
Citation: Zhang, Z.; Li, J. A Review

of Artificial Intelligence in Embedded

Systems. Micromachines 2023, 14, 897.

https://doi.org/10.3390/mi14050897

Academic Editor: Alberto Corigliano

Received: 11 April 2023

Accepted: 20 April 2023

Published: 22 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Review

A Review of Artificial Intelligence in Embedded Systems
Zhaoyun Zhang 1,* and Jingpeng Li 2

1 School of Electrical Engineering and Intelligentization, Dongguan University of Technology,
Dongguan 523000, China

2 School of Computer Science and Technology, Dongguan University of Technology, Dongguan 523000, China;
klee305@126.com

* Correspondence: zhangzy@dgut.edu.cn

Abstract: Advancements in artificial intelligence algorithms and models, along with embedded
device support, have resulted in the issue of high energy consumption and poor compatibility when
deploying artificial intelligence models and networks on embedded devices becoming solvable. In
response to these problems, this paper introduces three aspects of methods and applications for
deploying artificial intelligence technologies on embedded devices, including artificial intelligence
algorithms and models on resource-constrained hardware, acceleration methods for embedded
devices, neural network compression, and current application models of embedded AI. This paper
compares relevant literature, highlights the strengths and weaknesses, and concludes with future
directions for embedded AI and a summary of the article.

Keywords: artificial intelligence; embedded intelligence; model compression; resource-constrained
device; hardware accelerator; internet of things

1. Introduction

Over the years, the development of artificial intelligence and its applications has
greatly reduced the complexity of many machine learning models, making it easier to
deploy them on resource-constrained devices. Furthermore, corresponding support for
models and algorithms on these devices has emerged. These developments have facilitated
a new research direction: embedded artificial intelligence [1–3]. The concept of embedded
AI was first introduced in reference [3], which proposed that the IoT could evolve into the
Wisdom Web of Things (W2T) and emphasized that embedded intelligence about individu-
als, the environment, and society could increase the number of users of existing IoT systems,
promote environmental sustainability, and enhance social awareness. Recent developments
in embedded AI are described in references [1,2], both of which combine embedded AI with
IoT technology. The current mainstream research direction of embedded AI is to integrate
it with IoT, which includes edge computing with convolutional accelerator [4] and load
distribution [5]. Reference [6] mentions that the combination of embedded intelligence and
IoT is the future direction of development. In addition, edge computing can be combined
with artificial intelligence, resulting in what is known as edge intelligence [7].

The current development of embedded AI is two-way: the optimization of AI models
and algorithms reduces the difficulty of deploying them on embedded devices, while
hardware accelerators in embedded devices increase support for AI models and algorithms.
Furthermore, hardware resources are being developed, and AI is rapidly advancing in
mobile devices. For example, reference [8] describes the deployment of neural networks on
cell phones, and there are also neural networks specifically designed for mobile devices,
such as MobileNet [9]. MobileNet will be discussed in detail in Section 3 on lightweight
networks.

To deploy artificial intelligence in embedded devices, several aspects need to be
considered: (1) choosing a suitable deployment platform, (2) using hardware accelerators, as

Micromachines 2023, 14, 897. https://doi.org/10.3390/mi14050897 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi14050897
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-0862-9984
https://doi.org/10.3390/mi14050897
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi14050897?type=check_update&version=2

Micromachines 2023, 14, 897 2 of 18

mentioned in the second section, (3) applying model compression techniques, as described
in the third section [10,11], and (4) enhancing hardware support for AI algorithms and
models. All these points are discussed in detail in this paper.

In this paper, we will introduce embedded AI from the following aspects: the first
section introduces the development history of embedded AI, the second section introduces
the hardware accelerators of embedded AI, the third section introduces the key technologies
of embedded AI, the fourth section introduces the application directions of embedded
AI, the fifth section discusses the challenges encountered in the current development of
embedded AI and provides an outlook for the future, and finally the sixth section concludes
with a summary.

2. Hardware Acceleration Methods for Embedded AI

The current acceleration of embedded AI can be achieved through three types of
hardware: FPGA, ASIC, and GPU. FPGA (Field-Programmable Gate Array) is a type of
programmable logic chip; ASIC (Application-Specific Integrated Circuit) is an integrated
circuit specifically designed to meet the needs of a particular application; and a GPU
(Graphics Processing Unit) is a processor used for processing graphics data.

2.1. FPGA

FPGA (Field Programmable Gate Array), also known as Field Programmable Gate
Arrays, can generate high-performance, low-power hardware mappings in neural networks
due to its flexibility. FPGA can be customized to meet system-level requirements in different
environments, such as throughput, latency, and power.

The authors of paper [12] propose an approach for accelerating convolutional neural
networks on FPGAs to generate high-performance hardware designs by assembling pre-
implemented components of convolutional neural networks into a graph topology-based
puzzle. The use of pre-implemented components allows minimal resource utilization
for predicting performance, which reduces engineering time and increases yields. The
pre-implemented components in the paper are implemented using an out-of-context design
approach. Experiments show a 69% yield improvement compared to traditional FPGA
implementations, achieving more than 1.5 times the maximum frequency with fewer re-
sources and higher energy efficiency. Reference [13] proposes the ASimOV framework,
which consists of two parts: (1) an AI simulator for finding the optimal parameters in the
parameter search space of the AI accelerator and algorithm to achieve maximum perfor-
mance (e.g., precision); and (2) an HDL code generator for using the optimal parameters
of the AI accelerator and algorithm to generate a hardware model, which is implemented
in the FPGA for functional testing purposes. This end-to-end framework allows for the
optimization of the AI accelerator on specific datasets, while also reducing actual cost.
The functionality of ASimOV has been verified in small AI algorithms such as character
recognition, clothing recognition, and speech recognition. For the k-NN AI accelerator, the
total performance reached 90.7% with 64kb of memory. Reference [14] compares artificial
neural networks and spiking neural networks on FPGAs in terms of method, learning
process, and efficiency using the MNIST, GTSRB, and CIFAR-10 datasets. Spiking neural
networks were found to be slightly faster than artificial neural networks for the learning
process when using the MNIST dataset. In terms of power consumption, spiking neural
networks consume less FPGA logic and have 19% more power than artificial neural net-
works. The authors compared the spiking neural network with the convolutional neural
network on the GTSRB dataset and found that the former saved 42% of power, but the
high latency of the inference process ultimately did not result in energy savings. On the
CIFAR-10 dataset, the test results showed that overall FPGA logic decreased, with a 75%
reduction in logic conversion efficiency, resulting in energy savings compared to the GTSRB
dataset mentioned above because the inference time was greatly reduced. The increasing
complexity of convolutional neural network models has made it challenging to map them
to FPGA devices. Therefore, fpgaConvNet research was conducted to reduce the difficulty

Micromachines 2023, 14, 897 3 of 18

of deploying network models. For instance, in reference [15], the authors propose that
the inference process of ConvNet could be interpreted as a streaming application. fpga-
ConvNet uses a computational synchronous data flow model as its modeling core, where
synchronous data flow is mainly used in the design and analysis of parallel systems. By
transforming the design space exploration task into a multi-objective optimization problem,
fpgaConvNet can effectively target applications with various performance requirements,
either in terms of high throughput or low latency. The authors present experiments com-
paring fpgaConvNet with a cluster of embedded GPUs. fpgaConvNet generates a more
energy-efficient accelerator and achieves higher raw performance within the same power
constraints compared to highly optimized embedded GPU designs. The authors argue that
fpgaConvNet deploys the ConvNet model on embedded FPGAs, which provides the nec-
essary infrastructure. Reference [16] proposes an end-to-end optimized framework called
fpgaConvNet, which is an automated mapping framework for convolutional networks on
FPGAs, and an automated design approach for the synchronous dataflow paradigm while
defining a set of SDF transformations. A system multi-objective optimization formulation
is also proposed for fpgaConvNet, enabling it to generate co-optimized hardware designs
for convolutional neural network workloads, target devices, and application performance
metrics. In the experiments, the authors compare the performance of fpgaConvNet with the
existing FPGA-related work. The comprehensive experimental structure demonstrates that
fpgaConvNet achieves outstanding results in terms of performance, performance density,
and other relevant metrics.

There are two approaches to deploying algorithms on FPGA: enhancing the algorithm
to leverage the hardware capabilities of FPGA, or optimizing the execution efficiency of the
algorithm in hardware. Most current work focuses on memory compression to maximize
operational efficiency, but does not consider energy consumption on the FPGA platform.
Additionally, it is important to consider the operational efficiency on the FPGA when
selecting the programming language.

2.2. ASIC

ASIC (Application Specific Integrated Circuit) is a type of special-purpose integrated
circuit that is highly customized and less programmable, and therefore relies heavily on
algorithm design. To deploy neural networks on ASICs, appropriate hardware accelerators
need to be designed for the specific network structure. The optimization of hardware
accelerators involves utilizing parallel resources and reducing computational complexity.

