore, MEAs have
been used by scientists as an important research tool to further understand the spatial and
temporal dynamics of the brain.

MEAs can be divided into implantable MEAs [32] and in vitro MEAs [33] according
to detection objects. The detection object of implantable MEAs is generally the mammalian
brain, while the detection objects of in vitro MEAs are biological samples, such as cells and
brain slices. Compared with implantable MEAs, in vitro MEAs have the advantages of
noninvasiveness and fewer ethical constraints. In vitro-cultured simple and controllable
neural networks are more suitable for research concerning neural disease mechanisms [34],
neural drug screening [35], new-generation brain–computer interfaces [36], etc., compared
with complex networks in the brain. In addition, the in vitro microelectrode array is also an
important part of the neural chip platform, the function of which is to detect and modulate
changes in neuronal activities [37].

http://BioRender.com
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2.2. Methods to Improve the Performance of MEAs

The traditional structure of MEAs consists of a base layer, a conductive layer, and an
insulating layer. The base layer is used to hold conductive and insulating materials. The
metal layer includes electrode sites, a connecting wire, and contact sites for an external
circuit for recording and transmitting neural activity. The insulating layer is used to protect
the conductive structure that does not contact with neural cells.

The MEA detects the electrophysiological activity of neural cells through the electrode
interface in contact with neural cells. The ideal electrode should have the ability of high
time–space resolution detection due to the low impedance, small phase delay, and a high
signal-to-noise ratio as well as the ability of precise and safe electrical stimulation due to
a high charge injection density and a high maximum charge safe injection limit. These
properties depend on the material and structure of the conductive layer. However, Pt, Au,
ITO, TiN [38], and other materials commonly used as conductive layers in microelectrode
arrays have some shortcomings in the performance of neural information recording and
electrical stimulation. Therefore, an increasing number of scientists are focused on improv-
ing the performance of microelectrodes. In the current research, there are two main ways to
improve the performance of microelectrodes. One research direction is to tightly cover the
film with nanomaterials of excellent performance on the microelectrode by means of chemi-
cal modification to gain a better neural interface with high performance. The other is to
improve the fabrication process of MEAs so that the microelectrode has a three-dimensional
(3D) structure, which greatly improves the performance of microelectrodes.

Over the past decades, nanoscale metal particles and carbon nanomaterials have been
widely used in the research of electrode modification. As shown in Figure 2A, platinum
black, with a rough surface, is often deposited on MEAs to reduce the impedance of the
electrode [32]. Nanoscale metal films can significantly increase the active surface area of
microelectrodes thus improving the electrical performance of electrodes. However, there
are still some deficiencies of nanoscale metal films in some research. For example, Park
et al. found that the porous structure of platinum black is very fragile and easily damaged
by external stimuli [39]. Tang et al. found that platinum nanoparticles lacked adhesion
strength and durability in long-term experiments [40]. Strickland et al. determined that
TiO2 particles have a certain neurotoxicity through cortical networks [41]. Carbon nano-
materials, represented by carbon nanotubes and graphene, have become good candidates
for persistent neural interfaces due to their excellent conductivity, physical properties, and
biocompatibility. Recent research shows that carbon-containing materials such as CNTs as
neural interfaces have a low impedance, a high charge injection, and other characteristics
and can also promote the attachment and growth of neurons (Figure 2B) [42,43]. Carbon
materials such as graphene not only show a highly sensitive detection of neural electrical
signals due to their high charge transfer ability [44] but also exhibit an excellent performance
in electrochemical detection related to neurotransmitters and can detect the concentration
of chemical transmitters such as dopamine at the nM level or even smaller [30]. In recent
years, conductive polymers have become a new material in the field of neuronal recording
and stimulation. Nanocomposites with higher performance can be formed by mixing
two or more nanomaterials reasonably. Generally, composites can cover up the defects
of single-component materials and maximize the advantages of each component mate-
rial. Currently, nanocomposites made of poly (3,4-ethylenedioxythiophene) (PEDOT) or
polypyrrole (PPy) and other materials have been used in MEAs in various scenarios [45,46].
Saunier et al. synthesized the nanocomposite material PEDOT/carbon nanofibers(CNF)
using CNF with excellent mechanical stability and PEDOT with good biocompatibility
and proved that the PEDOT/CNF film can promote the adsorption, growth, and division
of neurons in vitro (Figure 2C) [47]. Xu et al. showed a new nanocomposite material car-
boxylated graphene(cGO)/PEDOT:poly(styrenesulfonate)(PSS) with significant impedance
characteristics, charge injection ability, and a high active area, and they successfully acti-
vated the learning and memory function of hippocampal neurons in vitro using the MEA
modified with cGO/PEDOT:PSS (Figure 2D) [31]. He et al. modified the highly sensitive
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nanocomposite material rGO/PEDOT: PSS on the MEA with four chambers and success-
fully detected the quantized release of dopamine from dopaminergic neurons induced by
potassium ions [48].

