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Abstract: Fiber-reinforced composites (FRC) are widely used in various fields due to their excellent
mechanical properties. The mechanical properties of FRC are significantly governed by the orien-
tation of fibers in the composite. Automated visual inspection is the most promising method in
measuring fiber orientation, which utilizes image processing algorithms to analyze the texture images
of FRC. The deep Hough Transform (DHT) is a powerful image processing method for automated
visual inspection, as the “line-like” structures of the fiber texture in FRC can be efficiently detected.
However, the DHT still suffers from sensitivity to background anomalies and longline segments
anomalies, which leads to degraded performance of fiber orientation measurement. To reduce the
sensitivity to background anomalies and longline segments anomalies, we introduce the deep Hough
normalization. It normalizes the accumulated votes in the deep Hough space by the length of the
corresponding line segment, making it easier for DHT to detect short, true “line-like” structures. To
reduce the sensitivity to background anomalies, we design an attention-based deep Hough network
(DHN) that integrates attention network and Hough network. The network effectively eliminates
background anomalies, identifies important fiber regions, and detects their orientations in FRC im-
ages. To better investigate the fiber orientation measurement methods of FRC in real-world scenarios
with various types of anomalies, three datasets have been established and our proposed method
has been evaluated extensively on them. The experimental results and analysis prove that the pro-
posed methods achieve the competitive performance against the state-of-the-art in F-measure, Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE).

Keywords: fiber-reinforced composite; orientation inspection; deep Hough normalization; normalized
deep Hough transform; attention-based deep Hough network

1. Introduction

Fiber-reinforced composites (FRC) have been widely used in various industrial fields,
such as aerospace, marine, and sporting goods, thanks to their excellent fatigue and
corrosion resistance, super strength, high toughness and light-weight properties [1]. FRC
is commonly fabricated by overlapping a certain number of fiber prepreg sheets on the
mold with regularly alternating orientations layer-by-layer, as shown in Figure 1. Fiber
prepreg sheets are pre-impregnated fibers that have been coated with a resin matrix and
then partially cured, making them ready for use in composite fabrication. The fibers are the
primary load-carrying element in fiber prepreg sheets, and provide strength and stiffness
in the direction of their alignment. Thus, the fiber orientations have a significant impact
on the mechanical properties of the final composite parts. However, the automated or
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manual fiber prepreg sheets placement could bring the discrepancies between the intended
fiber orientation and the fiber actual orientation, which may result in the overall system
performance degradation. For instance, the deviation of 5◦ can reduce the strength of
FRC components by almost 20% [2]. Therefore, an efficient fiber orientation inspection
system for FRC fabrication is desperately needed if the fiber placement system is not under
good control.

Figure 1. Automated visual inspection system of industrial composite fiber orientation.

Fiber orientation inspection techniques can be broadly classified into two categories:
destructive testing and non-destructive testing (NDT) [3]. The destructive testing tech-
niques are typically used in research and development. It focuses on understanding the
mechanical properties of the material rather than on manufacturing quality control [4].
NDT includes a range of techniques, such as automated visual inspection [5], ultrasonic
testing [6], X-ray radiography [7], and thermography [8–10], which allow for the inspection
of the fiber orientation without damaging the material. Automated visual inspection uses
image processing algorithms to analyze the texture images of FRC and determines the fiber
orientation. Compared to other NDT techniques, automated visual inspection can utilize
the common 2D camera. It exerts great potentials in measuring fiber orientation, thanks to
its advantages in cost-effectiveness, computational efficiency and accuracy.

The Hough transform (HT) and the deep Hough Transform (DHT) are major image
processing methods for automated visual inspection of fiber orientation [11,12], as the “line-
like” structures of the fiber texture in FRC are readily detectable using these methods [13].
The HT works by mapping image points to a parameter space in which a line can be
represented as a single point. In the parameter space, a simple voting scheme is used
to identify the most likely line parameters. The DHT employs a deep neural network to
perform the mapping from image features to parameter space, which can improve the
accuracy, efficiency, and robustness of the HT [11]. However, the DHT still suffers two
challenging issues in measuring fiber orientation, which are listed as follows.

(1) Sensitivity to background anomalies: Background anomalies caused by mold
regularly appear in FRC images, as shown in Figure 2. The mold background may cause
dark spots, lines, or speckles on the FRC images, which could be mixed with fibers and
cause the DHT to detect false lines in the image. The reduction of FRC regions in the image
also generates more short line segments, further decreasing the line detection performance
of DHT.
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Figure 2. Typical FRC images with various types of anomalies, including the longline segments
anomalies caused by gap and reference line, and the background anomalies resulting from mold. In
the set of images presented, the first row depicts real FRC images with various type of anomalies,
and the second row illustrates corresponding synthetic images. The synthetic images are generated
to augment the real images, considering the difficulty in collecting a large number of anomalous
images from real-world scenarios. It can be observed that the synthetic images closely resemble the
real images.