Reference [17], on the other hand, proposes an optimization approach that utilizes
parallel resources. The authors introduce the YodaNN convolutional neural network accel-
erator, which simplifies the design complexity by using simpler complementary operations
and multiplexers instead of fixed-point MAC units. Experimental results demonstrate that
the YodaNN accelerator achieved 2.7 times higher peak performance and 32 times higher
energy efficiency than the state-of-the-art CNN accelerator at that time. Reference [18]
proposes the UCNN (Unique Weight CNN Accelerator), which is a convolutional neural
network accelerator optimized for reducing the computational effort. As the convolutional
neural network design evolves, the size and number of filters in the network structure will
keep increasing, and the values of the weights are bound to be repeated. Therefore, each
common weight can be extracted from the multiplication it involves; for example, the wi in
the following equation can be extracted.

b = wi × ai + wi × aj + wi × ak
b = wi × (ai + aj + ak)

(1)

In addition, the author proposes maintaining two hardware structures: the input
indirect table and the weight indirect table. F1 and F2 in the figure below are two filters, x
and z are weights, and IF1 is the feature map, which represents the convolution between

Micromachines 2023, 14, 897 4 of 18

the computational filter and the feature map. The operation in F1 can be approximately
replaced by the operation in F2, thus reducing the computational effort.

F1 : x ∗ (c + g + a + h) + z ∗ (b + d + f + e + k)
F2 : x ∗ (c + g) + z ∗ (a + h) + x ∗ (b + d + f) + z ∗ (e + k)

(2)

Reference [19] proposes MSICs (ML-specific integrated circuits), ASICs dedicated
to deep neural networks. These circuits use larger on-chip buffers instead of off-chip
ones and exploit reusability and sparsity to achieve higher energy efficiency by reducing
numerical precision and optimizing data flow. Experimental results show that this deep
learning-specific ASIC is over 10 times more energy efficient than a CPU or GPU.

The main approach for deploying networks on ASIC is to create neural network accel-
erators. Networks can be deployed on ASIC through quantization, which can be further
optimized by combining both quantization and neural network accelerator techniques.
Additionally, a hardware accelerator can be improved by utilizing sparse architectures.

2.3. GPU

GPU (graphics processing unit) is a specialized processor used for accelerating the
speed of image processing in hardware. Currently, GPUs are also widely used to accelerate
neural networks in machine learning. In this paper, we mainly introduce the role of GPUs
in enhancing the security of machine learning.

Reference [20] proposes CRYPTGPU, a privacy-preserving machine learning sys-
tem that uses a cryptographic interface and a “GPU-friendly” cryptographic protocol to
maintain privacy when performing both linear and nonlinear operations on the GPU. Ex-
perimental results show that the GPU-private convolution protocol is more than 150 times
faster than similar CPU-based protocols, and about 10 times faster than CPU in simulations
for nonlinear operations such as ReLU activation. It is concluded that GPUs can acceler-
ate private training and inference for deep learning, and enable privacy-preserving deep
learning on complex datasets and networks. Another paper, [21], proposes ParSecureML,
a GPU-based framework that improves the performance of secure machine learning al-
gorithms based on two-party computation in a secure context. It addresses problems
of complex computation patterns, frequent intra-node data transfers between CPUs and
GPUs, and complex inter-node data dependencies by implementing profiling-guided adap-
tive GPU utilization, fine-grained double pipeline intra-node CPU-GPU collaboration,
and compressed transmission intra-node communication. Experimental results show that
ParSecureML improves acceleration by an average of 33.8× over state-of-the-art secure
machine learning frameworks, with an average acceleration of 31.7× when applied to
inference.

The above two papers address security in machine learning, which is an undeveloped
field of research. However, it may be a promising direction for embedded AI in the future.

2.4. Other Acceleration Hardware

In addition to the above three platforms, reference [22] deploys a pedestrian image
detection system on a neuromorphic chip and compares it to a CPU system and a GPU
system, demonstrating improved efficiency and reduced energy consumption compared
to traditional GPU-accelerated and CPU multi-core systems. This approach is particu-
larly beneficial for resource-constrained platforms. The authors also suggest areas for
improvement, noting that the neuromorphic chip NM500 used in the paper supports only
one hidden layer, which may limit the functionality of deep neural networks, and lacks
dynamic switching capability, making it difficult to manage power consumption. Finally,
they suggest that integrating the neuromorphic chip into System on Chips (SOC) could
improve the performance and energy efficiency of machine learning on embedded sys-
tems. In another paper [23], the authors optimize and deploy a deep neural network on
the NVIDIA Jetson platform, which supports more parallel computing capabilities and

Micromachines 2023, 14, 897 5 of 18

multiple output interfaces compared to other platforms. This facilitates the deployment of
artificial intelligence algorithms and models on the Jetson platform.

2.5. Summary

The various acceleration methods for the three hardware platforms mentioned in 2.1,
2.2, and 2.3 have their own advantages in embedded AI applications and are suitable for
different scenarios. They should be chosen according to different needs. If the scenario
requires the frequent switching of computational tasks, FPGA can provide higher flexibility
and programmability. If the scenario requires deep learning tasks with parallel computation
on large amounts of data, GPUs can provide higher computational performance. If the
applications have fixed computational tasks, ASICs can provide higher performance and
energy efficiency. Of course, these three platforms can also work together. For example,
in [24], the authors combined these two hardware platforms by exploiting the high-density
computational performance of GPUs in machine learning and the low latency demonstrated
by FPGAs in model inference. Table 1 provides the characteristics of the various approaches
for each deployment platform in this chapter.

Table 1. Literature on hardware accelerators.

Classification Reference Proposed Method Advantage

FPGA

[12] Pre-implemented CNN
Accelerator

Lower resource and high
energy efficiency

Flexibility and Scalability

[13] ASimOV framework Lower memory high performance

[14] Compare between ANN
and SNN

SNN is better than ANN in energy
efficiency and inference speed

[15] fpgaConvNet Accelerator Higher energy efficiency and
raw performance

[16] Synchronous dataflow Higher performance and
performance density

ASIC
[17] YodaNN CNN Accelerator Higher performance and energy

efficiency Performance and Energy
Efficiency[18] UCNN Accelerator Lower computation cost

[19] MSICs Higher energy efficiency

GPU
[20] CRYPTGPU Faster than CPU and more private Parallel Computing

Capabilities[21] ParSecureML Faster than other
SecureML frameworks

Other
[22] NPU application system More efficient and lower

energy consumption
Customization

[23] NVIDIA Jetson Powerful parallel
computation capability

3. The Key Technologies of Embedded AI

To deploy neural networks on resource-constrained devices such as embedded sys-
tems, several problems need to be addressed. Firstly, how can embedded devices carry huge
models and algorithms of artificial intelligence with their limited resources? Secondly, how
can hardware devices support algorithms and models after meeting the above conditions?
This chapter proposes three key techniques to solve these challenges. Sections 3.1 and 3.2
address model compression and algorithm optimization to meet the hardware constraints
of resource-constrained devices, while Section 3.3 focuses on algorithm optimization on
hardware to enhance support for AI algorithms. Model compression aims to maintain
model accuracy while reducing its size as much as possible, while binarization networks
aim to compress the model to the smallest possible size while improving model accuracy.
Additionally, the chapter explores CPU/GPU algorithms by investigating the support
provided by CPUs and GPUs for artificial intelligence algorithms.

Micromachines 2023, 14, 897 6 of 18

3.1. Model Compression of Neural Network
3.1.1. Network Structure Redesign

The network structure design is a method of improving existing neural networks by
designing new network structures. Many researchers have undertaken significant work in
this area.

In 2017, Landola et al. [25] proposed SqueezeNet, a lightweight network that maintains
accuracy using fewer parameters. SqueezeNet consists of two parts: a convolutional neural
network architecture designed by the authors, and the Fire module. To maintain accuracy,
three strategies were used in designing the convolutional neural network architecture:
1. using 1 × 1 filters instead of partial 3 × 3 filters, 2. using a squeeze layer to reduce the
input channels of 3 × 3 filters, and 3. delaying downsampling (postponing the downsam-
pling process to the end of the network). The network structure of SqueezeNet is shown in
Figure 1.

Micromachines 2023, 14, x FOR PEER REVIEW 6 of 19

Classification Reference Proposed Method Advantage

[21] ParSecureML
Faster than other
SecureML frame-

works

Other

[22]
NPU application

system

More efficient and
lower energy con-

sumption
Customization

[23] NVIDIA Jetson
Powerful parallel

computation capa-
bility

3. The Key Technologies of Embedded AI
To deploy neural networks on resource-constrained devices such as embedded sys-

tems, several problems need to be addressed. Firstly, how can embedded devices carry
huge models and algorithms of artificial intelligence with their limited resources? Sec-
ondly, how can hardware devices support algorithms and models after meeting the above
conditions? This chapter proposes three key techniques to solve these challenges. Sections
3.1 and 3.2 address model compression and algorithm optimization to meet the hardware
constraints of resource-constrained devices, while Section 3.3 focuses on algorithm opti-
mization on hardware to enhance support for AI algorithms. Model compression aims to
maintain model accuracy while reducing its size as much as possible, while binarization
networks aim to compress the model to the smallest possible size while improving model
accuracy. Additionally, the chapter explores CPU/GPU algorithms by investigating the
support provided by CPUs and GPUs for artificial intelligence algorithms.