Although the method of material modification can improve the performance of mi-
croelectrodes, it is difficult to meet some of the special needs of MEAs in neuroscience
research (such as subthreshold potential measurement and drug delivery). By optimizing
the preparation process, changing the morphology of microelectrodes can enable MEAs
to add the required capabilities. Because 3D microelectrodes can enhance electrical cou-
pling with neurons, thereby improving the performance of the MEA in neural recording,
much innovative research has emerged in this field in recent years [49]. As shown in
Figure 2E, Hai et al. modified the polypeptide on a mushroom-shaped gold electrode for
recording intracellular signals. Because of the phagocytosis of the nerve cell membrane,
the microelectrode can record the intracellular potential such as the patch clamp, which
enables MEAs to reflect the changes in neural information more carefully [50–52]. Liu et al.
further combined MEMS technology with nanowire preparation technology to develop
nanowire microelectrode arrays that can simultaneously detect changes in the extracellular
action, potential, and intracellular subthreshold potential of neurons (Figure 2F) [53]. In
addition, Bruno et al. used ion beam milling technology to prepare an MEA with a 3D
nanotube structure, which could conduct local drug delivery and chemical stimulation on
the cultured neural culture (Figure 2G) [54]. In terms of simplifying the fabrication of 3D
MEAs, Zips et al. skillfully produced 3D microelectrodes with conductive polymer ink
printing and evaluated their performance in neural recording and electrical stimulation
(Figure 2H) [55].
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Figure 2. Methods for improving, recording, and stimulating properties of microelectrodes. (A) SEM
diagram of platinum black [32]. Reproduced with permission from Xu, Microsystems & Nanoengi-
neering; published by Nature, 2022. (B) SEM of surface-porous graphene [43]. Reproduced with
permission from Lu, Scientific Reports; published by Nature, 2016. (C) SEM diagram of PEDOT:
CNF [47]. Reproduced with permission from Saunier, Biosensors and Bioelectronics; published by
Elsevier, 2020. (D) SEM diagram of cGO/PEDOT:PSS [31]. Reproduced with permission from Xu,
Biosensors; published by MDPI, 2022. (E) SEM diagram of a 3D golden mushroom electrode [52].
Reproduced with permission from Hai, Journal of the Royal Society Interface; published by Royal
Society, 2009. (F) SEM images of nanowire MEAs. Reprinted with permission from [53]. Copyright
2020 American Chemical Society. (G) SEM diagram of nanotube microelectrodes with local substance
delivery functions [54]. Reproduced with permission from Bruno, Frontiers in Bioengineering and
Biotechnology; published by Frontiers, 2020. (H) Structure of a 3D microelectrode printed with
ink [55]. Reprinted with permission from. Copyright 2019 American Chemical Society.



Micromachines 2023, 14, 709 6 of 25

2.3. Development Direction of In Vitro MEAs

The basic model of in vitro MEAs can be traced back to the 1970s. Thomas et al. created
an MEA for detecting myocardial cells [56]. With the increasing demand for in vitro neural
information detection, brain–computer interactions, biosensors, and the growing maturity
of micromachining technology, in vitro MEAs have become one of the most important
research tools in the field of neurology.

In recent years, in vitro MEAs as a research tool have been widely used and innovated
in the following aspects. (1) According to the actual needs of researchers, it will develop
towards customized MEAs. As shown in Figure 3A, an MEA was customized for the study
of neural information in hippocampal slice circuits [57]. (2) MEAs are developing towards
having a higher density and larger area, while the development of high-density MEAs
needs to be rooted in CMOS technology, and there have been many research efforts in this
regard (Figure 3B) [58–60]. (3) The combination of an MEA and other technologies forms a
more effective in vitro detection platform. As shown in Figure 3C, the in vitro detection
platform combining an MEA and microfluidic technology is a successful example [61].
MEAs may also be combined with µLED to become in vitro optical electrodes [62,63].
(4) The microfabrication technology and materials of MEAs are being optimized to achieve
a lower cost and faster preparation. In addition, the use of SU-8 to replace traditional
SiO2 and Si3N4 insulation layers [64] and 3D printing technology to easily make MEAs
(Figure 3D) [65] are pioneering attempts in this field.

Micromachines 2023, 14, x FOR PEER REVIEW 6 of 26 
 

 

2.3. Development Direction of In Vitro MEAs 
The basic model of in vitro MEAs can be traced back to the 1970s. Thomas et al. cre-

ated an MEA for detecting myocardial cells [56]. With the increasing demand for in vitro 
neural information detection, brain–computer interactions, biosensors, and the growing 
maturity of micromachining technology, in vitro MEAs have become one of the most im-
portant research tools in the field of neurology. 

In recent years, in vitro MEAs as a research tool have been widely used and inno-
vated in the following aspects. (1) According to the actual needs of researchers, it will 
develop towards customized MEAs. As shown in Figure 3A, an MEA was customized for 
the study of neural information in hippocampal slice circuits [57]. (2) MEAs are develop-
ing towards having a higher density and larger area, while the development of high-den-
sity MEAs needs to be rooted in CMOS technology, and there have been many research 
efforts in this regard (Figure 3B) [58–60]. (3) The combination of an MEA and other tech-
nologies forms a more effective in vitro detection platform. As shown in Figure 3C, the in 
vitro detection platform combining an MEA and microfluidic technology is a successful 
example [61]. MEAs may also be combined with μLED to become in vitro optical elec-
trodes [62,63]. (4) The microfabrication technology and materials of MEAs are being opti-
mized to achieve a lower cost and faster preparation. In addition, the use of SU-8 to re-
place traditional SiO2 and Si3N4 insulation layers [64] and 3D printing technology to easily 
make MEAs (Figure 3D) [65] are pioneering attempts in this field. 

 
Figure 3. Future development direction of in vitro MEAs. (A) The internal structure (A1) and the 
real object (A2) of an MEA dedicated to rat hippocampal slices [57]. Reproduced with permission Figure 3. Future development direction of in vitro MEAs. (A) The internal structure (A1) and the real

object (A2) of an MEA dedicated to rat hippocampal slices [57]. Reproduced with permission from
He, Sensors and Actuators B: Chemical; published by Elsevier, 2021. (B) The object (B1) and internal
structure (B2) of a high-density CMOS microelectrode array [60]. Reproduced with permission from
Abbott, Nature Nanotechnology; published by Nature, 2017. (C) A multifunctional MEA combined
with microfluidic technology [61]. Reproduced with permission from Duc, Lab on a Chip; published
by Royal Society of Chemistry, 2021. (D) The use of 3D printing technology to simplify the process of
making MEAs [65]. Reproduced with permission from Morales-Carvajal, RSC Advances; published
by Royal Society of Chemistry, 2020.



