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Abstract: Complex optical elements have the advantages of improving image quality and optical
performance and expanding the field of view. Therefore, it is widely used in X-ray scientific devices,
adaptive optical elements, high-energy laser systems, and other fields and is a hot research direction in
precision optics. Especially for precision machining, there is a greater need for high-precision testing
technology. However, how to measure complex surfaces efficiently and accurately is still an important
research topic in optical metrology technology. In order to verify the ability of optical metrology
for complex optical surfaces with wavefront sensing based on image information of the focal plane,
some experiment platforms in different types of optical surfaces were set up. In order to validate the
feasibility and validity of wavefront-sensing technology based on image information of focal planes,
a large number of repetitive experiments were carried out. The measurement results with wavefront
sensing based on image information of the focal plane were compared with the measurement results
with the ZYGO interferometer. The experimental results demonstrate that good agreement is obtained
among the error distribution, PV value, and RMS value of the ZYGO interferometer, which shows the
feasibility and validity of wavefront sensing based on image information of focal plane technology in
optical metrology for the complex optical surface.

Keywords: complex surface 1; surface measurement 2; optical metrology 3; wavefront sensing 4

1. Introduction

Because the use of complex optical elements can make the spatial layout of the optical
system more flexible, that is, increasing the degree of freedom of the system design while
reducing the number of system elements, more and more complex optical elements are
used in the optical system of high-accuracy optical elements. However, the increase in
complex optical elements and the increasingly high requirements for their surface accuracy
has brought great challenges to optical processing and testing. Especially for precision
machining, there is a greater need for high-precision testing technology. The optical testing
technology of complex surfaces has become a research hotspot for scholars [1–3]. Compared
with traditional spherical and aspherical surfaces, complex surfaces challenge the concept
of traditional optical systems and have many advantages in optical performance, space,
and weight limitations. The use of complex surfaces allows greater freedom and flexibility
in the design and manufacture of optical elements, which lets complex surfaces have
greater freedom in aberration correction and control of light direction [4]; this can eliminate
various aberrations of optical systems and simplify the optical system, which can make
its structure more compact and have higher optical performance [5]. Complex surfaces
usually have large phase gradients; thus, optical testing of complex surfaces is extremely
challenging [6,7].

Optical testing methods for complex surfaces can be divided into two types: the
point–line measurement method, such as the coordinate measurement machine (CMM),
and the profilometer measurement method [8,9]. The point–line measurement method
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needs to scan point by point or line by line, which is slow and inefficient. For example, the
CMM method uses point-by-point scanning to measure, which is slow and cannot obtain
the full field shape data of the measured element at one time. The swing arm contour
scanning method is also faced with problems of low measurement efficiency and errors
in the overall surface shape stitching process. At present, it can only measure freeform
surfaces of off-axis aspheric types. The research on measuring the high degree of freedom
surfaces with complex shapes, large local gradient changes, and difficult mathematical
expression of surface shape has not been reported. The other method is plane measurement.
In recent years, more and more attention has been paid to plane measurement methods,
which mainly include interferometric testing and structured light 3D measurement. The
measurement accuracy of interferometry is high, including sub-aperture stitching technol-
ogy [10,11], computer-generated hologram (CGH) [12], and fringe reflection method [13].
Among the most popular methods, interferometry is a standard measurement method for
high-precision polished optical surfaces and is currently the most accurate optical testing
method. However, aspheric optical elements are very difficult to test due to their different
internal curvature radii. CGH is the commonly used null interferometry in interferometric
testing [14], but it also faces several problems: the mode of one-to-one compensation mea-
surement causes its poor measurement versatility, so the testing cost is high. For curved
surface components with large gradients, CGH, as a compensator, needs to achieve the
output of a large gradient wavefront through a diffraction structure with high density, so
the groove density of CGH is limited by the current level of microstructure processing
technology. The non-null interferometric method is the sub-aperture stitching method,
but it also faces several problems: excessive sub-aperture division will greatly reduce
the measurement efficiency and will also bring difficulties to the surface shape stitching,
resulting in the decline of the overall shape stitching accuracy. It has high requirements for
mechanical adjustment, high cost, and requires a lot of testing time, so it is not widely used
in testing complex optical surfaces.

