
Citation: Geng, J.; Yu, X.; Wu, C.;

Zhang, G. Research on Pedestrian

Indoor Positioning Based on

Two-Step Robust Adaptive Cubature

Kalman Filter with Smartphone

MEMS Sensors. Micromachines 2023,

14, 1252. https://doi.org/10.3390/

mi14061252

Academic Editor: Marius Pustan

Received: 21 April 2023

Revised: 13 June 2023

Accepted: 13 June 2023

Published: 14 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Research on Pedestrian Indoor Positioning Based on Two-Step
Robust Adaptive Cubature Kalman Filter with Smartphone
MEMS Sensors
Jijun Geng 1,2,3,4,*, Xuexiang Yu 1,2,3,4, Congcong Wu 5 and Guoqing Zhang 1,2,3,4

1 Coal Industry Engineering Research Center of Mining Area Environmental and Disaster
Cooperative Monitoring, Anhui University of Science and Technology, Huainan 232001, China;
xxyu@aust.edu.cn (X.Y.); 1993001@aust.edu.cn (G.Z.)

2 School of Geomatics, Anhui University of Science and Technology, Huainan 232001, China
3 Anhui Provincial Key Laboratory of Joint Construction Disciplines for Urban Real Scene 3D and Intelligent

Security Monitoring, Huainan 232001, China
4 Key Laboratory of Aviation-Aerospace-Ground Cooperative Monitoring and Early Warning of Coal

Mining-Induced Disasters of Anhui Higher Education Institutes, Anhui University of Science and Technology,
KLAHEI (KLAHEI18015), Huainan 232001, China

5 School of Graduate, Anhui University of Science and Technology, Huainan 232001, China;
2022212@aust.edu.cn

* Correspondence: austgjj@aust.edu.cn

Abstract: With the development of location-based service (LBS), indoor positioning based on pedes-
trian dead reckoning (PDR) has become a hot research topic. Smartphones are becoming more
popular for indoor positioning. This paper proposes a two-step robust-adaptive-cubature Kalman fil-
ter (RACKF) algorithm based on smartphone micro-electro-mechanical-system (MEMS) sensor fusion
for indoor positioning. To estimate pedestrian heading, a quaternion-based robust-adaptive-cubature
Kalman filter algorithm is proposed. Firstly, the model noise parameters are adaptively corrected
based on the fading-memory-weighting method and the limited-memory-weighting method. The
memory window of the limited-memory-weighting algorithm is modified based on the character-
istics of pedestrian walking. Secondly, an adaptive factor is constructed based on the partial state
inconsistency to overcome filtering-model deviation and abnormal disturbances. Finally, to identify
and control the measurement outliers, the robust factor based on maximum-likelihood estimation
is introduced into the filtering to enhance the robustness of heading estimation and support more
robust dynamic-position estimation. In addition, based on the accelerometer information, a nonlinear
model is constructed and the empirical model is used to estimate the step length. Combining heading
and step length, the two-step robust-adaptive-cubature Kalman filter is proposed to improve the
pedestrian-dead-reckoning method, which enhances the adaptability and robustness of the algorithm
and further improves the accuracy of the plane-position solution. The adaptive factor based on the
prediction residual and the robust factor based on the maximum-likelihood estimation are introduced
into the filter to improve the adaptability and robustness of the filter, reduce the positioning error,
and improve the accuracy of the pedestrian-dead-reckoning method. Three different smartphones are
used to validate the proposed algorithm in an indoor environment. Additionally, the experimental
results confirm the algorithm’s effectiveness. From the results of the three smartphones, the root
mean square error (RMSE) of the indoor-positioning results obtained by the proposed method is
about 1.3–1.7 m.