3.1. Model Compression of Neural Network
3.1.1. Network Structure Redesign

The network structure design is a method of improving existing neural networks by
designing new network structures. Many researchers have undertaken significant work
in this area.

In 2017, Landola et al. [25] proposed SqueezeNet, a lightweight network that main-
tains accuracy using fewer parameters. SqueezeNet consists of two parts: a convolutional
neural network architecture designed by the authors, and the Fire module. To maintain
accuracy, three strategies were used in designing the convolutional neural network archi-
tecture: 1. using 1 × 1 filters instead of partial 3 × 3 filters, 2. using a squeeze layer to reduce
the input channels of 3 × 3 filters, and 3. delaying downsampling (postponing the
downsampling process to the end of the network). The network structure of SqueezeNet
is shown in Figure 1.

Figure 1. SqueezeNet network structure.

In 2017, Howard et al. [9] proposed MobileNet, a lightweight network for mobile and
embedded vision applications. This network introduced two global hyperparameters, α
(Width Multiplier) and ρ (Resolution Multiplier), that can be balanced in terms of latency
and accuracy. The core components of MobileNet include depthwise separable convolu-
tion, width multiplier, and resolution multiplier. The standard convolution is decom-

Figure 1. SqueezeNet network structure.

In 2017, Howard et al. [9] proposed MobileNet, a lightweight network for mobile and
embedded vision applications. This network introduced two global hyperparameters, α
(Width Multiplier) and ρ (Resolution Multiplier), that can be balanced in terms of latency
and accuracy. The core components of MobileNet include depthwise separable convolution,
width multiplier, and resolution multiplier. The standard convolution is decomposed into
a pointwise convolution and a depthwise convolution, where the depth convolution is
connected after the input channel, and the pointwise convolution is connected between the
depth convolution and the output. This structure is illustrated in Figure 2.

Micromachines 2023, 14, x FOR PEER REVIEW 7 of 19

posed into a pointwise convolution and a depthwise convolution, where the depth con-
volution is connected after the input channel, and the pointwise convolution is connected
between the depth convolution and the output. This structure is illustrated in Figure 2.

Input Deepwise
convolution

Pointwise
convolution output

Input Standard
convolution output

Figure 2. Depthwise separable convolution.

Depthwise separable convolution separates the filtering and merging functions in
standard convolution, using one layer for filtering and another layer for merging. This
decomposition method can significantly reduce computational effort and model size. In
MobileNet, when targeting specific applications that require smaller models and lower
computational costs, the depth and point convolutions are computed as separate network
layers, resulting in a total of 28 layers. In 2018, Zhang et al. [26] proposed ShuffleNet, a
lightweight network for devices with computational constraints. The network architecture
employs pointwise group convolution and channel shuffle techniques to significantly re-
duce computational costs while maintaining accuracy. Based on the efficient depth-sepa-
rable convolution or group convolution of Xception [27] and ResNeXt [28], ShuffleNet
considers 1 × 1 group convolution. The feature map generated for each group in the pre-
vious layer is divided into separate channels for several subgroups in each group to pro-
vide different subgroups for each group in the next layer. The Shuffle operation is shown
in Figure 3.

Figure 3. Shuffle group convolution operation.

Reference [29] proposed the once-for-all network (OFA), which can reduce training
costs by selecting dedicated subnetworks without additional training. Additionally, the
authors proposed a new progressive shrinkage algorithm for training OFA, which is a
generalized pruning method. Experimental results showed that this method outper-
formed state-of-the-art NAS methods at the time and effectively reduced energy con-
sumption. In another work [30], the network structure of Yolov5 was redesigned by em-
bedding three network modules: CBAM, C3Ghost, and Ghost. The CBAM module was
used to enhance the feature extraction capability, while C3Ghost and Ghost modules were
used to reduce the number of parameters and floating-point operations. The MS COCO
and PASCAL VOC datasets were used for experiments, and the results show that the new
network structure had a slightly decreased average detection time, as well as a 50.61%

Figure 2. Depthwise separable convolution.

Depthwise separable convolution separates the filtering and merging functions in
standard convolution, using one layer for filtering and another layer for merging. This
decomposition method can significantly reduce computational effort and model size. In
MobileNet, when targeting specific applications that require smaller models and lower
computational costs, the depth and point convolutions are computed as separate network
layers, resulting in a total of 28 layers. In 2018, Zhang et al. [26] proposed ShuffleNet, a
lightweight network for devices with computational constraints. The network architecture
employs pointwise group convolution and channel shuffle techniques to significantly
reduce computational costs while maintaining accuracy. Based on the efficient depth-
separable convolution or group convolution of Xception [27] and ResNeXt [28], ShuffleNet
considers 1 × 1 group convolution. The feature map generated for each group in the
previous layer is divided into separate channels for several subgroups in each group to
provide different subgroups for each group in the next layer. The Shuffle operation is
shown in Figure 3.

Micromachines 2023, 14, 897 7 of 18

Micromachines 2023, 14, x FOR PEER REVIEW 7 of 19

posed into a pointwise convolution and a depthwise convolution, where the depth con-
volution is connected after the input channel, and the pointwise convolution is connected
between the depth convolution and the output. This structure is illustrated in Figure 2.

Input Deepwise
convolution

Pointwise
convolution output

Input Standard
convolution output

Figure 2. Depthwise separable convolution.

Depthwise separable convolution separates the filtering and merging functions in
standard convolution, using one layer for filtering and another layer for merging. This
decomposition method can significantly reduce computational effort and model size. In
MobileNet, when targeting specific applications that require smaller models and lower
computational costs, the depth and point convolutions are computed as separate network
layers, resulting in a total of 28 layers. In 2018, Zhang et al. [26] proposed ShuffleNet, a
lightweight network for devices with computational constraints. The network architecture
employs pointwise group convolution and channel shuffle techniques to significantly re-
duce computational costs while maintaining accuracy. Based on the efficient depth-sepa-
rable convolution or group convolution of Xception [27] and ResNeXt [28], ShuffleNet
considers 1 × 1 group convolution. The feature map generated for each group in the pre-
vious layer is divided into separate channels for several subgroups in each group to pro-
vide different subgroups for each group in the next layer. The Shuffle operation is shown
in Figure 3.

Figure 3. Shuffle group convolution operation.

Reference [29] proposed the once-for-all network (OFA), which can reduce training
costs by selecting dedicated subnetworks without additional training. Additionally, the
authors proposed a new progressive shrinkage algorithm for training OFA, which is a
generalized pruning method. Experimental results showed that this method outper-
formed state-of-the-art NAS methods at the time and effectively reduced energy con-
sumption. In another work [30], the network structure of Yolov5 was redesigned by em-
bedding three network modules: CBAM, C3Ghost, and Ghost. The CBAM module was
used to enhance the feature extraction capability, while C3Ghost and Ghost modules were
used to reduce the number of parameters and floating-point operations. The MS COCO
and PASCAL VOC datasets were used for experiments, and the results show that the new
network structure had a slightly decreased average detection time, as well as a 50.61%

Figure 3. Shuffle group convolution operation.

Reference [29] proposed the once-for-all network (OFA), which can reduce training
costs by selecting dedicated subnetworks without additional training. Additionally, the
authors proposed a new progressive shrinkage algorithm for training OFA, which is a
generalized pruning method. Experimental results showed that this method outperformed
state-of-the-art NAS methods at the time and effectively reduced energy consumption. In
another work [30], the network structure of Yolov5 was redesigned by embedding three
network modules: CBAM, C3Ghost, and Ghost. The CBAM module was used to enhance
the feature extraction capability, while C3Ghost and Ghost modules were used to reduce
the number of parameters and floating-point operations. The MS COCO and PASCAL
VOC datasets were used for experiments, and the results show that the new network
structure had a slightly decreased average detection time, as well as a 50.61% reduction
in floating-point operations and a 47.88% reduction in model parameters compared to the
original network structure.

MobileNet has two more hyperparameters than SqueezeNet, which makes the appli-
cation more flexible and able to be adjusted according to the actual application for com-
putational cost and latency. ShuffleNet can generate more feature maps than SqueezeNet,
but its deep convolution operation can only be performed on the bottleneck feature map,
which leads to some difficulties in deployment on low-power devices. Additionally, most
network structures are designed to adjust convolutional operations by replacing complex
kernels with simpler ones to reduce computational complexity and the number of model
parameters, while maintaining accuracy and reducing energy consumption. However,
some network structures may have poor generalization ability and are only applicable in
specific scenarios.

3.1.2. Quantization

Quantization is the compression of floating-point data bits in neural network pa-
rameters to reduce model complexity and size by reducing the number of bits used by
floating-point numbers, while maintaining model accuracy as much as possible.