In recent years, wavefront sensing [15] could be divided into pupil plane wavefront
sensing and focal plane wavefront sensing according to the exit pupil position of the optical
system [16]. Additionally, the wavefront sensing technology based on image information
of the focal plane, which is also called focal plane wavefront sensing (FPWS), has attracted
more and more attention from scholars. FPWS is in the image plane of the imaging optical
system position and often does not need to add the auxiliary optical components, which
capture the multi-frame short-exposure image by given the defocus aberration, the solver
that obtains the wavefront phase information of the optical system and can use Zernike
polynomials fitting the individual aberrations. Compared with interferometer and other
testing methods, FPWS can dynamically test optical components and systems. Phase
retrieval (PR) is one of the FPWS methods that pays more attention to the algorithm
design and mainly relies on the PR algorithm to obtain the final testing results [17]. The
realization is more flexible, and it can dynamically test optical elements and systems. It
has good application prospects in optical processing, system configuration, active optics,
adaptive optics, and other fields, thus favored by experts. The main advantages of the PR
measurement method are as follows (see Reference [18] for details): large dynamic range,
high resolution, and high sensitivity. It can accurately calculate the surface of the mirror
to be measured with small camera sampling points, which can achieve the equivalent
accuracy of the interferometer.

In this paper, on the basis of FPWS and algorithm research in the earlier stage [19,20],
we will not repeat the detailed research conducted on the FPWS principle, algorithms,
and improvement and only simplify and introduce the principle of PR. In order to verify
the testing capability of PR technology on complex optical surfaces, an experimental
platform for testing different types of surfaces based on modified PR (MPR) was built.
In order to verify the feasibility and effectiveness of the MPR method, a large number of
repetitive experiments were carried out for verification, and the results of the MPR method
were compared with those of the ZYGO interferometer [21,22]. Here, we use a ZYGO
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interferometer to provide independent metrology of a test optic for direct comparison with
the estimates that we obtained with the PR method. The experimental results show that
there is a great similarity between the surface error distribution and the peak valley (PV)
value and root-mean-square (RMS) value of the error, indicating the feasibility of the FPWS
method in the testing of complex optical surfaces.

In this paper, we will first introduce the principle of PR in Section 2. In Section 3, the
design of the experiment is presented. The results and discussion are shown in Section 4,
and the conclusion is finally drawn in Section 5.

2. The Principle of PR

The PR system is the wave-front detector of focal plane waves. A laser spotlight on
the object plane is a target designated from the focal plane image acquisition, using the
acquired image, the defocus of the corresponding image, and the known pupil size and
shape to reverse solve the aberration of the optical system [23,24]. The structure of the PR
system is shown in Figure 1.
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Figure 1. The optical principle of PR.

In the optics domain, there is much research on the algorithms of PR, with the core
question concerning the Gerchberg–Saxton (GS) algorithm [25]. The GS algorithm was
first proposed by Gerchberg et al., as shown in Figure 2, and subsequently appeared
in various algorithms [26–29], such as the gradient search algorithm and input–output
algorithm. So, PR technology has been widely used, and the PR algorithm has become
the most important research domain because its important applications include wavefront
sensing, X-ray crystallography, astronomy, transmission electron microscopy, and coherent
diffractive imaging, for which M = 2 [30–33]. Therefore, the PR measurement method has
been used by scholars in the research on testing optical freeform surfaces [34,35].
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Assuming that the aperture of a measured optical system is D, the focal length is Z,
the center wavelength of the laser source is λ, and its pupil constraint function is | f (x)|,
where x is a two-dimensional vector, η is a wavefront distortion. Then, for the focal plane,
its generalized pupil function is expressed as follows:

f (x) = | f (x)| exp[iη(x)]. (1)