Keywords: MEMS sensor; indoor positioning; two-step RACKF; adaptive factor; robust factor

1. Introduction

With the rapid development of mobile devices, location-based service (LBS) has be-
come increasingly important [1]. There has been a dramatic increase in pedestrian demand
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for LBS both indoors and outdoors. Global Navigation Satellite System (GNSS) positioning
and navigation technology, including GPS, GLONASS, Galileo, the Beidou navigation
satellite system, and other regional systems, is reliable and accurate in outdoor space.
However, GNSS positioning technology is not always available, especially in environments
without satellite signals, such as indoor environments, underground environments, and
urban-occlusion areas. Usually, it is common for people to spend most of their time indoors.
Due to the limitation of satellite signals, GNSS-based solutions are ineffective in such
scenarios, and in indoor environments, satellite signals are blocked by buildings, resulting
in a large number of location blind spots and even an inability to receive GNSS signals. It is
currently impossible for satellite positioning methods to meet the requirements of indoor
positioning [2]. Consequently, indoor positioning requires additional positioning technol-
ogy [3]. The complex layout of the indoor environment also poses various challenges to the
positioning method, such as multipath propagation, non-line-of-sight conditions, signal
attenuation, noise interference, etc. The construction of a stable, high-precision indoor-
positioning system has therefore become a research hotspot. Although indoor positioning
has become the focus of research in recent years, due to the complexity and variability of
the actual indoor environment, excellent solutions have not been found. Over the past few
decades, traditional indoor-positioning technology has relied on a variety of infrastructure
support, including Wi-Fi, Bluetooth, ultra-wideband (UWB), radio-frequency identification,
etc. These techniques are widely used for indoor positioning; however, the disadvantage
of these methods is the need to build and maintain infrastructure [4]. Although the above
methods are feasible in terms of positioning accuracy, the implementation of most existing
positioning systems is based on infrastructure, which is usually difficult. Due to severe sig-
nal fluctuations caused by complex indoor radio-propagation conditions, Wi-Fi positioning
cannot guarantee accurate positioning results. Besides, there are many places where there
are no or few Wi-Fi APs, which makes localization difficult. Affected by the transmission
distance of the Bluetooth signal, the coverage of Bluetooth positioning is limited. The cost
of UWB is very high, and the signal-interference problem must be solved to coexist with
the existing narrowband system. The RFID positioning system uses infrared beacons to
find the user’s location. The limited infrared range limits the positioning of RFID in a
wide range, and the use of RFID requires additional hardware-installation costs. Therefore,
a practical indoor pedestrian-tracking method should consider the indoor environment
instead of relying on a pre-trained database or floor plan, which is the key to developing
an effective indoor-positioning system. The task of providing precise indoor positioning
with low-cost devices is still difficult.

The micro-electro-mechanical-system (MEMS) positioning solution is more competi-
tive than other methods because it does not rely on existing indoor infrastructure, which is
particularly crucial for indoor positioning because other indoor-positioning technologies
require additional installation or installation of specific sensors. MEMS sensors are small,
lightweight, low cost, and independent. MEMS sensor devices are becoming increasingly
popular and cheaper, and have been widely used in various fields and applications, such
as motion monitoring and management, healthcare, location-based services (LBS), and
navigation. In addition, the advancement of micro-electro-mechanical-system (MEMS) tech-
nology has made accelerometers, magnetometers and gyroscopes more and more accurate,
lightweight, and low cost, which has greatly promoted their application in indoor posi-
tioning [5]. Accelerometers, magnetometers, and gyroscopes provide beaconless solutions.
Due to the quick advancement of sensing technology, MEMS sensors composed of multiple
sensors have attracted more and more attention. Various types of technologies have been
introduced to achieve pedestrian positioning and navigation. Most smartphones currently
support MEMS sensors [6]. Many studies have focused on using smartphone MEMS sen-
sors for pedestrian dead reckoning (PDR) [7]. A PDR system based on accelerometers,
magnetometers, and gyroscopes of smartphones can track the location of indoor users.
MEMS positioning technology based on smartphones is usually used in PDR systems [6–8].
Therefore, the MEMS sensor data from a smartphone can be used to estimate the location
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information of the pedestrian conveniently. In addition, the PDR system on a smartphone is
independent and does not require any external infrastructure, which can be used anywhere
and at any time, with just a smartphone, without the need for a large infrastructure. As a
result, compared to other positioning systems, the PDR method based on MEMS sensors is
more practical.