In reference [31], BRECQ, a framework for Post-training Quantization (PTQ), was
proposed for the first time to limit the bit-width range of the post-training quantization
task to INT2. The authors conducted a comprehensive theoretical study of second-order
errors and found that the framework was able to balance cross-layer dependence and
generalization errors. They also used approximate inter-layer and intra-layer sensitivity,
incorporating hybrid precision techniques. Experimental results show that post-training
quantization can obtain a model with similar precision to ResNet and MobileNetV2 with
only four bits using the Quantization-Aware Training (QAT) method without additional
conditions, and can obtain 240 times the production speed of the quantized model. In
another work [32], the authors propose data-free quantization methods that do not require
data, fine-tuning, or hyperparameter optimization. They suggest a method that uses the
scale-equivalence property of the activation function to adjust the range of weights in
a network and corrects the errors introduced in the quantization process. Experiments
show that the data-free quantization method approaches the original model’s accuracy
and is even comparable to more sophisticated training-based methods. The authors of
reference [33] propose a mechanism for weight-rounding for post-training quantization,

Micromachines 2023, 14, 897 8 of 18

AdaRound, which does not require fine-tuning of the network and can cope with data
and task loss by using only a small amount of unlabeled data. Experiments show that
this mechanism maintains accuracy loss within 1% by quantizing the weights of ResNet-
18 and ResNet-50 to 4 bits. Reference [34] describes the “deep compression” method, a
comprehensive approach that is a three-stage pipeline of pruning, training quantization,
and Huffman (Huffman) coding running together. This approach can reduce the storage
requirements of neural networks by a factor of 35 to 49 without compromising accuracy.
The principle of the method is to first learn the significant connections as the basis for
pruning the network, then quantize the weights to achieve weight sharing, and finally
apply Huffman coding. Before Huffman coding, the authors retrained the network to
fine-tune the remaining connections and quantized centroids, and reduced by nine to
thirteen times the connections through pruning. Quantization reduced the connection
bitwidth from 32 bits to 5 bits. Experimental results show that the deep compression
approach reduces the storage space required for AlexNet by a factor of 35 from 240 mb
to 6.9 mb on the AlexNet dataset with no loss of accuracy, and achieved 3 to 4 times the
layered acceleration and 3 to 7 times the energy efficiency on CPU, GPU, and mobile GPU
benchmarks. Finally, the authors of reference [35] propose the Efficient Inference Engine
(EIE), which can be deployed to SRAM (Static Random-Access Memory) platforms. This
engine utilizes the sparsity of activation functions and weights, and the technique of weight
sharing and quantization. The EIE can save 120 times the energy, respectively, 10 times
the energy by using sparsity, 8 times the energy by weight assignment, and 3 times the
energy by skipping zero activation functions using ReLU. Unlike the large deep neural
networks trained by the “deep compression” method, the EIE is suitable for on-chip DRAM
(Dynamic Random-Access Memory).

Despite the various quantization methods mentioned above, there is still a need
for better quantization methods that can achieve higher compression rates with lower
accuracy degradation. Additionally, it is crucial to consider the energy consumption of
the compressed network model to make it suitable for use in resource-constrained devices
such as embedded devices.

3.1.3. Pruning

Pruning is a method used to reduce redundant data in the neural network by deter-
mining the importance of each unit and removing unimportant parts.

One pruning method proposed in the literature [36] consists of three steps: first, train
the network to learn the important connections; second, prune the unimportant connec-
tions; and finally retrain the network to adjust the weights of the remaining connections.
Experimental results have shown that reducing the number of parameters by a factor of
nine in the AlexNet network structure does not have a significant impact on performance.
Another weight pruning method, ProbMask, was proposed in reference [37]. It measures
the importance of weights by the probability of global criteria in all network layers and
features automatic learning by setting constraints. Experimental results show that the Prob-
Mask method can improve top-1 accuracy by about 10% compared with existing methods.
Reference [38] proposes the ManiDp method, which maximizes the dynamic mining and
pruning of redundant filters by embedding the manifold information of all instances into
the pruned network space. The method achieves the dynamic removal of redundant filters,
and experimental results show that it can reduce the number of floating-point operations
by 55.3% while decreasing the top-1 accuracy by only 0.57% when applied on ResNet-34. A
new channel exploration method, CHEX, is proposed in the literature [39] to solve the prob-
lem that traditional pruning methods require fully pre-trained large models and are limited
by the pruning process. CHEX repeatedly prunes and regrows the channels during the
training process, reducing the risk of prematurely pruning important channels. Experimen-
tal results show that a top-1 accuracy of 76% can be obtained using the CHEX compressed
ResNet-50 model on the ImageNet dataset, reducing the Flops (floating point operations
per second) to only 25% of the original ResNet-50 model. Finally, reference [40] proposes

Micromachines 2023, 14, 897 9 of 18

a channel pruning method that uses a random search method to determine the channel
model of the pruned network structure. Experimental results show that the performance
of the models obtained with different network structures and datasets is close under the
random pruning scheme. However, the number of parameters has a great impact on the
accuracy of the constructed networks, and the more parameters the lower the error rate of
the pruned network after a certain amount of computation.

In conclusion, current pruning methods include weight pruning, channel pruning, and
neuron pruning, each with its advantages and disadvantages. The criteria for determining
the importance of the unit can impact the accuracy. The use of constraint learning methods
can improve it, although the implementation is complex. The random search method of
pruning is simple to implement, but the network model’s performance is limited compared
to other methods that improve it. Therefore, each method has its advantages and needs
to be selected in conjunction with the actual application scenario, and there is no single
method that can synthesize the complexity and model compression efficiency.

3.2. Binary Neural Networks and Optimization Techniques

Convolutional neural networks consist of multiple network layers and millions of
parameters. Due to their large size, it is challenging to deploy them directly on embedded
devices that have high hardware requirements.

To address this issue, a binarization method was proposed to simplify the network
parameters [41]. This method quantifies the weights and activation values into one fixed-
point parameter, leading to memory savings and reduced inference time. However, the
binarization network results in severe information loss. The direction of binarization
network research is towards reducing information loss, reducing errors, and preserving
model accuracy. The authors of reference [42], Courbariaux et al., proposed the concept of
binarized neural networks and used a randomized binarization method during the training
forward propagation. During the backward propagation, a clip function was introduced to
intercept the full precision weight to update the range, compressing the number of network
model parameters to a great extent and preventing the real weights from growing too
fast without affecting the binary weights. One year later, after the Binary network was
proposed, reference [43] proposed Binary-Weight-Networks and XNOR-Networks. The
filters of binary-weighted networks approximate binary values, and XNOR-Networks filters
and convolutional layer inputs are binary, which accelerates the speed of convolutional
operation and saves 32 times the memory. The experiments using the ImageNet dataset
show that the method improved the top-1 accuracy by 16% compared to other network
binarization methods used at that time. Reference [44] presents the first hash method
training binary method and experiments on CIFAR-10, CIFAR-100 with ImageNet dataset.
The main work of the authors was to convert the training binary network into a hash
problem, multiply the binary code by a scaling factor to reduce the loss caused by using
the hash method, and propose alternate optimization methods to iteratively update the
binary code and the scaling factor. Experimental results show a 3.0% improvement in
accuracy for the ImageNet classification task compared to the best binarization network at
that time. Reference [45] proposes Center-Symmetric Local Binary Convolutional Neural
Networks (CS-LBCNN) for handwritten character recognition to address the problem that
local binary networks are affected by randomly assigned local binary convolutional weights.
The authors also propose an improvement—Threshold Center-Symmetric Local Binary
Convolutional Neural Networks (TCS-LBCNN). The experiments were compared in CS-
LBCNN and TCS-LBCNN using bilingual, MNIST, and MADBase datasets, and the average
accuracies obtained in CS-LBCNN were 99.465%, 99.596%, and 99.502%, respectively. The
final average accuracies achieved in TCS-LBCNN were 99.491%, 99.656%, and 99.534%.
Experimental result showing in Figure 4. The authors also compared with today’s advanced
techniques and were able to achieve a small number of improvements in performance and
accuracy.

Micromachines 2023, 14, 897 10 of 18

Micromachines 2023, 14, x FOR PEER REVIEW 10 of 19

3.2. Binary Neural Networks and Optimization Techniques
Convolutional neural networks consist of multiple network layers and millions of

parameters. Due to their large size, it is challenging to deploy them directly on embedded
devices that have high hardware requirements.

To address this issue, a binarization method was proposed to simplify the network
parameters [41]. This method quantifies the weights and activation values into one fixed-
point parameter, leading to memory savings and reduced inference time. However, the
binarization network results in severe information loss. The direction of binarization net-
work research is towards reducing information loss, reducing errors, and preserving
model accuracy. The authors of reference [42], Courbariaux et al., proposed the concept
of binarized neural networks and used a randomized binarization method during the
training forward propagation. During the backward propagation, a clip function was in-
troduced to intercept the full precision weight to update the range, compressing the num-
ber of network model parameters to a great extent and preventing the real weights from
growing too fast without affecting the binary weights. One year later, after the Binary net-
work was proposed, reference [43] proposed Binary-Weight-Networks and XNOR-Net-
works. The filters of binary-weighted networks approximate binary values, and XNOR-
Networks filters and convolutional layer inputs are binary, which accelerates the speed of
convolutional operation and saves 32 times the memory. The experiments using the
ImageNet dataset show that the method improved the top-1 accuracy by 16% compared
to other network binarization methods used at that time. Reference [44] presents the first
hash method training binary method and experiments on CIFAR-10, CIFAR-100 with
ImageNet dataset. The main work of the authors was to convert the training binary net-
work into a hash problem, multiply the binary code by a scaling factor to reduce the loss
caused by using the hash method, and propose alternate optimization methods to itera-
tively update the binary code and the scaling factor. Experimental results show a 3.0%
improvement in accuracy for the ImageNet classification task compared to the best bina-
rization network at that time. Reference [45] proposes Center-Symmetric Local Binary
Convolutional Neural Networks (CS-LBCNN) for handwritten character recognition to
address the problem that local binary networks are affected by randomly assigned local
binary convolutional weights. The authors also propose an improvement—Threshold
Center-Symmetric Local Binary Convolutional Neural Networks (TCS-LBCNN). The ex-
periments were compared in CS-LBCNN and TCS-LBCNN using bilingual, MNIST, and
MADBase datasets, and the average accuracies obtained in CS-LBCNN were 99.465%,
99.596%, and 99.502%, respectively. The final average accuracies achieved in TCS-LBCNN
were 99.491%, 99.656%, and 99.534%. Experimental result showing in Figure 4. The au-
thors also compared with today’s advanced techniques and were able to achieve a small
number of improvements in performance and accuracy.