Among them, η can be used for fitting via Zernike polynomials: η(x) = ∑
n

αnZn(x),

where real numbers αn represent the nth polynomial coefficients, and Zn represent the nth
Zernike polynomial basis. For linear optical systems, the pulse response function f (x) of
the generalized pupil F(u) on the plane with defocus δ is expressed as follows:

F(u) = |F(u)| exp[iψ(u)] = F−1{ f (x) exp[ε(x, δ)]}. (2)

Among them, x is the pupil domain coordinate, u is the image domain coordinate, and
x and u are both two-dimensional vectors, ψ represents the phase part of the pulse response,
F represents the two-dimensional Fourier transform, F−1 represents the two-dimensional
inverse Fourier transform, and ε(x, δ) represents the wavefront distortion δ caused by
defocusing at position x. For a PR system, | f (x)| of Formula (1) is a prior condition for
the known optical system under test, corresponding to the size and shape of the pupil.
The image |F(u)| is collected via CCD; The defocus amount at the position of the CCD
is δ. The purpose of using PR for wavefront sensing is to calculate η(x) based on the
above-known quantities.

In our work on the PR algorithm, we mainly pay more attention to the GS algorithm
and the gradient search algorithm, which is another common method to solve the PR
problem. We have conducted some research on both of the two algorithms. Here, we
separately describe them and show the modified PR algorithm and improvement [20].

2.1. Gerchberg–Saxton Algorithm

The GS algorithm can be described as follows: the estimated values of gm,k, θm,k, Gm,k, φm,k
are for each pair of f , η, F, ψ at the kth iteration of the mth image; gk represents the joint

estimation to f of each pair of gm,k at the kth iteration, gk(x) = 1
M

M
∑

m=1
gm,k(x). The steps of

the GS algorithm are as follows (m ∈ [1, M]):
Initialization k = 0; θm,k = 0.

a. εm(x) = ε(x, δm) =
πδm‖x‖2

λZ2 , gk(x) =| f (x)| (3)

b. Gm,k(u) =
∣∣Gm,k(u)

∣∣ exp[iφm,k(u)] = F{gk(x) exp[iεm(x)]} (4)

c. Gm,k
′(u) = |F(u)| exp[iφm,k(u)] (5)

d. gm,k
′(x) =

∣∣gm,k
′(x)

∣∣ exp[iθm,k
′(u)] = F−1{Gm,k

′(u) exp[−εm(x)]
}

(6)

e. gm,k+1(x) = | f (x)| exp[iθm,k+1(x)] = | f (x)| exp[iθm,k
′(x)] (7)

f. gk+1(x) =
1
M

M

∑
m=1

gm,k+1(x) (8)

Repeat b~f until the exit condition is reached, which can be a limit on the number of
iterations or a decrease in the objective function to a specified value.
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The objective function is expressed as follows:

Bk = EFK
2 = N−2

M

∑
m=1

∑
u

∣∣Gm,k(u)− Gm,k
′(u)

∣∣2, (9)

where N represents the width of the collected image, which is square. According to
Formulas (4) and (5), the phase part of Gm,k(u) and Gm,k

′(u) is equal, so Formula (9) can be
transformed into the following:

Bk = EFK
2 = N−2

M

∑
m=1

∑
u

∣∣Gm,k(u)− |F(u)|
∣∣2. (10)

The entire process of the GS method is shown in Figure 2. As described in Figure 2,
the GS algorithm can be applied to problems known to both |F| and | f |. The GS algorithm
is actually Newton’s steepest descent method for the objective function (10), so the GS
algorithm is convergent.

2.2. The Modified PR Algorithm

We apply the mathematical optimization method with Equation (10) as the function
of the object and the unknown quantity of each partial derivative together with the sub-
stitution gradient search algorithm, finally obtaining the estimation of the wave-front
distortion corresponding to θ, when Bk is smallest. The most important application of the
gradient search algorithm is the correct description of the function of the object and the
partial derivatives of each variable. We first discuss the partial derivative g(x), which is the
unknown variable. We obtain the derivative from B to g(x), respectively, and obtain the
derivative from Bk to the real part of ∂greal and the imaginary part of ∂gimag.