Micromachines 2023, 14, 709 7 of 25

3. An Important Tool for Neural Network Customization: PDMS-Based
Microfluidic Devices

Microfluidics is a new cross-discipline developed based on microelectronics, nanotech-
nology, fluid physics, chemistry, biology, etc. [66]. Microfluidic devices are the core of
microfluidics, which are generally composed of microchannels, micropumps, microvalves,
micromixers, and other components, and they can conduct the integrated processing of
biological or chemical samples [67,68]. Because of their numerous applications in biol-
ogy, microfluidic devices are also considered to be a bridge between life sciences and
information science [69,70].

In this section, we first review the characteristics and applications of PDMS-based
microfluidic devices. Then, we introduce the history and the frontiers of studies on a
special and important PDMS-based microfluidic device which supports controllable neurite
growth. Furthermore, the applications of the devices used in the field of neuroscience are
reviewed, such as drug screening and the mechanical study of neurological disorders.

3.1. PDMS-Based Microfluidic Devices

Common materials used in microfluidic devices include silicon, glass, polymer, and
paper. The microfluidic devices made of each material play an important role in the research
of corresponding fields. In the research of cell cultures, polymer-based microfluidic devices
have attracted much attention.

Since polymers were used in the field of microfluidics, they have always been the pre-
ferred materials for commercial applications and high-throughput systems. Polydimethyl-
siloxane (PDMS) has been the most widely used material in academic research because
of its excellent properties, such as low cost, optical transparency, good biocompatibility,
strong permeability, and good plasticity. PDMS-based microfluidic devices are often used
in biochemical sample separation and cell culture-related research. For example, Jeon et al.
designed a plastic spiral inertial microfluidic system for the high-throughput separation
of blood and cells [71]. Huang et al. designed a microfluidic device for real-time and
large-scale drug screening, which can screen 10 drugs at the same time [72]. Microfluidic
devices of PDMS also have important applications in the neural field, which are described
in detail later.

3.2. Development and Latest Design of PDMS Microfluidic Devices with Compartments of
Controllable Neurite Growth

The application of microfluidic devices with isolation chambers in the field of neu-
rology can be traced back to the research by Campenot in 1977 [73]. He divided a culture
dish into three different chambers, inoculating neurons in the central chamber and adding
different concentrations of growth factors in the lateral chamber to study the growth of
synapses. Campenot’s innovative research enabled future researchers to conduct accurate
physical processing and biochemical analysis of an isolated synaptic part. However, the
improvements by Taylor and other scientists promoted the wide application of such de-
vices in subsequent research. At the beginning of the 21st century, Taylor’s team designed
and produced a neuron culture device, which allows for the isolation of neurites and cell
bodies [74,75]. Figure 4A shows the structure of the device. Specifically, the device has
two compartments that provide a biochemical environment for neurons. The different
compartments are connected by several micron-level grooves, allowing neurites to grow in
the middle while maintaining fluid isolation at both ends. While designing and developing
the microfluidic device, Taylor et al. also used the microfluidic platform to construct an
in vitro model of axon injury and found the characteristics of gene expression at the early
stage of axon injury [76]. In a subsequent study, Taylor and his colleagues improved the
microfluidic platform and developed a local perfusion chamber based on the original one
to control the neurite region between neurons at both ends [77].

Many researchers have made innovations in the structural design of microfluidic
devices according to research needs. In these studies, researchers can increase the number
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of shapes of the cull culture chambers according to research needs to achieve the research
purpose. For example, Vitis’ [78] and Coquinco’s [79] teams developed devices with
multiple chambers for the co-culturing of multiple cell populations. As shown in Figure 4B,
Park’s team developed a microfluidic device with six axon chambers surrounding a cell
compartment, which can separate the cell body and dendrites of neurons and guide axon
growth [80]. In addition, Megartiy et al. [81] proposed a modular microfluidic platform that
can be spliced, as shown in Figure 4C. The platform is composed of several independent
microfluidic devices, which can be spliced similar to a puzzle through the protrusions
and depressions. They also cultured hippocampal neurons on the platform to verify the
maintenance characteristics of neurite connections at the module interface. This method
provides an idea for users to freely assemble microfluidic platforms.

The advanced design of interconnecting microchannels is another direction of the inno-
vative research on microfluidic devices. As shown in Figure 4D, Gladkov and his colleagues
designed a variety of asymmetric microchannels to promote neurons to grow in one direc-
tion [82]. This study shows that a microchannel containing repeated triangles has a better
ability to promote the unidirectional growth of neural processes. Renault et al. designed a
microfluidic device with microchannels of “arch” in which unidirectional growth can be
achieved by reintroducing neurites that do not require directional growth into the original
compartment [83]. In addition to the above shapes, hook-shaped microchannels [84], barb-
shaped microchannels [85], and microchannels from wide to narrow [86] have also been
developed to promote the unidirectional growth of neurons growing in compartments.
Based on previous research, Forró’s team developed a “stomach”-like microchannel, as
shown in Figure 4E [28]. This shaped channel can greatly improve the efficiency of neurite
growth between two nodes, and the success rate of unidirectional growth can reach 95%.
Girardin et al. [87] and Ihle et al. [88] used microfluidic devices to study the response of
user-defined neural networks to electrical stimulation, and the design of the microfluidic
devices was inspired by Forró et al. [28].
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Figure 4. PDMS microfluidic devices with controlling synaptic growth channels. (A) Structure
diagram of a microfluidic device capable of separating cell bodies and neurite [76]. Reproduced with
permission from Taylor, Nature Methods; published by Nature, 2005. (B) A microfluidic device with
a plurality of axon chambers surrounding the axon chambers [80]. Reproduced with permission
from Park, Journal of Neuroscience Methods; published by Elsevier, 2014. (C) A modular platform
consisting of multiple individual microfluidic units that can be combined in several configurations
to create bespoke culture environments [81]. Reproduced with permission from Megarity, Lab on a
Chip; published by Royal Society of Chemistry, 2022. (D) An asymmetric microchannel that controls
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the unidirectional growth of neurite [82] DIV 6, DIV 7, and DIV 9 represent neurons cultured for 6, 12,
and 9 days, respectively. Reproduced with permission from Gladkov, Scientific Reports; published
by Nature, 2017. (E) A “stomach”-shaped microchannel that controls the unidirectional growth of
neurite [28] (DIV 6, DIV 12, and DIV 18 represent neurons cultured for 6, 12, and 18 days, respectively).
Reproduced with permission from Forro, Biosensors and Bioelectronics; published by Elsevier, 2018.

