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Abstract: Comparative studies of the 2D numerical modelling and simulation of graphene-based
gallium arsenide and silicon Schottky junction solar cell are studied using TCAD tools. The per-
formance of photovoltaic cells was examined while taking parameters, such as substrate thickness,
relationship between transmittance and work function of graphene, and n-type doing concentration
of substrate semiconduction. The area with the highest efficiency for photogenerated carriers was
found to be located near the interface region under light illumination. The significant enhancement
of power conversion efficiency was shown in the cell with a thicker carrier absorption Si substrate
layer, larger graphene work function, and average doping in a silicon substrate. Thus, for improved
cell structure, the maximum JSC = 4.7 mA/cm2, VOC = 0.19 V, and fill factor = 59.73% are found under
AM1.5G, exhibiting maximum efficiency of 6.5% (1 sun). The EQE of the cell is well above 60%. This
work reports the influence of different substrate thickness, work function, and N-type doping on the
efficiency and characteristics of graphene-based Schottky solar cells.

Keywords: external quantum efficiency; graphene; power conversion efficiency; Schottky barrier
solar cell (SBSC); TCAD

1. Introduction

Due to graphene’s unique structure and characteristics, a single atomic layer has
attracted significant attention, such as high mobility, low resistivity, and band gap [1].
Graphene has been created as ultrathin sheets made of a few atomic layers through mechan-
ical exfoliation or CVD (chemical vapour deposition) and can be shifted to many substrates;
thus, it will open up a large range of potential applications, including smart composites,
photo sensors, and high-performance electronic devices [2]. Specifically, the graphene layer
is a major material for use in the production of effective solar cells due to its exceptional
combination of optical transparency and high electrical conductivity in the visible and
near-infrared spectrum [3,4]. On various substrates, such as Si [5], CdS [6], CdSe [7], and
GaAs [8], graphene-based Schottky junction solar cells have been produced in recent years.
A Schottky junction was successfully formed on n-type GaAs by Wenjing et al., producing a
power conversion efficiency of 1.95% [9]. GaAs has more radiation resistance [10] than the
Si substrate, which is most frequently used, and has a direct band gap [11], which makes it
suitable for highly efficient solar cells for both terrestrial and space applications. However,
in order to increase solar cell efficiency, the band parameter must be studied, and various
thicknesses of the structure must be optimised. We, therefore, optimised the thickness of
the GaAs substrate with a graphene layer in SILVACO TCAD in this paper, and the results
were confirmed using published experimental data.

The proposed graphene structure is shown in Figure 1. It consists of three regions. The
ability to create graphene-on-silicon Schottky solar cells at room temperature opens up a wide
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range of applications for light gathering and conversion with the benefits of environmental
friendliness and lower cost [12]. In this design, the graphene sheet performs dual roles for
separation of holes/electrons as an active layer and as a carrier medium for transportation, in
addition to acting as a transparent electrode for the transmission of light [13]. Despite the fact
that the initial energy conversion efficiency is only 1.65% [14], the performance of graphene
silicon Schottky cells was improved using silicon nano-array substrate adoption [15], chemical
doping [5], and a graphene/P3HT/silicon configuration [16], ranging from 1.96% up to 10.3%.
Some of the critical parameters, such as surface charge recombination, work function, and
graphene conductivity, played a key role in establishing the performance of the device. Still,
there has not been much research conducted on Schottky barriers. Thus, considerably more
consideration and study are needed for the use of graphene in Schottky solar cells. Figure 2
shows an energy band diagram of graphene solar cells.
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The graphene GaAs and silicon junction solar cell are numerically simulated in this
work using standard TCAD tools. It uses a typical method for materials such as amor-
phous, including state model of continuous density, auger recombination mechanisms, and
Schottky, to solve continuity, Poisson, and current density equations. The dependence of
these optical parameters with the photon energy has been included, taking into account the
thickness of the substrate, work function of graphene, doping level, and their impact on
cell efficiency.

2. Modelling Semi-Transparent Top-Layer Graphene in Atlas

Due to the fact that graphene is a novel material, it is not yet included in the SILVACO
Atlas material library. As a result, in order to develop a reliable and exact model of the
graphene film, the initial definition of the layer used 4H-SiC as the base material, which
was then modified to give the metallic material properties and match experimental sheet
resistance values [17]. First, the material 4H-SiC model was made entirely transparent
without changing its optical characteristics. Next, the graphene transmittance was entered
by creating an .nk file for graphene from the obtained value [18]. With 15,000 cm2/Vs
of carrier mobility [19], graphene is described as the Fermi distribution, and band gap,
effective masses, and thickness values of 10 nm were changed to make sure they matched
the experimental findings. Table 1 is a list of the simulation parameters that the Atlas tool
utilized for this cell [20].