∂greal Bk ≡ ∂Bk
∂greal.k(x) = 2N−2

M
∑

m=1
∑
u
[
∣∣Gm,k(u)

∣∣− |F(u)|] ∂|Gm,k(u)|
∂greal,k(x)

∂gimagBk ≡ ∂Bk
∂gimag.k(x) = −i2N−2

M
∑

m=1
∑
u
[
∣∣Gm,k(u)

∣∣− |F(u)|] ∂|Gm,k(u)|
∂gimag,k(x)

, (11)

where

∂|Gm,k(u)|
∂greal,k(x) = ∂

∂greal,k(x)∑
y

gk(y) exp[iεm(x)] exp[−i2πuy
N ] = exp[iεm(x)] exp[−i2πux

N ]

∂|Gm,k(u)|
∂gimag,k(x) =

∂
∂gimag,k(x)∑

y
gk(y) exp[iεm(x)] exp[−i2πuy

N ] = exp[iεm(x)] exp[−i2πux
N ]

, (12)

and

∂|Gm,k(u)|
∂greal,k(x) =

∂[|Gm,k(u)|2]
1/2

∂greal,k(x) = 1
2|Gm,k(u)|

∂|Gm,k(u)|2
∂greal,k(x) =

G(u) exp[−iεm(x)+i2πux/N]
2|G(u)| + c.c.

∂|Gm,k(u)|
∂gimag,k(x) =

∂[|Gm,k(u)|2]
1/2

∂gimag,k(x) = 1
2|Gm,k(u)|

∂|Gm,k(u)|2
∂gimag,k(x) =

G(u) exp[−iεm(x)+i2πux/N]
2|G(u)| + c.c.

. (13)

Thus, Equation (11) can be changed to the following:

∂greal Bk = N−2
M
∑

m=1
∑
u
[Gm,k(u)− |F(u)|Gm,k(u)/

∣∣Gm,k(u)
∣∣] = −iG(u) exp[−iεm(x)+i2πux/N]

2|G(u)| + c.c.

∂gimagBk = −iN−2
M
∑

m=1
∑
u
[Gm,k(u)− |F(u)|Gm,k(u)/

∣∣Gm,k(u)
∣∣] = −iG(u) exp[−iεm(x)+i2πux/N]

2|G(u)| + c.c.
, (14)

where c.c. represents the former plural conjugate.
Using Gm,k

′(u) = |F(u)| exp[iφm,k(u)], m ∈ [1, M] (Equation (5)) to define Gm,k
′(u),

we can obtain Gm,k
′(u) = |F(u)|Gm,k(u)/

∣∣Gm,k(u)
∣∣.
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Thus, Equation (14) can be expressed as follows:

∂greal Bk = 2Real∑
m
[gm,k(x)− gm,k

′(x)]

∂gimagBk = 2Imag∑
m
[gm,k(x)− gm,k

′(x)]
. (15)

We consider θ(x) as the derivative of the unknown value. From Equation (3), we
obtain the derivative from Bk to θ(x) as follows:

∂θ Bk =
∂Bk

∂θk(x)
= 2N−2∑

m
∑
u
[
∣∣Gm,k(u)

∣∣− |F(u)|]∂∣∣Gm,k(u)
∣∣

∂θk(x)
. (16)

Because of

∂
∣∣Gm,k(u)

∣∣
∂θk(x)

=
∂

∂θk(x)∑y
| f (y)| exp[iθ(y)] exp[iεm(x)] exp[

−i2πuy
N

] = igk(x) exp[iεm(x)] exp[
−i2πux

N
], (17)

we can obtain the following:

∂
∣∣Gm,k(u)

∣∣
∂θk(x)

=
Gm,k(u)(−i)g∗k (x) exp[−iεm(x)] exp[i2πux/N] + c.c.