(a) (b)

Figure 4. Reference [45] (a) CS-LBCNN experiment result; (b) TCS-LBCNN experiment result.

In reference [46], the AdaBin method was proposed to adaptively obtain the optimal
binary set {b1, b2} for each layer of weights and activations. The method defined a new
binary quantization function using the center position and distance of 1-bit values. An
equalization method was proposed for the weights to minimize their Kullback–Leibler
scatter, and a gradient-based optimization method was introduced to obtain the activation

Figure 4. Reference [45] (a) CS-LBCNN experiment result; (b) TCS-LBCNN experiment result.

In reference [46], the AdaBin method was proposed to adaptively obtain the optimal
binary set {b1, b2} for each layer of weights and activations. The method defined a new
binary quantization function using the center position and distance of 1-bit values. An
equalization method was proposed for the weights to minimize their Kullback–Leibler
scatter, and a gradient-based optimization method was introduced to obtain the activation
parameters. Experimental results showed that a top-1 precision of 66.4% could be obtained
using the ResNet-18 architecture on the ImageNet dataset, and 69.4mAp (mean Average
Precision, which is a synthesis of both Precision and Recall metrics) was obtained using
SSD300 on the PASCAL VOC.

Binarization techniques are currently available to significantly reduce the size and
complexity of models, enabling complex neural networks to be deployed on resource-
constrained devices. However, accuracy loss remains a serious issue. To address this,
researchers have explored using other values besides the traditional {−1, 1} for weights
or activation values, increasing the complexity of the network to improve accuracy. Al-
ternatively, adaptive binarization methods may be the future direction. These methods
can dynamically adjust the range of weights and activation values based on the situation,
providing a more flexible and accurate approach.

3.3. CPU/GPU Acceleration Algorithm

In addition to optimizing network performance, hardware-based CPU and GPU
algorithms for neural network acceleration can also be optimized in the field of computer
science. The current CPU/GPU acceleration algorithms for neural networks are mainly
divided into three categories: adjusting the task scheduling strategy, enhancing CPU-GPU
parallel computing efficiency, and strengthening GPU utilization.

Reference [47] proposed the RedSync method based on the RGC (Residual Gradi-
ent Compression) compression algorithm, which can reduce end-to-end training time in
multi-GPU systems. This method significantly accelerated the training speed of large-scale
deep neural networks. Reference [48] proposed the RedSync method based on the residual
gradient compression (RGC) compression algorithm, which can reduce the end-to-end
training time in multi-GPU systems. This method significantly accelerates the training
speed of large-scale deep neural networks. In reference [9], the authors propose Troodon,
a load-balanced scheduling heuristic suitable for CPUs and GPUs. The main idea of the
algorithm is to organize all jobs into job pools according to device suitability, rank the
jobs in the job pools according to the predicted speedup rate, and achieve load-balanced
scheduling by considering the processing requirements of the jobs and the computational
capacity of the devices. This is calculated by computing the compute shares of each device
that are related to the available workload to be scheduled. The authors’ experiments were
conducted on two CPU-GPU heterogeneous systems, and Troodon’s final processing time
was reduced by 78%, 65%, and 41%, respectively, compared to the other three algorithms in
the literature (DS, ISG, and AA). In reference [49], the authors propose methods to execute
a local respective-field-based Extreme Learning Machine (LU) on a GPU platform. The first
method is a new chunked logical unit decomposition algorithm that overcomes the global
memory size limitation. The second method is used to accelerate the chunked LU decompo-

Micromachines 2023, 14, 897 11 of 18

sition efficient chunking algorithm Cholesky decomposition algorithm. Finally, the authors
propose a heterogeneous CPU-GPU parallel algorithm that can make full use of GPU node
resources. The experimental results showed that the chunking Cholesky decomposition
algorithm was two times faster compared to the LU decomposition algorithm, while the
heterogeneous blocking CPU-GPU acceleration algorithm improved the performance by
5% to 10% compared to the Cholesky algorithm. The authors of reference [50] propose
Hybrid Parallel DESPOT (HyP-DESPOT), a massively parallel online planning algorithm
based on the DESPOT algorithm that integrates CPU and GPU parallelism in a multilevel
scheme for robotic environments. The DESPOT algorithm has three key steps—1. Forward
Search, 2. Leaf node initialization, and 3. Backup—with the two steps of forward search
and backup being irregular. The experimental results show that the execution speed of the
HyP-DESPOT algorithm is significantly faster than that of DESPOT. In addition to CPU
and GPU optimization for neural networks, specialized components can also be designed
for neural network acceleration, such as the hardware-efficient vector convolutional neural
network accelerator proposed in reference [51], which uses a 3 × 3 filter to optimize the
shrink array. Here, a one-dimensional broadcast data stream is used to generate partial
sums, thus compressing the computational overhead. The experiments in this paper mainly
measure the improved neural network energy consumption and hardware utilization of
the convolutional neural network accelerator applied to VGG-16, ResNet-34, GoogleNet,
and MobileNet. The results show that the power consumption of the network loaded with
the acceleration was reduced, and its hardware utilization reached 99%, 97%, 93.7%, and
94%. Reference [52] proposes kernel merging methods to improve GPU occupancy and
also proposes a machine learning-based GPU sharing mechanism to select kernel pairs in
the OpenCL framework. The approach in this work first selects a suitable architecture for
the task and then merges GPU cores to improve resource utilization. Experimental results
show that the model built using this method achieves 0.91 and 0.98 in F-measure.

The current CPU/GPU algorithms for neural network acceleration have improved
support for embedded devices, and research is focused on optimizing their operational
efficiency. However, the issue of energy consumption has been largely overlooked. It is
important to consider the impact of these algorithms on energy consumption in future
research.

3.4. Summary

This section introduces three key technologies: Model Compression, Binary networks,
and CPU/GPU acceleration algorithms, respectively. These three technologies will deter-
mine whether embedded AI can deploy more complex and efficient models and algorithms
in the future. Furthermore, it is important to consider how the network structure and hard-
ware algorithm support can be better implemented in the future to facilitate the integration
with IoT edge computing. Table 2 provides the characteristics of each work covered in this
section.

Table 2. Literature covering key technologies.

Classification Reference Proposed Method Advantage

Model Compression

Network Design

[25] SqueezeNet Fewer parameters
[9] MobileNet Compatible Resource-scarce embedded devices
[31] ShuffleNet
[29] Once-for-all network Lower energy consumption
[41] Improvement of Yolov5 Faster detection speed

Quant
[31] BRECQ Faster production
[32] Data-Free Quantization Less precision loss
[33] AdaRound Less precision loss

Micromachines 2023, 14, 897 12 of 18

Table 2. Cont.

Classification Reference Proposed Method Advantage

Quant [11] DeepCompression Fewer storage requirements with no loss of
precision

[35] Efficient Inference Engine Lower energy consumption

Prune [25] Important Connection Pruning Fewer parameters

[37] ProbMask Higher precision

[38] ManiDp Fewer flops

[39] CHEX Fewer flops and less precision loss

[15] Channel pruning Less loss of performance

Binary Neural Network

[42] Binary Neural Network Significant reduction in the number of
parameters

[43] XNOR-Network Less memory consumption

[44] From hashing to CNM Improvement of accuracy

[45] CS-LBCNN and TCS-LBCNN Higher precision

[46] AdaBin Less loss of precision

CPU/GPU Acceleration

[47] RedSync Faster training speed

[9] Troodon Less processing time

[34] Local respective field-based Extreme
Learning Machine

Higher performance and faster decomposition
speed

[50] HyP-DESPOT Faster execution Speed

[51] Hardware efficient vector-wise accelerator Less energy consumption and higher hardware
utilization

[52] GPU-kernel fusion model Higher F-measure

4. Application Modes of Embedded Artificial Intelligence

The application of embedded AI can be simply divided into three approaches: de-
ploying trained models and weights and other data to embedded devices, training on
embedded devices, and training partially on embedded devices and partially on other
devices. The first two approaches have their characteristics. Post-training deployment
is simpler, but it requires more computational resources in inference. Embedded device
training can avoid the bottleneck of data transmission and computational resources, but
training on embedded devices requires more computational resources and time compared
to post-training deployment. The third approach is currently less studied, but task offload-
ing in edge computing is more compatible with this direction. Table 3 shows the literature
reviewed in this chapter.