The traditional dead-reckoning method uses inertial sensors, including accelerometers
and gyroscopes, to estimate the relative position, and obtains the current position by adding
an estimated displacement based on distance and heading data related to the previously
estimated position [9]. However, the output of a gyroscope sensor is characterized by
bias, bias instability, and other errors, which are integrated through the positioning and
navigation equations to generate position errors that increase over time. To reduce the
error caused by this integral drift, a feasible solution is to install the inertial sensor on
the foot and estimate the position through the zero-velocity update algorithm [10]. When
pedestrians walk, there is a standing stage. At this time, the speed of the foot is actually
zero, which can avoid the acceleration-integration error. However, position accuracy is
characterized by the accuracy of foot orientation. Once a constant heading error occurs, the
position error increases linearly with time. The zero-velocity update-algorithm detection is
also an important factor in step-length estimation. On the one hand, it must have a low
error-detection rate, because the wrong steps will increase the position error. On the other
hand, accurately estimating the start and end of each step helps to improve accuracy. PDR
technology based on smartphone MEMS sensors is much more convenient than positioning
technology based on inertial sensors. The PDR method is an economical and efficient choice,
which is more suitable for pedestrian-gait patterns. A mobile phone is embedded with a
variety of sensors, such as accelerometers, gyroscopes, and magnetometers, which can be
used to construct PDR models. The PDR method provides an indoor-positioning method,
including three aspects: heading estimation, stride detection, and step estimation [11].
The heading is the focus of this research. Due to the inaccurate estimation of heading
and step length, the error of PDR positioning will increase with time. However, the PDR
system can cause drift-error accumulation along walking distance, especially for cheap but
noisy sensors of smartphones. Many studies have focused on PDR based on mobile-phone
MEMS sensors. At present, some research on PDR has begun. However, most studies
still lack comprehensive consideration. Each gyroscope and magnetometer can be used
to infer the user’s heading, but both sensors have shortcomings in indoor positioning
and navigation [3]. Due to the shortcomings of inertial sensors and magnetic sensors, a
single type of sensor cannot provide accurate heading information. The heading calculated
by the gyroscope is susceptible to drift problems and eventually accumulates errors over
time, resulting in boundaryless directional-drift errors, because the measurement error
accumulates when the data are fused. The magnetometer estimates the user’s heading
by measuring the size of the earth’s magnetic field, but the indoor scene is susceptible to
natural and magnetic-field sources, and the reading of the magnetometer is easily affected
by the iron-containing material near the sensor [9]. Therefore, it needs to fuse data from
different sensors to provide the best estimation of the heading. By combining gyroscope
and magnetic sensors, numerous heading-estimate methods have been developed during
the last few decades. The most commonly used methods are complementary filters (CF) and
Kalman filters (KF) [7]. In the complementary-filter algorithm, data from the gyroscope are
integrated to obtain the heading, and data from the accelerometer are used to estimate the
gyroscope bias. However, it should be noted that they are all constant-gain complementary
filters, and the estimation accuracy of this method depends on the accelerometer. Although
the calculation cost of CF is low and the process is simple, the heading accuracy obtained
by CF is lower than that of KF, and the result of CF in a dynamic environment is worse
than that of the Kalman filter. The Kalman filter (KF) and extended Kalman filter (EKF)
are the two most well-known and widely used methods, which have been widely used
in various fields, especially in direction estimation [12]. However, it should be noted that