2
∣∣Gm,k(u)

∣∣ .

Thus, we can obtain the following:

∂θ Bk = ∑
m

igm,k
∗(x)[gm,k

′(x)− gm,k(x)] + c.c.

= −2Imag∑
m
[gm,k

∗(x)gm,k
′(x)]

= −2| f (x)|∑
m

∣∣gm,k
′(x)

∣∣ sin[θm,k
′(x)− θm,k(x)]

. (18)

We consider the Zernike coefficient α(x) as the derivation of the unknown value. From
Equation (10), we obtain the derivative from Bk to α(x) as follows:

∂Bk
∂αn,k

= ∑
x

∂B
∂θk(x)

∂θk(x)
∂αn,k(x)

(19)

Take ∂θk(x)
∂αn,k(x) =

∂
∂αn,k

[
m
∑

n=1
αn,kZn(x)] = Zn(x) into Equation (19). We obtain the objective

function, which is calculated as follows:

∂αn Bk = −2∑
m

∑
x
| f (x)|

∣∣gm,k
′(x)

∣∣ sin[θm,k
′(x)− θm,k(x)]Zn(x). (20)

With the objective Equation (10) and its impact on the Zernike coefficient derivative
Equation (20), we can use the mathematical optimization algorithm, such as the Limited-
memory BFGS algorithm, to solve various Zernike wave-front coefficient values.

The GS method is equivalent to Newton’s steepest descent method with (10) as
the objective function. To simplify the problem, we set M = 1, and Equation (15) can
be expressed as ∂gB = 2[g(x)− g′(x)]. The step size along the gradient can be deter-
mined via the first term of the Taylor series expansion of B, which is expressed as follows:
B ≈ Bk + ∑

x
∂gBk[g(x)− gk(x)]. When g(x) = gk

′′ (x), the first term of the expansion term

B is zero; thus, gk
′′ (x)− gk(x) = −Bk∂gBk/∑

y
(∂gBk)

2 and gk
′′ (x)− gk(x) = −(1/4)∂gBk =

(1/2)
[
g′k(x)− gk(x)

]
. So, the GS method is equivalent to Newton’s steepest descent method

with B as the objective function, with a step size of (1/2)
[
g′k(x)− gk(x)

]
. We can predict

that for the same target wavefront, the GS algorithm and MPR algorithm will be applied
separately. At the beginning of the iteration, the convergence speed of the GS algorithm
will be slightly faster than the modified PR algorithm, but in the subsequent iteration
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process, the convergence speed of the GS algorithm will be significantly slower than the
modified PR algorithm. This is consistent with the phenomenon that Newton’s steepest
direction descent method and conjugate gradient method are used for the same problem in
optimization problems. Thus, we know that our algorithm is convergent.

In order to verify the ability to test the complex mirror with the MPR method and the
equivalent accuracy to that of the ZYGO interferometer. In this paper, we will elucidate
the design of the experiments and perform some comparable experiments with MPR and
ZYGO interferometers, which aim to demonstrate the measurement ability and equivalent
accuracy to that of the interferometer in the complex surface testing with the MPR method.