(2) Sensitivity to longline segments anomalies: The DHT detects a line by searching
group of points in an image that lie on the line. Longer line segments containing more
points are assigned higher weights in Hough space. However, there are often many longline
segments anomalies on the surface of FRC, such as reference line emitted by a laser projec-
tor, or gap caused by FRC fracture, as shown in Figure 2. To provide a visible marker for
aligning the FRC, the reference line is projected onto its surface. FRC can become damaged
or worn over time, which can lead to gaps on the surface. These longline segments anoma-
lies can gain more votes in the Hough space than shorter, true “line-like” structures, which
can seriously affect the performance of fiber orientation measurement. Traditional Hough
normalization can improve the robustness of the traditional Hough transform to longline
segments anomalies [14], but also makes it more sensitive to background anomalies. Be-
cause there are many short line segments near the edges of the FRC regions in the images
with background anomalies. After traditional Hough normalization, these short line seg-
ments may produce peaks in the parameter space that exceed the detection threshold [15],
thus reducing the performance of the model in detecting true “line-like” structures.

To address these issues, we propose an attention-based deep Hough network with
Hough normalization, which is robust to the background and longline segments anomalies.
The main contributions of this paper are summarized as follows.

(1) An attention-based deep Hough network (DHN) is proposed to remove background
anomalies caused by mold in FRC images, which seamlessly integrates the attention
network and the Hough network together. The attention network is used to learn the
important regions of the FRC image that contain the fiber orientation information, while
the Hough network is used to detect the fiber orientations in those regions.

(2) The deep Hough normalization is proposed to improve the accuracy and robustness
of the DHT when applied to FRC images with longline segments anomalies and background
anomalies. It works by normalizing the accumulated votes in the deep Hough space by the
length of the corresponding line segment, which completely eliminates the influence of line
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length on DHT. The deep Hough normalization can make the DHT robust to both longline
segments anomalies and background anomalies.

(3) Three separate datasets have been established, which include normal FRC im-
ages, FRC images with longline segments anomalies, and FRC images with background
anomalies. Our method has been extensively evaluated on these datasets, and achieves the
competitive performance against the state-of-the-art in F1, MAE and RMSE.

The rest of this paper is organized as follows: Section 2 summarizes the related
works. Section 3 describes the materials and the proposed methods with sufficient detail.
Section 4 presents the experimental details and systematic analysis. Section 5 concludes the
whole paper.

2. Related Work

Automated visual inspection involves using image processing algorithms to analyze
the texture images of FRC and determine the fiber orientation. These image processing
methods which can be categorized into a few groups namely, statistical methods, spectral
methods, structural methods and deep-learning methods. In this section, we briefly review
the above methods and their applications in fiber orientation measurement.

2.1. Statistical Methods

Statistical methods utilize the analysis of grey-level value distribution surrounding an
image pixel to determine patterns. The methods are divided into two categories based on
the number of pixels considered to define the local feature: first-order statistics (one pixel)
and second-order statistics (two pixels).

Although only the values of individual pixels are considered, first-order methods
are often utilized. To measure the orientation of fibers, the structure tensor matrix is
commonly employed [16,17]. The structure tensor matrix determines the orientation of
a particular region by exploiting the fact that the first-order directional derivatives are
greater in directions perpendicular to the fiber orientations than in other directions. The
eigenvector associated with the largest eigenvalue of the structure tensor matrix indicates
the vertical orientation of the fiber orientation.

In contrast, second-order statistical characteristics depict the connections among the
grey-level intensities in a given area. For measuring fiber orientation, numerous second-
order techniques have proved to be effective. A grey-level co-occurrence matrix (GLCM)
essentially represents the probability distribution of gray levels at positions that satisfy a
certain relative distance within an image. Zheng et al. [18] introduced a GLCM-derived
parameter that quantifies the extent of diagonal concentration of the GLCM elements and
utilized its integration over the relative distance variable as an indicator to identify the
dominant texture orientation. Alshehri et al. [19] presented a robust fingerprint descriptor
named the co-occurrence of ridge orientations, which encodes the spatial distribution
of ridge orientations. The Hessian matrix is created by second-order derivatives. Bara-
nowski et al. [20] suggested a technique based on an eigenvalue analysis of the Hessian
matrix in each voxel of a 3D image to determine the local fiber orientation from 3D image
data. Pinter et al. [21] compared three methods, including Hessian matrix computation, to
evaluate their ability to identify accurate fiber orientations and their susceptibility to errors
due to imaging modalities and material composition.

2.2. Spectral Methods

Spectral methods can analyze the frequency content of texture strictly in the spatial
or frequency domain whose coordinate system has an interpretation closely related to
the characteristics of the texture. Spectral methods can analyze the frequency content of
texture strictly in the frequency domain (e.g., Fourier transform [22,23]), strictly in the
spatial domain (e.g., steerable filters [21,24,25]), or both, frequency and spatial domains
(e.g., Gabor [6] and wavelet transform [26]).
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The Fourier transform can quantify the spatial variations in an image. The power
spectrum of image will have high power in the orientation orthogonal to the fiber orienta-
tion. Bardl et al. [22] applied the 2D Fast Fourier Transform (2D-FFT) on the local segments
of the eddy current image to determine the local yarn orientation. Brandley et al. [23]
proposed a novel method of applying the 2D-FFT to scanning electron microscopy, which
map the carbon nanotubes orientation in pre-formed arrays.