3.3. Important Applications of Compartmental PDMS Microfluidic Devices with Controlled
Neurite Growth PDMS in Neuroscience

Such microfluidic devices for neuronal cultures with controllable neurite growth have
been important research tools in the field of neuroscience since their development and have
led to important achievements in the research of the pathological mechanisms of neural
diseases and simplified models of brain regions in vitro [89,90].

In the study of neurological diseases using microfluidic devices, the drug-induced
pathological model can be constructed by controlling the concentration of substances
in the chamber. Kunze et al. constructed a novel experimental model of Alzheimer’s
disease in vitro [91]. Specifically, they added Okada acid to the compartment on one side
of the microfluidic device which caused the hyperphosphorylation of the Tau protein
of neurons in the compartment (one of the main signs of Alzheimer’s disease). This
model can be used to study the transmission of cellular neural information on both sides
of “health” and “disease”. In a similar study, Kajtez’s team aimed to use microfluidic
devices to study the mechanism of neural information transmission in the pathogenesis of
Parkinson’s disease in vitro [92]. They built a nigrostriatal pathway related to Parkinson’s
disease by cultivating human-induced neurons in the connected chamber. Virlogeux et al.
developed a cortical–stratal network on a chip by combining microfluidic devices with high-
resolution microscopes [93]. In addition, microfluidic devices are also used in the research
of epilepsy [94], inflammation [95], amyotrophic lateral sclerosis [96], brain tumors [97],
and other disease models.

Advanced functions of the neural system are closely related to the connections between
neural networks. Therefore, the co-culturing of different cell populations and the specific
synaptic connections between neurons are two important and necessary conditions for es-
tablishing a simplified model that can simulate part of the brain’s function in vitro [98,99].
This kind of microfluidic device with different chambers can well meet these two condi-
tions. Neuron–glial cells [100], neuron–muscle cells [101], neuron–cancer cells [102], neuron–
Schwann cells [103], etc., were cultured into microfluidic devices by researchers to build
models for researching the transmission of information among different cells. These models
can be used to study the communications between cell populations related to the brain and
play important roles in understanding the closed-loop feedback mechanism of the neural
system and neural network dynamics. For example, Berdichevsky’s team developed an
in vitro platform based on microfluidic devices to study neural pathways between different
brain regions by co-culturing brain slices of different brain regions (such as the hippocampus
and entorhinal cortex) in the device [104]. Berdichevsky applied this platform to study the
connectivity of neuronal circuits, synaptic activity, and drug screening, respectively.

4. Fabrication of Neural Chips Integrating Microfluidics and Microelectrode Arrays
4.1. Fabrication of In Vitro MEAs

The manufacturing of in vitro MEAs mainly depends on two basic processes: MEMS
and CMOS [105]. Commonly used planar and 3D MEAs are mostly prepared based
on MEMS technology [106,107], while the preparation of high-density MEAs, requiring
a higher spatial resolution, is based on a CMOS process [108]. Planar MEAs contain
components such as recording sites, counter electrodes, contact sites, connecting wires,
and external circuits. The manufacturing process of planar MEAs includes mask making,
multiple lithography, multiple material deposition, etching, and surface treatment. These
processes must be completed in a super clean room [31]. The basic process flow is shown
in Figure 5A. Before making MEAs, the substrate is generally cleaned to remove pollutants
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from the surface and increase hydrophilicity. Next, the conductive film is patterned onto
the substrate by means of photolithography and physical vapor deposition. Commonly
used physical vapor deposition processes include vacuum evaporation and magnetron
sputtering. The conductive layer materials are often Pt, Au, TiN, and other materials with
good conductivity and biocompatibility. Sometimes, to better observe the growth of cells
cultured on MEAs, transparent conductive materials such as ITO [109] and PEDOT [110]
are also often used for conductive layers. After the conductive layer is deposited, it is
necessary to add insulation protection to the parts, except to the recording sites, counter
electrode, and contact sites. Generally, plasma-enhanced chemical vapor deposition is used
to deposit insulating materials on the surface of MEAs as insulating layers, and the parts to
be exposed are opened by etching technology [111].

So far, various 3D MEA preparation methods have been reported [112]. These prepa-
ration methods are mostly improved based on planar MEA. The typical method of manu-
facturing 3D MEAs is to use photolithography to make micropores, then deposit gold into
the micropores through electrochemical deposition, and finally to remove the photoresist
to obtain mushroom-shaped microelectrodes [113]. Nanoimprint stripping, electron beam
lithography, and focused ion beam scanning techniques are also often used to make 3D
nanoelectrode arrays. In addition, 3D printing technology is also a powerful tool for making
high-resolution microstructures, which can realize complex 3D electrode microstructures
at the microscale. These nano-microelectrodes can extract electrical and electrochemical
information on synapses [114].