Table 3. Literature on application modes.

Classification Reference

Post-Training Deployment [31,53–57]

Training on Embedded Devices [4,58,59]

Partial Training [31]

4.1. Post-Training Deployment

The authors of reference [53] utilized a wearable smart log patch to monitor and
compare health data, such as blood pressure, temperature, and electrocardiogram readings.
The wearable IoT smart log patch had a hardware specific chip size of 5 mm, operated at
0.9 V with a 120 Mhz clock speed, and had built-in Wi-Fi and Bluetooth, 14 I/O pins, and
12 sensors. The formula for accuracy in this work was as follows.

Micromachines 2023, 14, 897 13 of 18

Accuracy =
F(TruePostive) + F(TrueNegative)

F(TruePostive) + F(TrueNegative) + F(FalsePostive) + F(FalseNegative)
(3)

The article proposes an EC-BDLN algorithm, which reduces data faults during the
transportation of information from the input layer to the output layer, resulting in high
throughput. Additionally, when the network detects a data fault, it can transport data from
the source to the destination address using minimal energy consumption. The algorithm
also introduces a Gaussian factor that helps to maintain unwanted switching activities in the
network and improve the prediction accuracy. In the experiments, the proposed algorithm
outperforms other methods in terms of efficiency and has lower error rates. Reference [54]
describes a wearable fall monitoring system that uses a wearable motion sensor with three
axial devices, including a compass/magnetometer, gyroscope, and accelerometer. The
proposed artificial intelligence IOT-CPS (Cyber-Physical Systems) diagnoses patient disease
accuracy, recall, F-Measure, and execution time, and shows significant improvement over
existing algorithms. Reference [55] is about deploying machine-learning capabilities on a
smartphone mobile platform for target recognition. The proposed target detection system
is based on two platforms: OpenCV and Tensorflow. The UAV configuration can transmit
video at 720p/1080p with low latency and high quality. The controller is wirelessly con-
nected to the UAV and the Android device, and these three components are synchronized.
To deploy Yolov3 on an Android mobile device, the authors used Keras to process the
network configuration file and the weight file. This generated an intermediate file with
the extension h5, as well as a help file that defines the neural network in JSON format. In
their experiments, the authors used SSD, YOLOv3, and Tiny-YOLOv3 deployed on two
platforms to evaluate the accuracy, speed, RAM, energy consumption, and temperature.
The authors found that OpenCV outperforms TensorFlow when performing image pre-
processing on mobile devices. However, TensorFlow performs better when the tracking
process is running, and it also has the highest neural network execution speed. TensorFlow
significantly outperforms other platforms, achieving a higher number of frames per second.
In reference [56], the authors explored artificial intelligence for basic hand position recog-
nition in Chinese classical dance, using TensorFlow on NVIDIA Jeston series embedded
AI development boards. They extracted the coordinates of human joint point positions
in the video and calculated the similarity between imitators’ action poses and standard
action samples using cosine similarity algorithms to achieve recognition and evaluation
of academic poses in Chinese classical dance. Finally, reference [57] investigates image
segmentation, feature extraction, and motion recognition methods based on embedded
systems and artificial intelligence platforms for taekwondo technical action processes and
motion effects. The authors optimized their algorithm, involving improved background
subtraction for image segmentation and the use of principal component analysis to con-
struct feature vectors to reduce the number of dimensions of the quantitative description
of features. They chose a microcontroller containing max1300 chip and max9632 chip for
deployment and achieved a desirable recognition rate for 10 actions in the video database.
However, this work did not deploy the algorithm on a real-time system, only mentioning
the possibility.

4.2. Training on Embedded Devices

In [4], the authors propose a zero-activation-skipping convolutional accelerator (ZA-
SCA), which avoids the non-contributing multiplication of zero-valued activations. The
main submodules are convolutional units (CEs), pipelines, and encoding. In the experi-
ments, the authors denote ZASCA, which performs convolution on dense activation, as
ZASCAD, and ZASCAS, which performs convolution on sparse activation, as ZASCAS.
They compare ZASCAD and ZASCAS with Eyeriss, EEPS, and DSIP using AlexNet, VGG-
16, ResNet-18, and ResNet-50 datasets. Eyeriss is tested on AlexNet and VGG-16, and
EEPS and DSIP are tested on AlexNet only. The results show that when running AlexNet

Micromachines 2023, 14, 897 14 of 18

and VGG-16, ZASCAD runs 1.4 times and 3.1 times faster than Eyeriss, respectively, and
ZASCAS performs AlexNet convolution 1.5 times faster than EEPS. Finally, ZASCAD
and ZASCAS perform 2.7 times and 4 times better than DSIP at runtime, respectively.
The authors also provide an energy consumption analysis in the paper, which yields the
result that ZASCAS performs ResNet-50 convolution to obtain the highest energy efficiency.
In [58], the authors used computational intelligence techniques for image analysis to study
predictive computational intelligence techniques for the nitrogen status evaluation of wheat
crops using Hue–Saturation–Intensity color normalization, genetic algorithm (GA), and
artificial neural network (ANN) to predict the crop accuracy status and classify it. They
propose an accurate crop yield prediction model that combines ANN and GA to predict
crop yield by first extracting low-level color, morphology, and texture features, then further
processing using GA, and finally optimizing the features for transmission to the ANN for
crop prediction. The experiments in this work were conducted on an Intel Core i5 CPU
using a dataset of 18,200 images of wheat crops, divided into four categories based on
the age of the wheat, with 5460 images for testing and 12,740 images for the training and
implementation of the neural network. The experimental results verified an accuracy of
97.75%, with a minimum error of 0.22 and a loss value reduction of 0.28 compared to other
contemporary methods. After comparative experimental analysis, the model provided an
effective and reliable approach to the crop yield prediction problem due to the optimization
of the training parameters and the low hardware requirements of the method using ANN
with GA. In [59], the authors proposed an energy-efficient thin and deep convolutional
neural network architecture dedicated to traffic sign recognition, which contained four
convolutional layers, two overlapping maximum pooling layers, and one fully connected
hidden layer. Using overlapping maximum pooling layers instead of non-overlapping
maximum pooling layers can solve the problem of overfitting and compress the image
before processing. The authors used an Intel Core i7 CPU for training, and the datasets
were German traffic sign recognition benchmark and Belgian traffic sign classification
datasets. The final experimental results showed that the proposed architecture outperforms
state-of-the-art traffic sign methods and reduces the system energy consumption due to the
lower computational effort of the method used in the literature. Since the computational
cost is linearly equivalent to the energy consumption, the method achieves reduced energy
consumption and complexity while maintaining the accuracy of other contemporary meth-
ods. However, the network structure was designed exclusively for traffic sign recognition
and lacked generalization.

4.3. Partial Training

In reference [5], the authors proposed incorporating deep learning into the edge com-
puting environment to enhance learning performance while reducing network traffic. By
utilizing deep learning, edge computing can extract important information and reduce the
communication overhead transmitted from edge devices to the cloud server. Additionally,
some of the learning layers can be implemented at the edge during model training, and only
the reduced intermediate data are transferred to the centralized cloud server. Experimental
results demonstrate that this approach outperforms other methods in optimizing IoT deep
learning.

4.4. Summary

Currently, most embedded AI applications are deployed on embedded devices after
being trained elsewhere. However, research on on-device training and the execution of
tasks is relatively scarce. These two deployment modes have different requirements and
are more difficult to match. On-device training can lead to better generalization, but
also requires higher hardware capabilities. In the future, the development of hardware
accelerators will likely promote the development of both deployment modes.

Micromachines 2023, 14, 897 15 of 18

5. The Outlook of Embedded Artificial Intelligence

In the Industry 4.0 environment, the digitalization process of the manufacturing in-
dustry relies on embedded intelligence technology. To achieve this, more complex and
intelligent artificial intelligence algorithms and models need to be deployed to resource-
constrained embedded devices. Embedded intelligence will play an important role in the
digital transformation of the manufacturing industry. The following are some considera-
tions for embedded artificial intelligence technology:

1. Efficient algorithms and lightweight models: In the current society, most workers
need to frequently switch between different work scenarios. This results in higher
requirements for device portability, including weight, volume, energy consumption,
and other factors. To ensure the portability of the devices, the development of intelli-
gent devices requires the study of more efficient algorithms and lightweight network
models while maintaining model accuracy and reducing network model complexity.

2. Hardware acceleration methods: In addition to optimization in algorithms and models,
optimization can also be achieved at the hardware level. The current research on
hardware acceleration methods is limited to a single architecture of the neural network
accelerator. Applying a hardware neural network accelerator to multiple platforms
or using multiple hardware devices in combination may become a solution to the
problem in the future.