The steerable filters have also been used to measure the fiber orientation by locally
maximizing the convolutional result of image with a set of orientation-selective filters com-
puted from a linear combination of basis filters. In [21,24], authors compared anisotropic
Gaussian filtering method with other methods such as Hessian matrix calculation and
structure tensor calculation in their ability to describe correct fiber orientations. They found
that the accuracy of the Gaussian filter method depends on the number of sampling direc-
tions, which is a clear disadvantage of this method. Legaz-Aparicio et al. [25] proposed a
framework based on a simple texture feature extraction step which decomposes the image
structures by means of a family of orientated filters.

Gabor and wavelet transform are two other common methods to measure fiber orien-
tation. Yang et al. [6] analyzed the 2D slice of 3D ultrasonic data by the Gabor transform
method coupled to the concept of an Information Diagram (GF-ID). The GF-ID improves
the Gabor transform method by constructing local Gabor filters with optimal orientation.
Lefebvre et al. [26] proposed a method for measuring the texture orientation based on a
wavelet analysis, which searching for the orientation that best concentrates the energy of
wavelet coefficients in a single orientation.

Statical and spectral methods are rule-based methods and therefore sensitive to noise
and anomalies. In addition, they inherently operate in the Cartesian coordinate, which
making the accurate extraction of orientation information a secondary process requiring
careful correction to remain universally valid [24].

2.3. Structural and Deep Learning Methods

Deep-learning methods have also been applied to texture images analysis to measure
the fiber orientation, thanks to powerful feature extraction ability. Sabiston et al. [27] used
artificial neural networks to predict the fiber orientation within a compression moulded
composite by training the network on fiber orientation data. Bleiziffer et al. [28] utilized
convolutional neural network (CNN) to compute the direction of the fibers in Micro X-ray
computed tomography (CT) images. In addition, they established a workflow based on
molecular dynamics simulations to efficiently create synthetic training data for the CNN.
Kociołek et al. [29] tested the applicability of CNNs to texture directionality detection and
presented the test results focusing on the CNN architectures and their robustness with
respect to image perturbations. However, these works directly used the deep-learning
model without considering the distribution pattern of texture features.

Structural methods consider texture to be composed of several elements (called prim-
itives), which occur repeatedly according to regular or irregular placement rules. The
difference between structural methods is the choice of primitives. Industrial composite
fiber surfaces have an obvious “line-like” structure [13]. Therefore, the primitives in this
work are line segments. The Hough transform and Radon transform are two classical line
detection algorithms. The Hough transform is the discretized form of the Radon transform.
Schmitt et al. [30] developed a real-time machine-vision system based on the Hough trans-
form with the main purpose of the real-time, accurate and robust fiber orientation detection
under industrial conditions. Holder et al. [31] used the Hough transform to determine the
fiber orientation in optical coherence tomography (OCT) images. Nelson et al. [32] used
the Radon transform to measure the fiber orientation of local 2D images extracted from
the 3D ultrasonic data. The Hough transform and the Radon transform are both sensitive
to the image artifacts. To address this problem, the work of [11] proposed deep Hough
transform (DHT) by incorporating CNN into the Hough transform. However, the DHT is
sensitive to longline segments and background anomalies.
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The basic Hough transform also has a bias towards features in the center of the image.
The longer lines running through the center of the image have higher potential maxima
than lines cutting across the corner of the image. Krieger Lassen [14] introduced normalized
Hough transform to overcome this bias. However, the normalized Hough transform not
only improves the robustness of the basic Hough transform to longline segments anomalies,
but also makes it more sensitive to short lines near the edges of images. Though particular
strategies [15] have been introduced to reduce its sensitivity to short lines near the edges of
the images, the improvement in performance is limited.

There is currently very limited related work on combining attention networks with
the Hough transform. Palme et al. [33] proposed a two-stage Hough transform, which
firstly obtained an approximate estimation of lines by applying Hough transform to the
entire image, which can be considered as “attention” on the entire image. The second stage
then performs a more detailed sampling on specific line segments, which is equivalent to
paying “attention” to specific regions. Therefore, although this method does not directly
use attention mechanism, its design concept and implementation process can be considered
as focusing on specific regions for more detailed processing.

3. Materials and Methods
3.1. Composite Specimen and Image Acquisition

The fiber prepreg sheet used in this study is CYCOM X850®(Cytec Industries, Wood-
land Park, NJ, USA). The CYCOM X850 is composed of the thermoplastics toughened
epoxy and unidirectional T800 fibers. The resin content of the CYCOM X850 is 35% by
weight and the fabric area density is 292 g/m2.

To thoroughly evaluate the robustness of the proposed method in measuring fiber
orientation under different real-world scenarios, we establish a normal dataset and two
anomalous datasets, each for one type of anomalies (longline segments anomalies, back-
ground anomalies). Each dataset has 5400 training images, 3600 validation images, and
5400 test images.