4.2. Fabrication of PDMS-Based Microfluidic Devices

The appearance of polymer microfluidic devices represented by PDMS has optimized
the fabrication of microfluidic devices [115]. PDMS microfluidic chips can be produced
quickly and cheaply in any standard laboratory through a relatively simple process flow.
Figure 5B shows the standard method for copying and manufacturing PDMS microfluidic
devices. The manufacturing process of this method is relatively simple, which can be
divided into mold manufacturing and PDMS microfluidic device manufacturing according
to the sequence of processes (Figure 5B). First, the mold is made by microprocesses (the
specific method for making the mold is described in detail later). Then, the PDMS-mixed
solution containing a certain proportion of crosslinking agent (usually the weight ratio of
PDMS to curing agent is 10:1) is poured into the mold and baked at a high temperature
to quickly cure and shape it [116]. Finally, after the PDMS is demolded, microfluidic
devices with different microstructures can be manufactured in large quantities. The internal
morphology, structure, size, and other characteristics of the microfluidic devices are mainly
determined by the mold; therefore, how to make high-quality molds has become the key
problem in the manufacturing process of PDMS microfluidic devices.

Commonly used PDMS microfluidic molds are still made on a substrate using the
SU-8 photoresist [117,118]. This type of mold is made by patterning SU-8 on the substrate
at the micron or submicron level through photolithography and has a high aspect ratio.
Figure 5B shows the process of making an SU-8 mold. First, the SU-8 photoresist is
spin coated on the substrate and then soft baked according to the thickness of the SU-8
photoresist. Next, the mold is exposed to ultraviolet light and baked to accelerate the SU-8′s
polymerization so that the micropatterns on the mask are transferred to the SU-8 layer.
The above photolithography steps are repeated for different types of SU-8 photoresists on
the substrate to produce multilayer molds with different heights. Through these molds,
microfluidic devices with complex structures can be copied.

Because mold manufacturing needs a certain amount of time and additional manu-
facturing costs, it has become another area of research interest to discard the replication
program and directly build microstructures in PDMS. Recently, several methods for di-
rect patterning on a PDMS surface by photolithography have been reported. Chen et al.
reported a high-precision, repeatable micromachining method for PDMS surface pattern-
ing [119]. They spin coated the PDMS mixture on the activated substrate, then spin coated
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the photoresist on the PDMS layer as a protective layer, and finally etched the pattern on
the PDMS surface through reactive ion etching. The work of Gao [120], Bhagat [121], and
other teams proposed another method of surface graphics, which is to add photoinitiators
to PDMS to produce photosensitive PDMS (photoPDMS) so that PDMS can be directly
graphed. In addition, laser cutting technology is also an effective method to construct
PDMS surface micrographics. Li et al. used laser ablation technology to build microchan-
nels on PDMS and bonded PDMS devices with the substrate to form a closed microfluidic
system for the study of dielectrophoretic [122]. Oyama’s team also used low-energy electron
beam irradiation to build microchannels on the surface of PDMS devices [123].
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Figure 5. Fabrication process of a neural chip platform integrating microfluidics and MEAs. (A) Fab-
rication process of planar in vitro MEAs, including substrate cleaning (a), photolithography (b),
sputtering a metal layer (c), deposition of an insulating layer (d) and etching an open window [31].
Reproduced with permission from Xu, Biosensor; published by MDPI, 2022. (B) Fabrication process
of microfluidic devices based on SU-8 mold, including mold fabrication (a–d) and PDMS device
fabrication (e–g) [116]. Reproduced with permission from Park, Nature Protocols; published by
Nature, 2006. (C) Surface activation-based bonding method.

4.3. Bonding of In Vitro MEAs and Microfluidic Devices

In general, PDMS microfluidic devices that build microchannels and chambers need
to be closed through the substrate to form a closed chip [124,125]. In a neural chip platform
composed of an MEA and microfluidic equipment, the MEA acts as the closed substrate of
the microfluidic equipment, and the microelectrode of the MEA is located in the microfluidic
channel or chamber to detect electrophysiological signals [126]. This method of closing
microfluidic devices and substrates is called bonding because irreversible chemical bonds
are formed between the substrates and the activated or functionalized surfaces of PDMS.

At present, the bonding methods commonly used for PDMS microfluidic devices include
plasma surface activation [127], corona-treated surface bonding [128], ultraviolet/ozone-
treated surface activation [129], chemical bonding [130], and adhesive bonding [131]. Plasma
surface-activated bonding, corona-treated surface bonding, and ultraviolet/ozone-treated
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surface-activated bonding all belong to the category of surface activation and are the most
common methods for sealing microchannels and chambers. Surface activation is mainly
used for the bonding of PDMS and silicon-based materials (silicon or quartz glass). Its basic
purpose is to remove surface contaminants and generate covalent reactive groups. Usually,
the method of sealing by surface functionalization on the surface of the target substrate and
PDMS is called chemical bonding, which is generally used in the bonding research between
the PDMS and plastic substrate. Sometimes, in addition to functionalizing the surface, it is
necessary to add adhesives to achieve good sealing between the PDMS and substrate, which
is called adhesive bonding.

Because the substrate material of MEAs is silicon or glass, surface activation is com-
monly used in the bonding process between MEAs and PDMS microfluidic devices. Among
the surface activation methods, studies have shown that the method of corona treatment
will damage the metal film on the substrate [132], which is not suitable for bonding. Plasma
surface activation, especially oxygen plasma surface activation, is the mainstream bonding
method for MEAs as a substrate. Figure 5C shows the process of bonding MEAs with
PDMS microfluidic devices. The prepared MEAs and microfluidic devices are put into a
plasma cleaner for surface activation. After surface activation, the end methyl group is
replaced by the silanol group. Then, the MEAs and microfluidic devices are quickly aligned
on the alignment instrument and put onto a hot plate to remove the water molecules. After
the loss of the water molecules, the PDMS forms covalent siloxane bonds with the silanol
groups displayed on the surface of the MEAs, thus forming a seamless structure.