3. The Design of the Experiments
3.1. Measuring Plane Mirror

Before starting the measurement experiment, in order to obtain accurate results, we
first measure the plane mirror with a good surface shape to determine the system error.
The optical path structure of the MPR measurement method is shown in Figure 3, and the
experimental diagram is shown in Figure 4. The wavelength is 632.8 nm, the diaphragm is
10 mm, the lens focal length is 150 mm, the central exit pupil aperture is 10 mm, and the
size of the plane mirror is 25.4 mm. The defocusing amount is selected in the experiment.
The camera pixel size is 6.45 µm. Each defocusing position intercepts the pixel size area
centered on the target, the exposure time is 20 ms, the camera bottom is placed on the
electric translation platform, and the accuracy of the mobile platform is ±5 µm.
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After adjusting the optical path accurately, the MPR measurement method and ZYGO
interferometer are used to measure the plane mirror, respectively. The testing with the
ZYGO interferometer is shown in Figure 5. Here, we briefly describe how we use the ZYGO
interferometer to test the shape of the surface to be measured. Firstly, we use a standard
plane mirror for calibration. The cross and interference fringes of the interferometer were
adjusted to minimize the wavefront difference. When measuring spherical mirrors, such
as the testing of convex and concave mirrors, it is related to the number of F. In general,
if the interferometer reference environment F is small, the testing environment F is large
(the number of reference environment F is smaller than the number of F to be detected).
The radius of the mirror to be measured is smaller than the moving length (the moving
range of the interferometer). The spherical wave of the convex lens parallel light reference
mirror is vertically incident on the convex lens. Then, the reflected light returns to the
spherical wave in an original way. After passing through the reference mirror, it becomes a
plane wavefront (horizontal light). The parallel light passes through the reference mirror
and becomes a spherical wavefront. The spherical wavefront is vertically incident on the
last surface of the reference mirror, causing two types of reflection and transmission. The
reference light transmitted by the reflected light continues to propagate until it is vertically
incident on the test mirror; then, it is reflected back by the test mirror. The original path
returns to the formed test light, and the reference light interferes with the test light, forming
interference fringes. By using the software provided by the interferometer, edge areas are
removed, reasonable measurement modes are selected, and reasonable data fitting methods
are selected during the fitting process.
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The measurement results obtained by removing the first four items (piston, tilt X, tilt
Y, and power) with MPR are shown in Figure 6a. The measurement result obtained by
removing the first four items (piston, tilt X, tilt Y, and power) with the ZYGO interferom-
eter is shown in Figure 6b. The measurement result obtained by removing the first four
items (piston, tilt X, tilt Y, power, and spherical) with MPR is shown in Figure 7a. The
measurement results obtained by removing the first four items (piston, tilt X, tilt Y, power,
and spherical aberration) with the ZYGO interferometer are shown in Figure 7b. In order
to obtain accurate measurements, the aberration of the system itself should be subtracted
whenever the complex mirror is measured.
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RMS = 0.04392 λ, PV = 4.9304 λ; (b) ZYGO interferometer: RMS = 0.03325 λ, PV = 3.7685 λ.

In order to compare the experimental results more effectively, we need to subtract
the systematic error (the mean results of Figures 6 and 7) in the following measurement
experiments, in which each measurement results minus the systematic error equals the
final measurement results.

3.2. Measuring Concave Mirror

The size of the concave mirror (in order to make a clear distinction, we call the concave
mirror the spherical concave mirror I) to be measured is 25.4 mm. The optical structure
of the MPR measurement method is shown in Figure 8, and the experimental diagram is
shown in Figure 9. The MPR measurement method and ZYGO interferometer are used to
measure the plane mirror. The measurement results obtained by removing the first four
items (piston, tilt X, tilt Y, and power) are shown in Figure 10.
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3.3. Measuring Spherical Mirror

The size of the spherical mirror (here, it is spherical concave mirror II) to be measured
is 25.4 mm, as shown in Figure 11, (a) for spherical mirror II and (b) for the aspherical
mirror. The MPR measurement method and ZYGO interferometer are, respectively, used to
measure the spherical mirror II and aspherical mirror. The measurement results obtained
by removing the first four items (piston, tilt X, tilt Y, and power) on spherical mirror II are
shown in Figure 12, and the aspherical mirror measurement results obtained are shown in
Figure 13.
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We can see that although the topological geometry and PV/RMS of both MPR and
ZYGO interferometer are the same, there is a little difference in the RMS value from
the above measurement results The difference in PV is relatively large, partially due
to the following reasons. Firstly, there is a smoothing process when using the ZYGO
interferometer, which the solution process of the MPR method does not have. Secondly,
during the solution process, we calculated the whole mask circular area with the MPR but
measured results via the ZYGO interferometer after removing boundary Burr. Therefore,
although the RMS of the whole mask cannot be greatly affected, it will be greatly different
from PV. The experimental results show that there is a great similarity between the surface
error distribution, PV value, and RMS value of the error, indicating the feasibility of the
FPWS method in testing complex optical surfaces.