The normal dataset contains 14,400 normal FRC images with 180 different fiber orien-
tations ranging from 0° to 179° at 1° increments, and 80 types of illuminations which cover
a large range of light conditions. In order to collect the normal dataset, a data collection
platform has been built. The FRC data collection platform consists of four parts: camera,
symmetric light source, computer, and two pieces of fiber prepreg sheets. The camera is
a 2D camera (HikVision MV-CA050-12GC2) with lens (HikVision MVL-KF2524M-25MP,
focal length: 25 mm), connected to the laptop by USB cable. The laptop is equipped with
Intel Core i7 processing unit and 16G memory. Different light intensities can be obtained
by adjusting the light source height, illumination angle, and light intensities. The ranges
of light source heights relative to the FRC layer are [10 cm, 20 cm, 30 cm, 40 cm, 48.5 cm],
and the ranges of the illumination angles are [20°, 45°, 75°, 90°]. The acquired images are
RGB images with resolution of 2048 × 2048. After being converted to grayscale images, the
acquired images are resized to 200 × 200 to compose the normal dataset.

It is well-known that training neural networks can be a tedious task, due to the high
cost of obtaining the large amount of labeled data required to train a general model [28].
Utilizing synthetic data for model training has become more popular in recent years as
a way to address the issue, which can be obtained quickly and at much lower cost [34].
Both the longline dataset and the background dataset contain a large number of synthetic
images generated from the normal dataset.

The longline dataset contains FRC images with longline segments anomalies, such
as reference lines emitted by a laser projector or gaps resulting from FRC fractures. The
reference lines serve as a precise alignment of the fiber orientation in the actual lay-up
scene, and FRC typically fractures along the direction of the fibers. Thus, the orientations
of the reference lines or gaps should not deviate too much from the fiber orientation.
On the longline dataset, the orientation of the reference lines and gaps deviates no more
than ±10° from the fiber orientation. The process of simulating a gap resulting from FRC
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fractures involves drawing two parallel straight lines on the normal FRC image, filling the
space between the lines with white to create a gap, and normalizing the gap to match the
brightness of the surrounding FRC material. The gap widths are between 2 to 10 pixels.

The background dataset comprises FRC images with background anomalies caused by
mold, which may create dark spots, lines, or speckles on the FRC images. The mold used
in this study is a matte metal mold. To create a FRC image with background anomalies, the
first step is to generate a binary mask, which can be divided into two parts. Then, we fill
one part of the mask with the normal FRC image and the other part with the mold image.
Finally, the mold image part is normalized to match the brightness of the FRC image, which
ensures that the final synthetic image has a uniform level of illumination across both the
FRC and mold regions. Two algorithms are employed to generate the binary mask, which
include 1D random walks and B-splines. The area of the normal FRC part accounts for 20%
to 40% of the total image area.

3.2. Preliminaries

The texture of FRC image consists of long parallel lines. The fiber orientation mea-
surement for the FRC image is to detect the orientation of these parallel lines. As shown in
Figure 3, given a 2D image IH×W ∈ RH×W , where H and W are the spatial size, we set the
center of the image as the origin. A straight line l is one representative fiber texture, which
satisfies the following equation in the polar coordinate frame:

rl = x cos θl + y sin θl (1)

where rl ∈
[
−
√

W2 + H2/2,
√

W2 + H2/2
]

is the distance from the origin to the line l,
θl ∈ [0, π) is the angle between the normal of the line l and x-axis. We define θl as the fiber
orientation of the FRC image.

Figure 3. A straight line l is one representative long line among the texture of FRC image. θl is the
angle between the normal of the line l and x-axis, rl is the distance from the origin to the line l. We
define θl as the fiber orientation of the FRC image.

As described in Equation (1), every straight line in the image can be represented by
two parameters θ and r. The two parameters are quantized into discrete bins. The discrete
binned parameter space is denoted as the Hough space. We define the quantization interval
for r and θ as ∆r and ∆θ, respectively. Then the Hough space size, denoted with Θ and R
can be formulated below:

Θ=
π

∆θ
, R =

√
W2 + H2

∆r
(2)
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3.3. Attention-Based Normalized Deep Hough Network

The attention-based normalized Deep Hough Network (AttNorm-DHN) mainly con-
tains four components: (1) an encoder network that extracts pixel-wise deep representations;
(2) an attention network that learns the important regions of the FRC image which contains
the fiber orientation information; (3) the Norm-DHT that converts the deep representations
from the spatial space to the Hough space; (4) the orientation measurement module that
measures the fiber orientation in the Hough space. The AttNorm-DHN is an end-to-end
framework, which allows the network to learn the entire process directly from raw inputs
to the desired outputs. During the training process, we optimize all the components from
scratch without any pre-training or transfer learning. The pipeline of AttNorm-DHN is
shown in Figure 4.

Figure 4. The pipeline of the attention-based normalized Deep Hough Network (AttNorm-DHN).
The network consists of four components, i.e., the encoder network, the attention network, the
normalized DHT, and the orientation measurement module.