5. Neural Chip Platforms Integrating Microfluidic Devices and Microelectrode Arrays
Play a Key Role in the Application of the Neural Field
5.1. Recording and Modulation of Neural Signals

The combination of an MEA and microfluidic devices can be used to monitor the
generation and transmission of neural information within or between modular neural
networks in the compartment. In the most relevant studies, microelectrodes in MEAs are
either located in the microchannel or distributed at the inlet and outlet of the microchannel
(Figure 6A). The microelectrodes distributed near the microchannel solve the problem
of the difficult detection of axon electrical signals due to the small space size, complex
connection, and difficult separation of the axons. Many researchers use this platform for
information transmission between modular networks and axon signal research [133–135].
For example, Hong’s [136] and Goshi’s [137] teams found that the amplitude of the action
potential of the axon in the microchannel was significantly higher than that of the cell
body in the compartment, and they found that the microchannel would increase the noise
of the microelectrode (Figure 6B). Hong et al. estimated the conduction velocity of the
axons, which gradually becomes faster as the network matures. Goshi et al. further studied
the influence of microchannels on microelectrode performance and electrophysiological
record fidelity. The research shows that the increase in the noise of the microelectrode in
the channel is largely attributed to the increase in electrode impedance, which may be
caused by space limitation and cell blockage on both sides of the channel. To analyze the
neural information in compartmentalized microfluidic devices in a more friendly manner,
Heiney et al. developed an open and easy-to-use neural information computing tool
uSpikeHunter [138]. This tool can well quantify the electrophysiological parameters of
the axons in the microchannel, such as the rate of discharge, direction and speed of the
signal propagation, and origin of the signal. Neural modulation is also an essential function
of the MEA-based in vitro neural platform [139]. The activities of the neurons or neural
networks can be promoted or inhibited by electrical, optical, or chemical means. Studies
have shown that electrical stimulation is effective in studying synaptic plasticity [140],
axonal regeneration [141], network reorganization [139], etc. Because the potential ability of
electrical stimulation technology in neurite research meets the demand of neural platforms
combining MEAs and microfluidic devices to study neurite activity locally, it is widely used.
For example, Kim et al. found that electrical stimulation or neurotrophic factors can not
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only promote the growth of axons but also enable neural stem cells to further differentiate
into neural cells by using such neural platforms [141]. As an important auxiliary tool,
optical microscope imaging technology is used to characterize the state of axons in cell
bodies and microchannels in the chamber. After the specific immunofluorescence staining
of nerve cells, observation under a confocal microscope can provide researchers with a
large amount of internal information on the microstructure, such as the distribution of
the various nerve cells and the growth and connection of axons in the microchannels.
(Figure 6C) [29,137,142]. In addition, Moutaux et al. used calcium imaging technology and
MEA to study the electrical activity and calcium kinetics of synapses in the compartment
under electrical stimulation and local drug modulation (Figure 6D) [143].
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neural information. (A) The microfluidic device and an MEA combination (A1), and the distribution of
microelectrodes in microfluidic devices (A2) [133]. Reproduced with permission from Pigareva, Brain
Sciences; published by MDPI, 2021. (B) The difference between the neuronal discharges recorded
in the microfluidic device chamber (scale bars of electrophysiological signals: 20 µV, 25 s) and the
microfluidic channel (scale bars of electrophysiological signals: 200 µV,1 s) [137]. Reproduced with
permission from Goshi, Lab on a Chip; published by Royal Society of Chemistry, 2022. (C) The neurites
in microfluidic devices characterized by immunofluorescence [29]. Reproduced with permission
from Lewandowska, PLOS ONE; published by PLOS, 2015. (D) The neural activities of neurons in
the microfluidic devices characterized by electrophysiological signals (scale bars: 50 µV, 10 s) and
calcium signals simultaneously (scale bars: 0.25∆F/F, 10 s) [143]. Reproduced with permission from
Moutaux, Lab on a Chip; published by Royal Society of Chemistry, 2018.

5.2. Neuropharmacology Research

Toxicity research and efficacy testing of new drugs are crucial in drug development.
These tests can ensure the integrity of drug safety and efficacy. Traditional models for drug
development and toxicological research include in vivo and in vitro models. In vitro cell
models have become commonly used objects for drug screening research because of their
low cost and absence of ethical issues. At the same time, nerve cells are important research
objects of pharmacological research related to neurological diseases. MEAs can reflect
the influence of drugs on nerve cells by recording the changes in the electrophysiological
activities of neurons before and after exposure to chemicals. Because of this ability, MEAs
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have become an important research tool in drug screening and neurotoxicity detection [144].
In drug development and toxicology research related to cell models in vitro, microfluidic
devices are also one of the most popular research tools. The superiority of microfluidic
technology lies in its high throughput analysis capability [145].

Microfluidic devices with multiple chambers and multiple microchannels are often
used for the chemical stimulation of local cells and can be used for dynamic concentration
gradient drug reaction and high-concept drug screening. A microfluidic device combined
with MEA technology can directly reflect the dynamic change process of drug screening
through electrophysiological signals. Kraus’s team integrated MEAs with microfluidic
devices and detected changes in the electrophysiological information of myocardial cell cul-
tures during local drug stimulation [146]. Biffi et al. developed an MEA microfluidic device
platform for the local chemical stimulation of neural networks [147]. In this platform, the
culture area of neural cells was divided into two compartments, and the neural networks in
each compartment were cultured in the same biochemical environment. The network was
stimulated by injecting tetrodotoxin into the compartment separately to evaluate the neuro-
toxicity of tetrodotoxin. The research allowed for the controlled delivery of substances to
local cells, overcoming the limitations of traditional drug screening research. Because of this
local drug delivery capability, neural chip platforms integrating microfluidics and electrode
arrays have also been used in many studies that require local targeted pharmacological
operations [148,149], such as targeted drug therapy for neuritis [142].