Table 1. Material utilized in this numerical simulation.

Essential Layer Properties ATLAS Identifier

Material Layer

Graphene Substrate

4H-SiC GaAs Silicon

Band gap layer Eg (eV) EG 0.0 1.42 1.08
Relative permittivity, εr (F cm−1) Permittivity 25 13.1 13.5

Electron affinity Xe (eV) Affinity 5.8 4.07 4.17
Mobility, µp (cm2/V s) MUP 15,000 400 500
Mobility, µn (cm2/V s) MUN 15,000 8000 1000

Effective density of states Nc (cm−3) NC300 3 × 1017 4 × 1017 2.8 × 1019

Effective density of states Nv (cm−3) NV300 3 × 1017 7 × 1018 1.0 × 1019

3. Modelling Graphene-Based Solar Cells

With the use of TCAD, including the optical intensity, as shown in Figure 3, and using
parameters from Table 1, the user of ATLAS can choose from a number of physics models
to compute recombination and carrier mobility. We utilized the following models in our
design for our analysis. The doping-dependent low-field mobilities of holes/electrons
in the cell at 300 K were modelled. The recombination models utilized were the Optical
Recombination (OPTR) and the Schottky–Read–Hall (SRH) recombination models. As
already stated, Figure 4 shows the cross section of a graphene Si solar cell that was modelled
in TCAD software. The device is made up of three areas, from bottom to top, namely the
silicon substrate, the SiO2 window, and the graphene layer. Here, an oxide window was
used to coat the silicon substrate with a 10 nm thick layer of graphene. Figure 5 shows the
detailed top layer of the cell.
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Most studies show that the heterojunction device for this structure is fabricated from
a transferred chemical vapour deposition graphene layer on silicon in order to avoid
expensive deposition methods and complicated processing [21,22]. In essence, the Schottky
junction can be created using any semiconductor with a specific metal, provided the work
function differences are sufficiently large and the carrier densities are moderate. The
calculations show that graphene sheets and silicon create a Schottky junction, which is
advantageous for creating a sizable built-in field [14]. The photoexcited holes and electrons
are produced in the silicon substrate when it is illuminated, and they are subsequently
separated at the Schottky junction through the built-in electric field. The bottom electrodes
gather electrons/holes, leading to a photovoltaic reaction. The thermionic emission model
can be used to describe the Schottky junction’s non-linear I-V property [23]:

Io = αB∗ T2 exp(−eϕBn/kT) (1)

where α is area cell, B* is effective Richardson constant, ϕBn is metal–semiconductor (n-
type), k is Boltzmann’s constant, and T absolute temperature.

ϕB = ϕG − χ, for n-type semiconductor (2)

Additionally,

ϕB = EG − ϕG + χ, for p-type semiconductor (3)

where ϕG = graphene work function, χ = electron affinity, EG = energy gap semiconductor.

4. Results and Discussion

In order to mimic the global terrestrial sunshine, the modelled device was illuminated
with AM1.5G solar spectrum, which is taken into account by LUMINIOUS 3D for modelling
sunlight in SILVACO Atlas [24]. The light could be absorbed in the barrier layer and inside
the semiconductor. The photogeneration rate is provided by G = η0

Pλ
hc αe−αy, where P

represents the total effect of the ray path’s absorption, reflection, and transmission losses, y
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is the ray for the provided relative distance, α is the computed absorption coefficient for
every combination value of (n, k), λ is wavelength, h is Planck’s constant, c is the speed of
light, and η0 is the internal quantum efficiency, denoting the carrier number produced per
photon per pair. It can be seen from Figure 6 that the highest efficient absorption area is
around 0.1 µm from the surface connection and it not only increases the light absorption
length but is also concentrated to the light field, which results in enhanced excitation of
photon-induced carriers. The recombination rate is also higher at the interface region, as
indicated by the result shown in Figure 7. Figure 8 shows the potential developed inside the
cell, indicating that maximum potential is developed in the anode vicinity and that there is
a greater collection of charge. Figures 9–11 show a comparison of different thicknesses for
the photogeneration rate, electric filed, and potential, respectively. Figure 9a–c show the
photogeneration rate of Si cells under AM1.5 (sun) with depths of absorption, which were
examined at 5 µm, 10 µm, and 20 µm. The semiconductor and barrier could both absorb
the light. Figure 9c shows that 20 µm thickness is more than sufficient for full-spectrum
absorption because the intensity of the photogenerated carrier suddenly reduces in the
deep area of the Si substrate. In Figure 10, as the number of solar cells rises, the electrical
field also rises. In fact, an increase in the number of solar cells leads to an increase in
the open-circuit photovoltage. The main aim of this paper is to enhance the conversion
efficiency through a reduction in silicon matter. As a result, fewer solar cells must be utilised
to generate the electrical field, which lowers the amount of semiconductor materials needed
to make solar cells. Figure 10 gives the evolution of the electric field as a function of the
solar cells. Figure 11 shows the potential developed inside the cell, showing that maximum
potential is developed in the anode vicinity, indicating a greater collection of charge.
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It is crucial to utilize ISC and VOC to establish how well a solar cell works because they
affect how much power it can produce.