3.3.1. Encoder Network

The encoder network is an important component that is responsible for extracting
pixel-wise deep representations from the input image. The deep representations obtained
from the encoder network have a higher level of abstraction compared to the raw pixel
values of the input image. These representations are then used to capture the structural
information of the image, which is crucial for accurately measuring the fiber orientation in
FRC images.

Given an input image IH×W ∈ RH×W , the deep CNN features X ∈ RC× H
2 ×

W
2 is firstly

extracted with the encoder network, where C indicates the number of channels and H, W
are the spatial size.

To perform a fine-grained deep Hough transform on the deep CNN features X, it is
necessary to ensure that the feature resolution of X is sufficiently high. To achieve this, a
shallow encoder network is designed. Table 1 shows the network architecture of encoder
network. The network mainly consists of multiple 3× 3 convolution layers except for the
last Conv 1× 1 layer, which compresses the output from 128 dimensions to 64 dimensions
in order to obtain more compact feature representations. We use ReLU activation in all
layers of the encoder network [35]. The Maxpool operation correspond to 2× 2 maxpooling,
which reduces the spatial resolution of the feature maps by a factor of 2 [36].
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Table 1. Network architecture of the encoder network.

Operation Activation Function Output Shape

Input image 1 × 200 × 200
Conv 3 × 3 ReLU 64 × 200 × 200
Conv 3 × 3 ReLU 64 × 200 × 200

Maxpool 2 × 2 64 × 100 × 100

Conv 3 × 3 ReLU 128 × 100 × 100
Conv 3 × 3 ReLU 128 × 100 × 100

Conv 1 × 1 ReLU 64 × 100 × 100

3.3.2. Attention Network

The attention network takes the FRC image as input and produces an attention map.
The attention map is a weight map indicating the importance of each spatial location in the
output features of encoder network. It highlights the regions of the image that are most
relevant for predicting the fiber orientation.

Given an input image I, the attention weights A ∈ RC× H
2 ×

W
2 of input image is gen-

erated with the attention network. Then the attention weights A is used to compute the
weighted deep CNN features Xatt.

Xatt = A⊗ X (3)

where ⊗ indicates the element-wise multiplication.
Table 2 shows the network architecture of attention network. The network architecture

starts with two 3× 3 convolutional layers with ReLU activation functions. A maxpooling
layer is then used to reduce the spatial resolution of the feature maps by a factor of 2,
producing 64 feature maps of size 100× 100.

After that, a bottleneck-like network [37] is added on top of it to obtain the attention
weights. Specifically, the bottleneck-like network consists of four sets of convolutional
layers, each comprising two 3× 3 convolutional layers with ReLU activation functions
and a maxpooling or upsampling layer. The upsampling operations correspond to 2× 2
element replication, which increases the spatial resolution of the feature maps by a factor
of 2. The first two sets of convolutional layers utilize maxpooling layers to gradually
reduce the spatial resolution and increase the number of feature maps. The last two sets of
convolutional layers employ upsampling layers to gradually increase the spatial resolution
and reduce the number of feature maps.

Finally, the attention network utilizes two 3 × 3 convolutional layers with ReLU
activation functions and a 1× 1 convolutional layer with a Sigmoid activation function to
obtain the attention weights.

3.3.3. Feature Transformation with Normalized Deep Hough Transform

The deep Hough transform (DHT) can transform lines in the image space into more
compact representations in the parameter space [11], which makes the lines easier to detect
by neural network. The normalized deep Hough Transform (Norm-DHT) is an improved
DHT, which takes advantages of the deep Hough Normalization to further improve the
accuracy and robustness of the DHT in the presence of longline segments anomalies and
background anomalies.

The Norm-DHT takes X ∈ RC× H
2 ×

W
2 as an input and produces the normalized deep

Hough features Ynorm ∈ RC×Θ×R, where Θ and R are the parameters in the Hough space,
as described in Equation (2). Different from the traditional Hough transform, DHT is used
to vote in the deep spatial space. Each bin in the deep Hough space corresponds to the
features along a straight line in the deep CNN features X. Features of all pixels along line l
in X are aggregated to the corresponding position (θl , rl) in Y:
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Y(θl , rl) = ∑
i∈l

X(i) (4)

where i is the position index. θl and rl are the parameters of line l, according to Equation (1).

Table 2. Network architecture of the attention network.