5.3. Research of Neurological Diseases

Nervous system diseases affect hundreds of millions of people all over the world, and
this continues to increase every year [150]. The use of in vitro neural cell models has always
been an important tool for the study of nervous system functions and nervous system
diseases. At present, a neural chip platform combined with microfluidic devices and MEAs
can overcome the defect of the poor complexity of neural network structures and functions
of previous cell models and can reflect neural information under normal or abnormal neural
network conditions in real time through MEAs. Since microfluidic devices with chambers
and microchannels were created to solve the problem of neurite from the beginning,
research on neural diseases related to neurite injury or nerve regeneration is a direction
of further research for this kind of neural chip platform. Wijdegen’s team developed a
microfluidic platform integrating an MEA in a three-compartment series to study the
plasticity of synaptic connections after being cut [151]. Wijdegen’s team borrowed the
method of Tong et al. [152] to eliminate the neurite in the connecting channel. Specifically,
they used a pipette to introduce gas into the channel, where it generated bubbles and
cut off most of the axons. Figure 7A shows the growth of axons in microchannels before
and after axotomy. Finally, they used an MEA to study the dynamic response of the
neural networks during resection. In addition to physical methods, laser cutting [153] and
chemical drugs [103] are also common methods for modeling axonal injury. Generally, after
damage modeling on this kind of neural chip platform, researchers will also study the
dynamic electrophysiological process of nerve regeneration induced by drugs or electric
pulses [141].

In in vitro studies of neurodegenerative diseases, such as Alzheimer’s disease, Parkin-
son’s disease, and epilepsy, neural chip platforms with integrated microelectrode arrays and
microfluidic devices also play an important role [150]. As shown in Figure 7(B1), Pelkonen
et al. established an in vitro epileptic modular platform using MEA–PDMS chips to study
the epileptic activities of neural networks [154]. They designed a closed-loop three-zone
chamber microfluidic device and provided a gas supply module and a sealed plastic cover.
As shown in Figure 7(B2), kainic acid (KA) was added to a compartment to induce the
neural network to produce epileptic-like electrical activity, and the process of epileptic
signal transmission was reflected by studying the changes in the activity of neurons in
the connecting compartment. In addition, they also used the anticonvulsant phenytoin to
study the effect of treating epileptiform discharges on neurons in different regions.
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5.4. The Study of the Brain by Means of Simplified Model

The brain is the most complex structure in nature. This complexity comes from the
complex structure of single neurons and the interlaced connection of billions of neurons.
To study how the nervous system generates firing rhythms, encodes external stimuli, and
reacts to drugs, researchers have been developing simplified experimental models of the
extracorporeal brain in recent decades. The simplified brain model is also referred to
as the brain-on-chip in many studies [98]. To build an ideal brain-on-chip model, we
must first understand the basic characteristics of the brain. The function of the brain is
closely related to the interactions among different regions, and each region has a unique
structure and function; for example, the hippocampus has a specific dentate gyrus structure.
From this, we can infer that building an ideal in vitro brain model should at least have
the characteristics of modular connection topology and heterogeneity of neuron types
(Figure 8A).

Modularization is the key feature of the brain model in vitro, and the chip platform
integrated with microfluidics and microelectrode arrays has solved the problem of the
modular cultivation and detection of neurons. To reveal the relationship between the
structure and function of modular neural networks, Park et al. constructed three types of
modular cortical networks and studied the connection between the neural activities and
modules [27]. As shown in Figure 8B,C, they inoculated cortical neurons into four, three,
and two culture chambers and recorded them as M4, M3, and M2. By estimating the size of
the axonal bundles in the stained channels, it was determined that the modular connection
strength decreased according to M4, M3, and M2. In addition, from the recorded spike
signal, it can be found that when the connections between modular neuronal networks
are strong, the neural signal transmits symmetrically in most microchannels, while when
the connections between the networks are not strong, the direction of neural information
transmission is asymmetric. According to the known connections of brain regions or
subregions, the model designed to study the connections between neuronal networks
is more suitable for studying the brain. Poli’s team [155] and Vakilna’s team [156] used
an MEA integrated with a dual compartment microfluidic device as a tool to build a
simplified model for studying the information transmission between various subregions in
the hippocampus circuit in vitro. In the work of Poli et al. [155], they inoculated neurons
with the same area density ratio as each subregion in the brain in the microfluidic device
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and stimulated and recorded the information transmission characteristics between regions
through microelectrodes. They cultivated hippocampal slices on this chip platform to study
the neural circuit of neural information transmission in the hippocampus. It was found
that the information was projected from the dentate gyrus (DG) area to the cornu ammonis
3 (CA3) area and then to the cornu ammonis 1(CA1) area.

Compared with a single type of neural cell, the neural chip platform integrating mi-
croelectrode arrays and microfluidics is used more for the co-culture of heterogeneous cells
(Figure 8A). In this way, researchers try to build connection models between different func-
tional brain regions in vitro to better reveal the mysteries of brain science. Hippocampus–
cortex [157], cortex–striatum [93], cortex–thalamus [158], forebrain–midbrain neurons [159],
and other brain regions have been used in the study of simplified brain models. Recently,
Chang’s team studied the hippocampus–neocortex co-cultured brain model from embry-
onic rats (Figure 8D) and found that this model can not only retain the original rhythmic
activities of a single neural network but can also complete the communication among
heterogeneous networks composed of different neurons [160]. Brofiga et al. also found that
the hippocampal network mainly projects inhibitory connections to the cortical network
using the hippocampus–cortex model in vitro [161]. In addition to the nervous system,
Duc et al. co-cultured motor neurons and myoblasts on the neural chip platform and
successfully activated the action potential of extracellular muscles by stimulating motor
neurons with microelectrodes (Figure 8E) [61]. This study provides an effective model
of the neuromuscular system, which can be used to study the underlying mechanism of
physiological effects.
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Engineering; published by IOP Publishing, 2021. (B) Neural chip platform for modular neuron
culturing [27]. Reproduced with permission from Park, Lab on a Chip; published by Royal Society of
Chemistry, 2019. (C) Three modes of co-culturing cortical neurons on a neural chip with four culture
chambers. (D) In vitro brain model of hippocampal–cortex co-cultures [160]. Reproduced with
permission from Chang, Frontiers in Neuroscience; published by Frontiers, 2022 (from Chang et al.,
2022). (E) In vitro brain model co-cultured with motor neurons and muscle cells [61]. Reproduced
with permission from Duc, Lab on a Chip; published by Royal Society of Chemistry, 2019.
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In addition to modularity and heterogeneity, brain tissue also has a three-dimensional
structure (Figure 8A) [98]. The three-dimensional microenvironment in the brain also plays
an important role in the correct expression of nerve cells and normal electrophysiological
activities. Therefore, when building a simplified model of the brain in vitro, the ability of
the neuronal networks in the model to maintain 3D growth is also an important condition
to evaluate whether the function of the model is complete. Brofiga and his colleagues built
a three-dimensional interconnected heterogeneous (cortex–hippocampus) brain model on
a neural platform integrating a microfluidic device and an MEA using microspheres as
scaffolds [162].