VOC =
nKT

q
ln
(

IL
I0

+ 1
)

(4)

FF =
VOC − Ln(VOC + 0.72)

VOC + 1
=

ImVm

ISCVOC
(5)

ISC and VOC utilisation at maximum power is measured via the fill factor. The efficiency
can be expressed using FF as:

η =
VOC ISCFF

Pin
=

Pmax

1000
[
Wm−2]×CellArea [m2

] (6)

These are the performance metrics that we employed in our research for evaluating
solar cells.
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4.1. GaAs and Si Thickness Effect

The Si crystal substrate is illuminated with an orientation <100>. For photogenerated
carrier intensity, graphene functions as a transparent electrode. The difference between
the work functions was built using a Schottky junction. We computed the I-V curves
and external quantum efficiency (EQE), as illustrated in Figures 12 and 13, respectively,
to examine the impact of silicon thickness on solar cell performance. Since silicon has
an indirect band gap, it works with longer wavelengths and results in higher quantum
efficiency. When silicon crystal thickness decreases, long-wavelength light passes through
the device and lowers the IQE. On the other hand, the enhanced recombination carrier rate
on the back electrode causes a significant increase in the dark current. Because the silicon
substrate is thicker, it is discovered that the efficiency of the device ranges from 2.37% to
5.99% (given in Table 2).
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JSC (mA/cm2) VOC (V) FF (%) Efficiency (%)

GaAs Si GaAs Si GaAs Si GaAs Si

1 6.10 2.76 1.00 0.29 51 28.69 3.29 2.37
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4.2. Graphene Work Function Effect

The difference between silicon χ and graphene фG is related to the barrier height фB,
as discussed in Section 3. Therefore, a higher work function will enhance the фB, which
will make the built-in potential Vbi increase according to the equation, Vbi = фB − Vn,
where Vn is the distance between Ec and Ef in silicon. Consequently, an enhanced graphene
work function results in an increase in Vbi that corresponds to the upper limit of Voc. As
shown in Table 3, the built-in potential Vbi increases monotonically along with the FF and
power conversion efficiency. This result is inconsistent with Y.F. Li’s group’s experimental
findings [25].

Table 3. Performance of cell with graphene work function (under optimal 10 µm si-thickness).

Graphene
Work Function

JSC (mA/cm2) VOC (V) FF (%) Efficiency (%)

GaAs Si GaAs Si GaAs Si GaAs Si

4.4 6.10 4.72 1.00 0.18 51 50.34 3.29 4.9
4.6 6.10 4.72 0.97 0.16 51 48.21 5.03 5.3
4.8 6.10 4.72 0.94 0.19 49 60.21 4.74 5.4

4.3. GaAs and Silicon n-Type Doping Effect

The ability of silicon’s N-type doping to raise the photogeneration carrier intensity
and energy level of Fermi is well recognised. Due to the larger barrier height compared
to a substrate made of pure silicon, both VOC and ISC increase for doping concentrations
below 3 × 1015 cm−3. When the doping concentration exceeds 3 × 1015 cm−3, the cell’s
performance is radically different. The mechanism for electron emission could be the origin
of this phenomenon. The emissions of a carrier from silicon to graphene are dominated by
the tunnelling emission process rather than the thermionic emission mechanism. As a result,
there is a slight decrease in the open-circuit voltage. Second, a high doping level reduces the
photogeneration carriers’ lifetime, particularly for light that has a long wavelength. These
losses in the carrier collection result in a reduction in ISC. Thirdly, as indicated in Table 4,
the 3 × 1016 cm−3 doping level has the largest fill factor, despite having a lower power
conversion efficiency than the other two doping concentrations. Therefore, the optimal
efficiency is found at a moderate doping level of 3 × 1015 cm−3.