Operation Activation Function Output Shape

Input image 1 × 200 × 200
Conv 3 × 3 ReLU 64 × 200 × 200
Conv 3 × 3 ReLU 64 × 200 × 200

Maxpool 2 × 2 64 × 100 × 100

Conv 3 × 3 ReLU 128 × 100 × 100
Conv 3 × 3 ReLU 128 × 100 × 100

Maxpool 2 × 2 128 × 50 × 50

Conv 3 × 3 ReLU 256 × 50 × 50
Conv 3 × 3 ReLU 256 × 50 × 50

Maxpool 2 × 2 256 × 25 × 25

Conv 3 × 3 ReLU 512 × 25 × 25
Conv 3 × 3 ReLU 512 × 25 × 25

Upsample 2 × 2 512 × 50 × 50

Conv 3 × 3 ReLU 256 × 50 × 50
Conv 3 × 3 ReLU 256 × 50 × 50

Upsample 2 × 2 256 × 100 × 100

Conv 3 × 3 ReLU 128 × 100 × 100
Conv 3 × 3 ReLU 128 × 100 × 100

Conv 1 × 1 ReLU 1 × 100 × 100

Similar to traditional Hough normalization [14], the deep Hough normalization is
typically implemented as an additional step following the DHT. After the deep Hough
features Y is generated, the length of each line segment in the deep CNN features X is
calculated. Each bin in the deep Hough features Y are then divided by the length of the
corresponding line segment to perform Hough normalization, as shown in Figure 5.

Figure 5. Illustration of the feature transformation with Norm-DHT.

The length matrix L ∈ RΘ×R can be computed by applying the DHT to an all-ones
matrix J ∈ RH×W with every pixel set at unity.

L(θl , rl) = ∑
i∈l

J(i) (5)
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where L(θl , rl) is the length of the line l. θl and rl are the parameters of line l.
Afterwards, the normalized deep Hough features Ynorm ∈ RC×Θ×R is obtained by

dividing deep Hough features Y with the length matrix L.

Ynorm(θl , rl) =
Y(θl , rl)

L(θl , rl)
(6)

At last, two 3 × 3 convolutional layers with ReLU activation functions and a 1 × 1
convolutional layer with a Sigmoid activation function are applied to yield the value in the
Hough space Z ∈ RΘ×R. The network architecture of Norm-DHT is shown in Table 3.

Table 3. Network architecture of the Norm-DHT.

Operation Activation Function Output Shape

Input features 64 × 100 × 100

Norm-DHT 64 × 101 × 180
Conv 3 × 3 ReLU 64 × 101 × 180
Conv 3 × 3 ReLU 64 × 101 × 180

Conv 1 × 1 ReLU 1 × 101 × 180

3.3.4. Orientation Measurement Module

In this work, we need to measure the orientation θ in the final Hough space regardless
of the parameter r. A simple method is employed to get the orientation vector from the
final Hough space. The orientation vector Or ∈ RΘ is obtained by accumulating the final
Hough space Z ∈ RΘ×R along the direction of R:

Or = ∑R
i=0 Zi

Θ (7)

where i is the positional index along the direction of R.

3.3.5. Loss Function

Note that we discretize the Hough space and obtain the orientation vector by accumu-
lating Hough space along the direction of R. Thus, the orientation measurement could be
converted to the classification, i.e., to predict a probability for each orientation bin. This
classification problem can be addressed with the standard cross-entropy loss to simply
predict each orientation class independently:

L = − 1
m

m

∑
i=1

yi log(Ori) + (1− yi) log(1−Ori) (8)

where m is the number of training samples. Ori is the predicted orientation vector of
sample i, and yi is the ground-truth orientation vector of sample i. We train the end-to-end
AttNorm-DHN model by minimizing the loss L via the standard Adam optimizer [38].

4. Experiments
4.1. Experimental Setups
4.1.1. Evaluation Metric

The FRC orientation is a continuous variable and can be quantized to the discrete bins.
Thus, the FRC orientation measurement can be viewed as both a regression task and a
multi-class classification task. In this work, both the classification and regression evaluation
criteria are utilized to assess the performance of the model, including the F − measure,
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE).

The macro − F1 score is utilized as our F − measure, which is more robust towards
the error type distribution. For a specific orientation class C, true positive (TP) indicates
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the number of images of class C that the model is correctly predicted; false positive (FP)
indicates the number of images of class C that the model is incorrectly predicted; true
negative (TN) corresponds to the number of images that are correctly predicted as not
belonging to class C; false negative (FN) corresponds to the number of images that are
misclassified as class C. The equations for macro − F1, MAE, RMSE are presented in
Equations (10)–(12), respectively.

P =
TP

TP + FP
, R =

TP
TP + FN

(9)

F1 =
2PR

P + R
, macro− F1 =

1
n

n

∑
i=0

F1i (10)

MAE =
1
m

m

∑
j=1

arccos(| cos(Orj − yj)|) (11)

RMSE =

√√√√ 1
m

m

∑
j=1

(arccos(| cos(Orj − yj)|))2 (12)

where F1i is the F1− score of class i, Orj is the predicted class of sample j, and yj is the
ground-truth class of sample j.

4.1.2. Implementation Details

All images are wrapped into a mini-batch of 64, and the batch normalization is adopted
in all the networks as well. We train all models using Adam optimizer for 500 batches in
longline dataset and normal dataset, and for 1000 batches in background dataset [38]. The
learning rate and momentum are set to 1× 10−3 and 0.9, respectively. The quantization
interval ∆θ is set to 1.