3. Deployment optimization: Embedded AI deployment can be divided into post-
training deployment, training on embedded devices, and part of the training task
on embedded devices. Current post-training deployment has a high demand for
training speed on other platforms, which can be met by improving the model training
speed. The need for training on embedded devices is consistent with the first point of
this subsection, requiring more efficient algorithms and lighter network models to
reduce the difficulty of model training on embedded devices. For tasks completed on
embedded devices, consideration of post-training models for integration is required
to ensure model integrity.

4. Compatibility: According to reference [60], the current embedded intelligence in
the industry still faces problems. For example, in legacy automation systems, some
dedicated functions lack interoperability with the current automation system due to
various reasons. At the same time, there is no standard method to manage the edge
computing nodes and data collection. Additionally, utilizing the large amount of data
generated by the edge computing and industrial cloud working together in machine
learning remains an issue.

6. Conclusions

This paper presents the current state of development in embedded AI from three
perspectives: hardware acceleration methods, key technologies, and application models.
Currently, embedded intelligence has established a foundation that includes deployment
platforms for AI support, such as designing hardware accelerators for neural networks,
optimizing network models, which includes network structure design, quantization, prun-
ing, and binarization methods, and improving underlying hardware algorithms. All of the
above technologies contribute to the deployment of AI on resource-constrained devices, but
further development is needed in the following areas: efficient algorithms and lightweight
models, the optimization of hardware acceleration methods, and the optimization of de-
ployment methods and compatibility.

Author Contributions: Conceptualization, Z.Z. and J.L.; writing—original draft preparation, J.L. All
authors have read and agreed to the published version of the manuscript.

Funding: The research was supported by the Department of Education of Guangdong Province
(2022ZDZX1029).

Micromachines 2023, 14, 897 16 of 18

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ang, K.L.-M.; Seng, J.K.P. Embedded Intelligence: Platform Technologies, Device Analytics, and Smart City Applications. IEEE

Internet Things J. 2021, 8, 13165–13182. [CrossRef]
2. Dick, R.P.; Shang, L.; Wolf, M.; Yang, S.-W. Embedded Intelligence in the Internet-of-Things. IEEE Des. Test 2019, 37, 7–27.

[CrossRef]
3. Guo, B.; Zhang, D.; Yu, Z.; Liang, Y.; Wang, Z.; Zhou, X. From the internet of things to embedded intelligence. World Wide Web

2012, 16, 399–420. [CrossRef]
4. Ardakani, A.; Condo, C.; Gross, W.J. Fast and Efficient Convolutional Accelerator for Edge Computing. IEEE Trans. Comput. 2019,

69, 138–152. [CrossRef]
5. Li, H.; Ota, K.; Dong, M. Learning IoT in Edge: Deep Learning for the Internet of Things with Edge Computing. IEEE Netw. 2018,

32, 96–101. [CrossRef]
6. Manavalan, E.; Jayakrishna, K. A review of Internet of Things (IoT) embedded sustainable supply chain for industry 4.0

requirements. Comput. Ind. Eng. 2018, 127, 925–953. [CrossRef]
7. Xu, D.; Li, T.; Li, Y.; Su, X.; Tarkoma, S.; Jiang, T.; Crowcroft, J.; Hui, P. Edge Intelligence: Empowering Intelligence to the Edge of

Network. Proc. IEEE 2021, 109, 1778–1837. [CrossRef]
8. Poniszewska-Maranda, A.; Kaczmarek, D.; Kryvinska, N.; Xhafa, F. Studying usability of AI in the IoT systems/paradigm

through embedding NN techniques into mobile smart service system. Computing 2018, 101, 1661–1685. [CrossRef]
9. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H.J. Mobilenets: Efficient

convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.
10. Deng, B.L.; Li, G.; Han, S.; Shi, L.; Xie, Y. Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive

Survey. Proc. IEEE 2020, 108, 485–532. [CrossRef]
11. Krishnamoorthi, R.J. Quantizing deep convolutional networks for efficient inference: A whitepaper. arXiv 2018, arXiv:1806.08342.
12. Kwadjo, D.T.; Tchinda, E.N.; Mbongue, J.M.; Bobda, C. Towards a component-based acceleration of convolutional neural networks

on FPGAs. J. Parallel Distrib. Comput. 2022, 167, 123–135. [CrossRef]
13. Hwang, D.H.; Han, C.Y.; Oh, H.W.; Lee, S.E. ASimOV: A Framework for Simulation and Optimization of an Embedded AI

Accelerator. Micromachines 2021, 12, 838. [CrossRef]
14. Li, Z.; Lemaire, E.; Abderrahmane, N.; Bilavarn, S.; Miramond, B. Efficiency analysis of artificial vs. Spiking Neural Networks on

FPGAs. J. Syst. Arch. 2022, 133, 102765. [CrossRef]
15. Venieris, S.I.; Bouganis, C.S. fpgaConvNet: A toolflow for mapping diverse convolutional neural networks on embedded FPGAs.

arXiv 2017, arXiv:1711.08740.
16. Venieris, S.I.; Bouganis, C.-S. fpgaConvNet: Mapping Regular and Irregular Convolutional Neural Networks on FPGAs. IEEE

Trans. Neural Networks Learn. Syst. 2018, 30, 326–342. [CrossRef]
17. Andri, R.; Cavigelli, L.; Rossi, D.; Benini, L. YodaNN: An Architecture for Ultralow Power Binary-Weight CNN Acceleration.

IEEE Trans. Comput. Des. Integr. Circuits Syst. 2017, 37, 48–60. [CrossRef]
18. Hegde, K.; Yu, J.; Agrawal, R.; Yan, M.; Pellauer, M.; Fletcher, C. UCNN: Exploiting Computational Reuse in Deep Neural

Networks via Weight Repetition. In Proceedings of the 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), Los Angeles, CA, USA, 1–6 June 2018; pp. 674–687. [CrossRef]

19. Shin, D.; Yoo, H.-J. The Heterogeneous Deep Neural Network Processor With a Non-von Neumann Architecture. Proc. IEEE 2019,
108, 1245–1260. [CrossRef]

20. Wang, M.; Yang, T.; Flechas, M.A.; Harris, P.; Hawks, B.; Holzman, B.; Knoepfel, K.; Krupa, J.; Pedro, K.; Tran, N. GPU-Accelerated
Machine Learning Inference as a Service for Computing in Neutrino Experiments. Front. Big Data 2021, 3. [CrossRef]

21. Zhang, F.; Chen, Z.; Zhang, C.; Zhou, A.C.; Zhai, J.; Du, X. An Efficient Parallel Secure Machine Learning Framework on GPUs.
IEEE Trans. Parallel Distrib. Syst. 2021, 32, 2262–2276. [CrossRef]

22. Kang, M.; Lee, Y.; Park, M. Energy Efficiency of Machine Learning in Embedded Systems Using Neuromorphic Hardware.
Electronics 2020, 9, 1069. [CrossRef]

23. Mittal, S. A Survey on optimized implementation of deep learning models on the NVIDIA Jetson platform. J. Syst. Arch. 2019, 97,
428–442. [CrossRef]

24. Liu, X.; Ounifi, H.-A.; Gherbi, A.; Li, W.; Cheriet, M. A hybrid GPU-FPGA based design methodology for enhancing machine
learning applications performance. J. Ambient. Intell. Humaniz. Comput. 2019, 11, 2309–2323. [CrossRef]

25. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K.J. SqueezeNet: AlexNet-level accuracy with 50×
fewer parameters and<0.5 MB model size. arXiv 2016, arXiv:1602.07360.

26. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. arXiv
2017, arXiv:1707.01083v2.

https://doi.org/10.1109/JIOT.2021.3088217
https://doi.org/10.1109/MDAT.2019.2957352
https://doi.org/10.1007/s11280-012-0188-y
https://doi.org/10.1109/TC.2019.2941875
https://doi.org/10.1109/MNET.2018.1700202
https://doi.org/10.1016/j.cie.2018.11.030
https://doi.org/10.1109/JPROC.2021.3119950
https://doi.org/10.1007/s00607-018-0680-z
https://doi.org/10.1109/JPROC.2020.2976475
https://doi.org/10.1016/j.jpdc.2022.04.025
https://doi.org/10.3390/mi12070838
https://doi.org/10.1016/j.sysarc.2022.102765
https://doi.org/10.1109/TNNLS.2018.2844093
https://doi.org/10.1109/TCAD.2017.2682138
https://doi.org/10.1109/isca.2018.00062
https://doi.org/10.1109/JPROC.2019.2897076
https://doi.org/10.3389/fdata.2020.604083
https://doi.org/10.1109/TPDS.2021.3059108
https://doi.org/10.3390/electronics9071069
https://doi.org/10.1016/j.sysarc.2019.01.011
https://doi.org/10.1007/s12652-019-01357-4

Micromachines 2023, 14, 897 17 of 18

27. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

28. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. In Aggregated residual transformations for deep neural networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500.

29. Cai, H.; Gan, C.; Wang, T.; Zhang, Z.; Han, S. Once-for-all: Train one network and specialize it for efficient deployment. arXiv
2019, arXiv:1908.09791.

30. Dong, X.; Yan, S.; Duan, C. A lightweight vehicles detection network model based on YOLOv5. Eng. Appl. Artif. Intell. 2022, 113,
104914. [CrossRef]

31. Li, Y.; Gong, R.; Tan, X.; Yang, Y.; Hu, P.; Zhang, Q.; Yu, F.; Wang, W.; Gu, S. Brecq: Pushing the limit of post-training quantization
by block reconstruction. arXiv 2021, arXiv:2102.05426.