Table 4. Performance of cell with doping concentrations (under optimal 10 µm si- thickness).

Doping of n-Type Effect (/cm−3)
JSC (mA/cm2) VOC (V) FF (%) Efficiency (%)

GaAs Si GaAs Si GaAs Si GaAs Si

3 × 1014 6.10 4.7 1.38 0.20 68 57.04 9.54 5.65
3 × 1015 6.10 4.7 1.37 0.19 66 59.73 9.52 6.50
3 × 1016 6.10 4.3 1.36 0.18 67 60.21 9.50 5.47

In order to improve the design, it is also necessary to identify different performance
parameters. A solar cell I-V curve with varying substrate thicknesses is depicted in Figure 12.
We determine the current–voltage curves and external quantum efficiency (EQE) for GaAs,
as shown in Figures 14 and 15, respectively. It is found that Si EQE has well above 60% and
GaAs EQE has 50%, which is optimized at the (2–5) µm substrate thickness due to the high
photogeneration rate found at this substrate thickness.
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The absorption and transmission co-efficient of the cell is depicted in Figure 16. The
proposed cell works effectively in a wavelength range of 300 to 700 nm. After 700 nm,
the efficiency starts decreasing due to an increase in transmittance and less absorptivity
of photons, as shown in Figure 16. Most of the spectrum is found to be utilized in the
generation of the carrier in the optimal 10 µm thickness Silicon substrate. Equation (7) can
be used to determine JSC using the measured EQE.

JSC = q
∫

F(λ)EQE(λ)dλ (7)

where F(λ) = intensity spectrum of AM1.5G sunlight, and q is electron charge. It is found
that EQE is well above 60%, which is an indication of an effective cell structure. Table 5
provides a tabular comparison that demonstrates that the Si substrate is significant when
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compared with existing results. Through comparison with the existing results, it is found
that graphene-based Schottky solar cells with Si and GaAs as substrates have increased
efficiency of GaAs (4.74%) and Si (5.99%) over conventional Schottky junction solar cells.
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Table 5. Comparison of various factors, such as substrate thickness, work function, and doping
concentration, with existing device.

GaAs
Thickness

(µm)

Work
Function (ev)

N-Type
Doping (/cm3) JSC (mA/cm2) VOC (V) FF (%) Efficiency (%)

GaAs junction solar cell [26] 5 4.8 1 × 1014 7.966 0.301 49 1.518
Our proposed work 5 4.8 3 × 1016 6.10 0.94 49 4.74

Si Thickness
(µm)

Work
Function (ev)

N-Type
Doping (/cm3) JSC (mA/cm2) VOC (V) FF (%) Efficiency (%)

Si junction solar cell [27] 20 4..8 1 × 1017 5.72 0.158 58 0.874
Our proposed work 20 4..8 3 × 1016 5.05 0.19 60.95 5.99

5. Conclusions

Silvaco ATLAS software was used to model graphene-based GaAs solar cells and
graphene-on-Si Schottky junction solar cells in a unique way for photovoltaic applications.
Numerical simulation in two dimensions was used to analyze the output performance. Ad-
ditionally, we thoroughly examined the performance vs. various graphene work functions,
substrate thicknesses, and N-type doping concentrations. The findings demonstrate that
greater graphene work function, adequate absorption thickness, and mild silicon doping
are superior for increasing the power conversion efficiency. Further analysis revealed that
the anode’s vicinity experienced the development of the highest potential, which leads to
improved charge collection and an improvement in the solar cell’s overall performance. It is
possible to research, design, and construct various structures of graphene-based solar cells
using this remarkable optimization technique and data. The conversion of the emission
electron mechanism from the thermionic mechanism to the tunnelling emission mechanism is
due to the implementation of high-level doping, resulting in maximum FF but lower efficiency.
For GaAs, under low illumination, the majority of the carriers created in the region reside
relatively near to the interface. When compared to graphene’s lower transmittance and greater
work function regarding cell performance, the work function is effective for increasing the
cell performance. GaAs with moderate n-type doping has a significant increase in power con-
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version efficiency; however, this form of device is significantly more sensitive to open-circuit
voltage than short-circuit current. Therefore, Si has maximum conversion efficiency in terms
of thicker absorption, larger graphene work function, and average doping in semiconductor
substrates. As a result, it can be concluded from this work that graphene can function as a
semi-transparent charge collector electrode and Schottky junction with a thermionic emission
phenomenon for improved efficiency in SBSC solar cells.
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