We use a single Nvidia Tesla V100 32GB GPU for training, which is a high-end GPU
commonly used for deep learning applications. During the inference phase, a lower-end
K80 GPU is utilized to provide a more realistic estimate of the model’s performance when
more powerful GPUs may not be available. The model requires 1630 MB of GPU memory
during inference, which is within the capacity of most modern GPUs. The inference time
on a K80 GPU is 13 ms, which is also relatively fast. Overall, it appears that the proposed
method has relatively low computational requirements, making it potentially feasible to
train and inference in a wide range of applications.

4.2. Quantization Interval Tunings

The quantization intervals ∆θ and ∆r in Equation (2) play an important role in both the
classification performance and the computational efficiency of the AttNorm-DHN. Smaller
quantization intervals lead to more quantization levels, which in turn results in larger
computational overhead. In this work, we set the angular quantization interval ∆θ = 1 and
train the AttNorm-DHN with different distance quantization interval ∆r on the normal
dataset. As shown in Figure 6, MAE and RMSE Initially decrease rapidly and then reach
a relatively stable level. The turning point is near ∆r =

√
2. The F-measure firstly rises

rapidly, and then stabilizes at a relatively constant level. The turning point is also near
∆r =

√
2. Thus, the turning point ∆r =

√
2 is a proper choice for distance quantization,

while considering the performance and computational overhead.
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Figure 6. Performance of AttNorm-DHN under different distance quantization intervals ∆r.

4.3. Comparison with the State-of-the-Art Methods

We compare the AttNorm-DHN with three methods, including the classical Hough
transform method with Canny edge detector (Canny + HT) [31], DHN, and Norm-DHN.
The Hough transform method with Canny edge detector involves three main steps: (1) Per-
forming edge detection using the Canny edge detector. (2) Applying the classical Hough
transform to detect lines. (3) Calculating the median of the angles of all detected lines. The
Norm-DHN is obtained by removing the attention branch from the AttNorm-DHN. The
DHN is built by replacing the Norm-DHT component in Norm-DHN network with DHT.

4.3.1. Comparison of the Evaluation Metrics

Table 4 shows the performance of different methods for measuring fiber orientation in
FRC on three separate datasets: normal dataset, longline dataset, and background dataset.

Table 4. The evaluation metrics of different methods on three separate datasets.

Method
Normal Dataset Longline Dataset Background Dataset

F-Measure MAE RMSE F-Measure MAE RMSE F-Measure MAE RMSE

Canny+HT [31] 0.705 1.997 9.711 0.0158 5.993 6.883 0.193 26.651 39.458

DHN [11] 0.981 0.018 0.137 0.97 0.689 6.49 0.714 4.122 14.568

Norm-DHN 0.986 0.022 0.676 0.984 0.015 0.126 0.767 2.191 10.502

AttNorm-DHN 0.990 0.07 2.102 0.981 0.241 3.167 0.855 0.239 2.401

On the normal dataset, the DHN method consistently outperforms Canny+HT with a
considerable margin. The Norm-DHN and AttNorm-DHN methods achieve slightly higher
F-measure scores compared to DHN. However, there is a slight increase in both MAE and
RMSE scores for Norm-DHN and AttNorm-DHN compared to DHN. Overall, the DHN,
Norm-DHN, and AttNorm-DHN models all demonstrate impressive performance on the
normal datasets.

On the longline dataset, the Canny+HT method fails to function, achieving only 0.0158
in F-measure, as it only detects the longline segments anomalies. On the other hand, the
DHN approach achieves a substantially higher F-measure score of 0.970, regardless of
the relatively higher MAE and RMSE. The Norm-DHN enhances the performance of the
DHN, which indicates the robustness of deep Hough normalization to longline segments
anomalies. The AttNorm-DHN slightly reduces the performance of Norm-DHN, but is still
outperforms the DHN.

On the background dataset, the DHN outperforms the Canny+HT approach by a large
margin, which consistently demonstrates the superiority of deep-learning based methods
on anomalous datasets. The Norm-DHN tend to perform better than the DHN, because it
removes some short lines near the edges of the FRC regions in the images with background
anomalies. The AttNorm-DHN achieves the best performance among all other methods.
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To summarize, the DHN is sufficient for normal FRC images, the Norm-DHN is
adequate for longline segments anomalies, and only the background anomalies necessitate
the use of AttNorm-DHN. However, it is worth noting that AttNorm-DHN also performs
well on the normal and longline datasets.

4.3.2. Comparison of the Final Hough Space

As defined in Equation (7), the predicted orientation vector is obtained by accumu-
lating the final two-dimensional Hough space. For the purpose of showing which lines
our models focus to measure the orientation, the final Hough space heatmaps of DHN,
Norm-DHN, and AttNorm-DHN are visualized in Figure 7. A straight line Θ = θ in the
Hough space represents a series of parallel lines of angle θ in the image, where θ is the
orientation of the FRC image.

Figure 7. Illustrations on the comparisons of the final Hough space among DHN, Norm-DHN and
AttNorm-DHN on three separate datasets.