Finally, we used Table 1 to summarize the typical applications of neural chips in this
review article.

Table 1. Several typical neural chips and their applications.

Neural Chip
Components Arrangement of MEA Detection Object Application Reference

MEA
Microelectrodes fitting the
shape of the dentate gyrus
of the hippocampal slices

Hippocampal slices Research on epilepsy
circuit He et al. (2021) [57]

MEA
128 microelectrodes are

distributed in the center of
the MEA

Hippocampal neurons
Research on the learning

function of neural
networks in vitro

Xu et al. (2022) [139]

CMOS MEA
4225 recording electrodes

and 1024 stimulation
electrodes

Retina Research on visual
restoration Cojocaru et al. (2022) [163]

MEA and PDMS-based
microfluidic device

Microelectrodes are in the
microchannel Neural stem cells Detection of neurite

signals Kim et al. (2022) [141]

MEA and PDMS-based
microfluidic device

Microelectrodes are
arranged at the edges of

three chambers

Human stem cell-derived
neurons

Research on epileptic
seizures Pelkonen et al. (2020) [154]

MEA and PDMS-based
microfluidic device

Microelectrodes are
arranged on both sides of

the microchannel

Co-culture of motor
neurons and muscle cells

Construction of the
neuron–muscle model

in vitro
Duc et al. (2021) [61]

CMOS MEA and
PDMS-based microfluidic

device

26,400 electrodes located
in an area of

3.85 × 2.10 mm2
Cortical neurons High-density detection of

neural signals Duru et al. (2022) [164]

MEA, PDMS-based
microfluidic device, and

magnetic bead

60 microelectrodes are
evenly distributed in two
chambers of microfluidic

devices

Cortical and hippocampal
neurons

Cultivate
three-dimensional brain

network
Brofiga et al. (2020) [162]

6. Conclusions and Future Perspectives

Neural chip platforms integrating microfluidic devices and microelectrode arrays have
developed rapidly over the past decade. Compartmentalized microfluidic devices facilitate
the control of the morphology of the neural network as well as the microbiochemical
environment. Meanwhile, microelectrode arrays can feedback the changes in the neuronal
network activity by detecting the electrophysiological signals networks. Overall, neural
chips integrating microfluidic devices and microelectrode arrays have been developed
into highly promising platforms for practical use, e.g., in vitro drug screening, mechanistic
studies of neurological diseases, simplified model studies of the brain, etc. The neural chip
platform has shown excellent application potential in neural correlation, and researchers
have shown increased interest. Therefore, we comprehensively reviewed and focused on
recent advances in the application of neural chip platforms.

Despite the exciting progress of neural chip platforms in neural fields, there are still
many challenges. Below, we summarize several of the current major pitfalls of neural
chip platforms. First, the space and maintenance of cell growth substances for cultures
in microchambers and microchannels are greatly reduced compared to cultures exposed
directly to air. This challenges the ability of cells to maintain long-term good activity [165]
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and greatly limits research of the neural chip platform. Second, there are some gaps
between the functions of neuronal networks cultivated on the neural chip platform and
those of brain networks [166]. This is not conducive to the development of in vitro models
with more a complete brain function and organoid chips. Finally, there is still room for
improvement of the fabrication of neural chip platforms. For example, the stability of
the adherence of microfluidic devices to an MEA under long-term in vitro culturing can
be improved. In addition, the application of more advanced interface materials can not
only increase the biocompatibility of the chip platform but can also improve the recording
performance and electrical stimulation performance.

In the future, researchers can make efforts in many directions to further optimize
neural chip platforms integrating microfluidic devices and microelectrode arrays. First,
the long-term cell culture technology in microfluidic devices can be further improved.
For example, an automatic delivery system adding culture medium can be included in
microfluidic devices, turning the cells in the microchannel into rich nutrients. In addition,
improvements to the spatial structure of microfluidic devices can be an effective method. In
studies of microelectrode arrays integrated microfluidic devices, the culture cycle of neural
cells is usually less than two months [27,61,154]. To achieve some special experimental
purposes, such as achieving the long-term tracking and detection of neural signals, to
study the mechanisms of neuronal network growth and development, and to evaluate the
long-term effects of drugs on neuronal networks, it is necessary for cells to maintain good
activity in vitro for a long time. Secondly, to construct in vitro networks with structures and
functions similar to those of neuronal networks in the brain, neural chip platforms integrat-
ing microelectrode arrays and microfluidic devices can achieve this goal using technologies
such as 3D scaffolds. Third, advanced MEAs or microfluidic devices can be fabricated using
new materials to obtain neural chips with a higher performance. For example, PEDOT and
ITO are used as conductive layers for MEA to enhance the transparency of the chip [167].
This is helpful for observing the growth of neural cells in experiments. Nanohydrogel was
used to wrap nanocomposites to improve the biocompatibility of microelectrodes [168].
We believe that with more research focused on solving such existing problems, neural chip
platforms will make a significant contribution to neuroscience research.
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