the implementation of EKF causes linearization errors in the Kalman filter and increases
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the computational complexity [13]. To avoid the linearization process of the measurement
model and reduce the computational load of the EKF, the unscented Kalman filter (UKF)
and the cubature Kalman filter (CKF) are proposed [14]. Compared with the EKF, the CKF
uses the cubature point set to approximate the mean and variance [15], avoiding the lin-
earization of the nonlinear system. Additionally, the CKF is more adaptable and has stricter
mathematical derivation than the UKF [15,16]. The CKF is a good method to deal with non-
linear estimation problems. Similar to the KF, the CKF can perform better when precise and
comprehensive noise-distribution information is required [9]. Prior noise statistics, how-
ever, are frequently unknown or time-varying in real-world applications. Although many
researchers have proposed robust-filtering algorithms and adaptive-filtering algorithms to
solve these problems, there is still a lack of comprehensive evaluation [3,9,17]. Since the
coordinates between the user and his/her device are inconsistent, different ways of carrying
the device require different solutions to derive the user’s heading, which is relatively easy
to determine by integrating the heading of the smartphone and the corresponding rotation
matrix. [18–20]. Taking into account the algorithm adaptability and robustness, this paper
proposes a two-step robust-adaptive-cubature Kalman filter (RACKF) for pedestrian indoor
positioning. A robust-adaptive-cubature Kalman filter based on a quaternion is used to
estimate pedestrian heading. Combining the fading-memory-weighting method and the
limited-memory-weighting method, the noise parameters of the model are adjusted. An
adaptive factor is constructed based on the partial-state inconsistency, which overcomes
the influence of filtering-model error and abnormal disturbance. The robust factor based
on maximum-likelihood estimation (M-estimator) is used to identify and control the mea-
surement outliers. In addition, in this paper, the heading-angle-selection method of each
step of PDR is improved, and the average value of one step-heading value is selected as the
heading value of this step, which improves the reliability of the heading angle and reduces
the randomness of the heading angle. Many studies have shown that the step length esti-
mated by different methods is not much different [17]. In this paper, the nonlinear model is
used to estimate the step length, and the maximum and minimum accelerations in one step
are taken as the characteristic quantities. Combining the heading and step of pedestrians,
this paper proposes a robust-adaptive-cubature Kalman filter to calculate the position
information of pedestrians, further improve the positioning accuracy of pedestrians, and
reduce the cumulative error of the heading angle. In general, the difference between the
step length and heading of the previous step and the subsequent step is very small when
the pedestrian walks normally, so the step length and the heading of the previous step can
be regarded as a priori estimation of the step length and the heading of the subsequent
step. The robust-adaptive-cubature Kalman filter is used to realize the PDR method. Many
indoor-positioning systems assume the availability of the site map and use the site map
to improve positioning accuracy by using prior knowledge of the path and wall in the
building [21–23]. However, obtaining maps of anonymous buildings is not always possible,
and we believe that any realistic, universal indoor-positioning system should be free from
this fundamental limitation [9]. The proposed method can be easily used anywhere since
the system does not require any anchor or physical-map information. Autonomous and
independent pedestrian indoor positioning is the main goal of our research. The two-step
robust-adaptive-cubature Kalman filter for indoor positioning proposed in this paper can
be used anywhere and at any time and provides a lightweight positioning model. It can
effectively reduce the influence of sensor cumulative error on position calculation and im-
prove positioning accuracy. In general, the contributions of this paper can be summarized
as follows.