On the normal dataset, the Hough spaces of all methods show almost the same
patterns, where there are distinct straight lines with an equation of Θ = θ. This indicates
that all the models perform well on the normal datasets. On the longline dataset, the Hough
space of Norm-DHN and AttNorm-DHN have less noise than the Hough space of DHN.
Additionally, the straight line Θ = θ in the Hough space of Norm-DHN is more noticeable
compared to the Hough space of AttNorm-DHN. These results suggest that the Norm-
DHN exhibits superior performance relative to the other methods. On the background
dataset, the Hough spaces of DHN have global noise that permeates across the entire space,
which means that the DHN mistakenly detect numerous straight lines whose angle is not
θ. Through the sequential incorporation of the Norm-DHT and attention network to the
DHN, the global noise in the Hough space decreases gradually until it nearly disappears.

4.4. Importance of Deep Hough Normalization for Attention

Both deep Hough normalization and attention network can improve the performance
of the DHT on images with background anomalies. We investigate whether incorporating
deep Hough normalization into the attention network can further enhance its performance
on the background dataset. To construct the attention-based Att-DHN network, the DHT
module is substituted with the Norm-DHT module in the AttNorm-DHN. The evaluation
metrics of DHN, Att-DHN, and AttNorm-DHN on the background dataset are summarized
in the Table 5. As expected, Att-DHN outperforms the DHN by a large margin, and
AttNorm-DHN exhibits modest improvements over the Att-DHN. It demonstrates that
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incorporating the deep Hough normalization improves the performance of the attention-
based Att-DHN as well.

Table 5. The evaluation metrics of DHN, Att-DHN, and AttNorm-DHN on the background dataset.

Method F-Measure MAE RMSE

DHN [11] 0.714 4.122 14.568

Att-DHN 0.824 0.468 4.23

AttNorm-DHN 0.855 0.239 2.401

To explore why integrating deep Hough normalization enhances the performance
of attention network, the attention heatmaps of Att-DHN and AttNorm-DHN on the
background dataset are visualized in Figure 8. The Att-DHN gives more attention to the
edges of the FRC regions in the images with background anomalies, resulting in insufficient
focus on the important regions that contain fiber orientation information. On the other hand,
by incorporating deep Hough normalization into the attention architecture, the AttNorm-
DHN exhibits a superior ability to precisely identify and localize these critical regions.

4.5. Weakly Supervised Semantic Segmentation

Weakly supervised semantic segmentation is a challenging task that only takes image-
level labels as supervision but produces pixel-level predictions for testing [39]. In this
paper, we take orientation labels as the supervision to distinguish the mold and FRC
regions. As mentioned in the previous section, the AttNorm-DHN can precisely identify
and localize FRC regions. We set the binary threshold 0.5 and obtain the binarized masks
from the heatmaps of AttNorm-DHN. As shown in Figure 9, the masks predicted by the
AttNorm-DHN exhibit discontinuity at the boundary between two regions, appearing less
smoothness compared to the ground-truth masks.

Figure 8. The attention heatmaps of both Att-DHN and AttNorm-DHN alongside their corresponding
original images on the background dataset.
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Figure 9. Illustration on the mask predicted by the AttNorm-DHN, along with its corresponding
FRC image and ground-truth mask.

In order to quantitatively evaluate the semantic segmentation performance of the
AttNorm-DHN on background dataset, we choose the Intersection over Union (IOU) and
Pixel Accuracy (PA) as the evaluation metrics [40]. We choose the classical U-net Network
for comparison with AttNorm-DHN [37].

In Table 6, it can be seen that U-net is a highly effective fully-supervised semantic seg-
mentation method. However, obtaining pixel-level labels required by the fully-supervised
model can be difficult in real-world scenarios, and only image-level labels can be obtained.
On the other hand, AttNorm-DHN is a weakly-supervised semantic segmentation method
that only requires image-level labels. It can achieve comparable performance to the super-
vised U-net model, as shown in Table 6. Therefore, considering cost and other practical
issues, AttNorm-DHN can serve as a good replacement model for U-net in real-world scenarios.

Table 6. The semantic segmentation evaluation metrics of U-net and AttNorm-DHN on the back-
ground dataset.

Method IOU PA

U-Net [37] 0.994 0.986

AttNorm-DHN 0.941 0.863

5. Conclusions and Future Works

In this paper, the deep Hough normalization has been proposed for fiber orientation
inspection. It normalizes the accumulated votes in the Hough space by the length of the
corresponding line segment, making it easier for DHN to detect short, true “line-like”
structures. In addition, we have designed an attention-based DHN that integrates attention
and Hough networks to remove background anomalies caused by mold in FRC images.
Finally, three datasets have been established to evaluate the proposed methods, and our
proposed methods have been evaluated extensively on them. The experimental results and
analysis revealed that the proposed method achieves the competitive performance against
previous arts in terms of F-measure, MAE and RMSE in real-world scenarios with various
types of anomalies.

There are several FRCs need further investigation to fully explore the applicability and
robustness of the proposed method in different scenarios, including unidirectional fibers
with waviness or crimp, transparent (glass) fibers, and woven fabrics with voids and cross-
overs in them. These studies aim to enhance the method’s robustness and applicability
across various materials, contributing to the development of high-performance composites
and advanced materials.
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