32. Nagel, M.; Van Baalen, M.; Blankevoort, T.; Welling, M. Data-Free Quantization Through Weight Equalization and Bias Correction.
In Proceedings of the IEEE/CVF International Conference on Computer Vision 2019, Seoul, Republic of Korea, 27 October–2
November 2019.

33. Nagel, M.; Amjad, R.A.; Van Baalen, M.; Louizos, C.; Blankevoort, T. Up or down? adaptive rounding for post-training
quantization. In Proceedings of the International Conference on Machine Learning 2020, Virtual, 3–18 July 2020; pp. 7197–7206.

34. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and
huffman coding. arXiv 2015, arXiv:1510.00149.

35. Han, S.; Liu, X.; Mao, H.; Pu, J.; Pedram, A.; Horowitz, M.A.; Dally, W.J. EIE: Efficient inference engine on compressed deep
neural network. ACM SIGARCH Comput. Archit. News 2016, 44, 243–254. [CrossRef]

36. Han, S.; Pool, J.; Tran, J.; Dally, W. Learning both weights and connections for efficient neural network. Adv. Neural Inf. Process.
Syst. 2015, 28.

37. Zhou, X.; Zhang, W.; Xu, H.; Zhang, T. Effective sparsification of neural networks with global sparsity constraint. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, Virtual, 19–25 June 2021; pp. 3599–3608.

38. Tang, Y.; Wang, Y.; Xu, Y.; Deng, Y.; Xu, C.; Tao, D.; Xu, C. Manifold regularized dynamic network pruning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, Virtual, 19–25 June 2021; pp. 5018–5028.

39. Hou, Z.; Qin, M.; Sun, F.; Ma, X.; Yuan, K.; Xu, Y.; Chen, Y.-K.; Jin, R.; Xie, Y.; Kung, S.-Y. Chex: Channel exploration for CNN
model compression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, New
Orleans, LA, USA, 18–24 June 2022; pp. 12287–12298.

40. Li, Y.; Adamczewski, K.; Li, W.; Gu, S.; Timofte, R.; Van Gool, L. Revisiting random channel pruning for neural network
compression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, New Orleans, LA,
USA, 18–24 June 2022; pp. 191–201.

41. Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1. arXiv 2016, arXiv:1602.02830.

42. Courbariaux, M.; Bengio, Y.; David, J.P. Binaryconnect: Training deep neural networks with binary weights during propagations.
Adv. Neural Inf. Process. Syst. 2015, 28, 777–780.

43. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. In Xnor-net: Imagenet classification using binary convolutional neural
networks. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14
October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 525–542.

44. Hu, Q.; Wang, P.; Cheng, J. From Hashing to CNNs: Training Binary Weight Networks via Hashing. Proc. Conf. AAAI Artif. Intell.
2018, 32. [CrossRef]

45. Al-Wajih, E.; Ghazali, R. Threshold center-symmetric local binary convolutional neural networks for bilingual handwritten digit
recognition. Knowledge-Based Syst. 2023, 259. [CrossRef]

46. Tu, Z.; Chen, X.; Ren, P.; Wang, Y. Adabin: Improving Binary Neural Networks with Adaptive Binary Sets, Proceedings of the Computer
Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, 23–27 October 2022; Springer: Berlin/Heidelberg, Germany, 2022;
pp. 379–395.

47. Fang, J.; Fu, H.; Yang, G.; Hsieh, C.-J. RedSync: Reducing synchronization bandwidth for distributed deep learning training
system. J. Parallel Distrib. Comput. 2019, 133, 30–39. [CrossRef]

48. Khalid, Y.N.; Aleem, M.; Ahmed, U.; Islam, M.A.; Iqbal, M.A. Troodon: A machine-learning based load-balancing application
scheduler for CPU–GPU system. J. Parallel Distrib. Comput. 2019, 132, 79–94. [CrossRef]

49. Li, S.; Niu, X.; Dou, Y.; Lv, Q.; Wang, Y. Heterogeneous blocked CPU-GPU accelerate scheme for large scale extreme learning
machine. Neurocomputing 2017, 261, 153–163. [CrossRef]

50. Cai, P.; Luo, Y.; Hsu, D.; Lee, W.S. HyP-DESPOT: A hybrid parallel algorithm for online planning under uncertainty. Int. J. Robot.
Res. 2021, 40, 558–573. [CrossRef]

51. Chang, K.-W.; Chang, T.-S. VWA: Hardware Efficient Vectorwise Accelerator for Convolutional Neural Network. IEEE Trans.
Circuits Syst. I Regul. Pap. 2019, 67, 145–154. [CrossRef]

52. Ahmed, U.; Lin, J.C.-W.; Srivastava, G. A ML-based resource utilization OpenCL GPU-kernel fusion model. Sustain. Comput.
Inform. Syst. 2022, 35, 100683. [CrossRef]

https://doi.org/10.1016/j.engappai.2022.104914
https://doi.org/10.1145/3007787.3001163
https://doi.org/10.1609/aaai.v32i1.11660
https://doi.org/10.1016/j.knosys.2022.110079
https://doi.org/10.1016/j.jpdc.2019.05.016
https://doi.org/10.1016/j.jpdc.2019.05.015
https://doi.org/10.1016/j.neucom.2016.05.112
https://doi.org/10.1177/0278364920937074
https://doi.org/10.1109/TCSI.2019.2942529
https://doi.org/10.1016/j.suscom.2022.100683

Micromachines 2023, 14, 897 18 of 18

53. Manogaran, G.; Shakeel, P.M.; Fouad, H.; Nam, Y.; Baskar, S.; Chilamkurti, N.; Sundarasekar, R. Wearable IoT Smart-Log Patch:
An Edge Computing-Based Bayesian Deep Learning Network System for Multi Access Physical Monitoring System. Sensors 2019,
19, 3030. [CrossRef] [PubMed]

54. Ramasamy, L.K.; Khan, F.; Shah, M.; Prasad, B.V.V.S.; Iwendi, C.; Biamba, C. Secure Smart Wearable Computing through Artificial
Intelligence-Enabled Internet of Things and Cyber-Physical Systems for Health Monitoring. Sensors 2022, 22, 1076. [CrossRef]
[PubMed]

55. Martinez-Alpiste, I.; Casaseca-de-la-Higuera, P.; Alcaraz-Calero, J.M.; Grecos, C.; Wang, Q. Smartphone-based object recognition
with embedded machine learning intelligence for unmanned aerial vehicles. J. Field Robot. 2020, 37, 404–420. [CrossRef]

56. Zhou, Q.; Wang, J.; Wu, P.; Qi, Y. Application Development of Dance Pose Recognition Based on Embedded Artificial Intelligence
Equipment. J. Physics Conf. Ser. 2021, 1757, 012011. [CrossRef]

57. Ma, Q.; Wang, Y. RETRACTED ARTICLE: Application of embedded system and artificial intelligence platform in Taekwondo
image feature recognition. J. Ambient. Intell. Humaniz. Comput. 2021, 1–12. [CrossRef]

58. Sharma, A.; Georgi, M.; Tregubenko, M.; Tselykh, A.; Tselykh, A.J.C.; Engineering, I. Enabling smart agriculture by implementing
artificial intelligence and embedded sensing. Comput. Ind. Eng. 2022, 165, 107936. [CrossRef]

59. Haque, W.A.; Arefin, S.; Shihavuddin, A.; Hasan, M.A. DeepThin: A novel lightweight CNN architecture for traffic sign
recognition without GPU requirements. Expert Syst. Appl. 2020, 168, 114481. [CrossRef]

60. Dai, W.; Nishi, H.; Vyatkin, V.; Huang, V.; Shi, Y.; Guan, X. Industrial Edge Computing: Enabling Embedded Intelligence. IEEE
Ind. Electron. Mag. 2019, 13, 48–56. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/s19133030
https://www.ncbi.nlm.nih.gov/pubmed/31324070
https://doi.org/10.3390/s22031076
https://www.ncbi.nlm.nih.gov/pubmed/35161820
https://doi.org/10.1002/rob.21921
https://doi.org/10.1088/1742-6596/1757/1/012011
https://doi.org/10.1007/s12652-021-03222-9
https://doi.org/10.1016/j.cie.2022.107936
https://doi.org/10.1016/j.eswa.2020.114481
https://doi.org/10.1109/MIE.2019.2943283

	Introduction
	Hardware Acceleration Methods for Embedded AI
	FPGA
	ASIC
	GPU
	Other Acceleration Hardware
	Summary

	The Key Technologies of Embedded AI
	Model Compression of Neural Network
	Network Structure Redesign
	Quantization
	Pruning

	Binary Neural Networks and Optimization Techniques
	CPU/GPU Acceleration Algorithm
	Summary

	Application Modes of Embedded Artificial Intelligence
	Post-Training Deployment
	Training on Embedded Devices
	Partial Training
	Summary

	The Outlook of Embedded Artificial Intelligence
	Conclusions
	References