4. Results and Discussion

The comparison results of measurement experiments are shown in Table 1. The
measurement results with wavefront-sensing technology based on image information of
the focal plane were compared with the measurement results with the ZYGO interferometer.
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The experimental results demonstrate that good agreement is obtained among the errors
distribution, PV value, and RMS value of the ZYGO interferometer, which shows the
feasibility and validity of wavefront sensing based on image information of focal plane
technology in optical metrology for the complex optical surface.

Table 1. The comparison results of measurement experiments.

The Type of Tested
Mirror

Evaluation
Index MPR ZYGO RMSD

ifference
Plane mirror

(removing the first
four items)

RMS
PV

0.0475 λ

5.3352 λ

0.037 λ

4.149 λ
0.0105 λ

Plane mirror
(removing the first

four items and
spherical aberration)

RMS
PV

0.04392 λ

4.9304 λ

0.03325 λ

3.7685 λ
0.01067 λ

Spherical concave
mirror I

RMS
PV

2.5322 λ

15.529 λ

2.5139 λ

14.119 λ
0.0183λ

Spherical concave
mirror II

RMS
PV

0.0527 λ

0.667 λ

0.041 λ

0.585 λ
0.0117 λ

Aspherical mirror RMS
PV

0.667 λ

3.027 λ

0.632 λ

2.155 λ
0.035 λ

Above all the experimental results, we can not only easily see that MPR technology
has the testing capability on complex optical surfaces with an experimental platform for
testing different types of surfaces but also explain that the MPR method has the feasibility
and effectiveness in a large number of repetitive experiments by comparing the results of
MPR method with those of the ZYGO interferometer. Furthermore, the MPR method has
the following advantages that a ZYGO interferometer does not have: (1) The impact of
platform vibration on the PR system is small, even negligible; (2) PR system has a simple
structure and can even detect the whole optical system in place via the existing camera
on the imaging system without any change to the optical path; (3) Better measurement
accuracy can be obtained with fewer sampling points by CCD in the PR system. From
the above results by comparing the MPR method and ZYGO interferometer, we not only
proved the ability to test complex optical surfaces but also showed that the MPR method
had advantages that the ZYGO interferometer did not have; thus, we could use the MPR
method to institute the ZYGO interferometer in the bad environment, especially vibrations
and disturbances. For example, phasing the James Webb Space Telescope just used the
PR method not interferometer in order to correct the deployment errors and produce
diffraction-limited images, wavefront sensing, and controls process was executed to adjust
each of the optical elements of JWST.

5. Conclusions

In this paper, comparing the results of the MPR with the results of the ZYGO interfer-
ometer shows that the proposed MPR method is feasible for measuring complex surfaces.
The difference in PV is relatively large, partially due to the following reasons: there is a
smoothing process when using the ZYGO interferometer, which the solution process of
the modified PR method does not have; during the solution process, we calculated the
whole mask circular area with the MPR but measured results via the ZYGO interferometer
after removing boundary Burr. Therefore, although the RMS of the whole mask cannot be
greatly affected, it will be greatly different from PV. The experimental results show that
there is a great similarity between the surface error distribution, PV value, and RMS value
of the error, indicating the feasibility of the FPWS method in the testing of complex optical
surfaces. Based on the research progress at home and abroad, the testing methods and key
problems in the measurement of complex optical surfaces are analyzed and studied. As far
as the testing methods of complex optical surfaces are concerned, non-contact measurement
has become an important developmental direction with its own advantages. It has guiding
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significance for our future research on large-aperture complex optical surface testing tech-
nology. At present, the following testing methods of complex optical surfaces are combined:
small size and high precision, on-line measurement, full-band high-precision measurement,
large dynamic range, simple structure, and low cost. All these superiorities of this testing
method have important practical significance and broad application prospects.
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