First of all, by fusing the data of the magnetometer and the gyroscope sensor, a
robust-adaptive-cubature Kalman filter based on a quaternion is proposed to optimize the
heading estimation. The adaptive-correction-model system noise is combined with the
fading-memory factor and the limited-memory-weighting method. An adaptive factor
based on partial-state inconsistency is used to weaken the influence of filter-model error
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and abnormal disturbance. The robust factor based on maximum-likelihood estimation is
used to identify and control the measurement outliers.

In addition, a robust-adaptive-cubature Kalman filter is proposed to improve the PDR
method, which enhances the adaptability and robustness of the algorithm and further
improves the accuracy of the plane-position solution. The adaptive factor based on the
prediction residual and the robust factor based on the maximum-likelihood estimation are
introduced into the filter to improve the adaptability and robustness of the filter, reduce the
positioning error, and improve the accuracy of the PDR method.

The organization of this paper is as follows: The two-step robust-adaptive-cubature
Kalman filter proposed in this paper is described in detail in Section 2. In Section 3,
the experiments are explained and the results analysis is provided. In Section 4, the
shortcomings of the experiment are discussed. Finally, the conclusions and future work are
presented in Section 5.

2. Materials and Methods

Low-cost MEMS sensors embedded in smartphones, such as accelerometers, mag-
netometers, and gyroscopes, provide raw data for heading estimation [17]. Although
magnetometers can calculate the heading based on measured data in quasi-static con-
ditions or magnetically clean environments, these values are easily affected by the sur-
rounding environment or other factors, resulting in significant fluctuations around the true
value [24–26]. In addition, although the heading may also be computed using angular
velocity, the estimation is unreliable due to the accumulation of gyroscope-sensor errors
during the integration process, especially during long-term operation [27–29]. Therefore,
the robust-adaptive-cubature Kalman filtering algorithm is used to fuse the above two
heading-estimation methods to obtain more accurate results. At the same time, a nonlin-
ear step model is constructed with accelerometer information. Combining the estimated
heading and step information, this paper proposes a robust-adaptive-cubature Kalman
filter method to improve the PDR method. In the following, the process of the two-step
robust-adaptive-cubature Kalman filter algorithm for indoor positioning is described in
detail, as Figure 1.
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2.1. Heading Estimation with the Quaternion

A quaternion is a parametric way to represent the heading. Because of the advantages
of the small amount of calculation and global non-singularity, quaternions have been
widely used. Quaternions:

q(q0, q1, q2, q3) = q0 + q1i + q2 j + q3k (1)

where q0, q1, q2, and q3 are real numbers, and i, j, and k are unit vectors.
The heading can be calculated with the coordinate-transformation matrix from the

b-coordinate system to the n-coordinate system. The transformation matrix can be de-
scribed as:

Cn
b =

 q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (2)
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In addition, the axes of the navigation-coordinate system in this paper point to the east,
north, and up. The matrix as the coordinate-transformation matrix from the n-coordinate
system to the b-coordinate system is shown in the following:

Cb
n =

 cosϕcosψ + sinϕsinψsinθ −cosϕsinψ + sinϕcosψsinθ −sinϕcosθ
sinψcosθ cosψcosθ sinθ
sinϕ cosψ− cosϕsinψsinθ −sinϕsinψ− cosϕcosψsinθ cosϕcosθ

 (3)

where ψ is the yaw angle, ϕ is the pitch angle, and θ is the roll angle.
Combining Equations (2) and (3), the Euler angle can be expressed by a quaternion as

follows [3,9]:
θ = arcsin[2(q2q3 + q0q1)]

ϕ = arctan
[
− 2(q1q3−q0q2)

1−q1
2−q2

2+q3
2

]
ψm = arctan

[
2(q1q2−q0q3)

1−q1
2+q2

2−q3
2

] (4)

The heading ψ can be obtained by the yaw:

ψ = ψm + D (5)

where D is the local declination angle.

2.2. Cubature Kalman Filter Algorithm

The core of the cubature Kalman filter is to estimate the statistical characteristics
of random variables after nonlinear transformation based on the basic cubature points
generated by spherical-radial-cubature rules. The cubature Kalman filter system and
measurement equations can be expressed as follows:

Xk = f (Xk−1) + wk−1
zk = h(Xk) + vk

(6)

where Xk and zk are the system-state vector and the measurement vector of time k, respec-
tively; h( ) is a known vector map; and Wk−1 and vk are the process and measurement
noise, respectively.

(1) Cubature Rule

The mean and variance can be used to represent a Gaussian distribution, using a
Gaussian filter to complete the state-estimation task, in the following form:

x̂k|k = x̂k|k−1 + Wk(zk − ẑk)

Pk|k = Pk|k−1 −WkPzz,k|k−1Wk
T

Wk = Pxz,k|k−1Pzz,k|k−1
−1

(7)

where
.
xk|k and Pk|k are the mean and variance of the probability distribution p (xk|zk),

respectively. Pk|k−1 is the state-prediction vector and its covariance at time k, and Pzz,k|k−1
is the prediction measurement and covariance. Pxz,k|k−1 is the predicted cross-covariance.
Wk is the Kalman gain. The multidimensional weighted integral is considered as follows:

I(T) =
∫
D

T(x)w(x)d(x) (8)

where T( ) is an arbitrary function, D ⊆ Rn is an integral domain, and w(x) ≥ 0 is a
known weight.

Based on the spherical-radial-cubature rule, the cubature Kalman filter can be used to
calculate the above equation:

I(T) ≈
m

∑
i=0

wiT(ξi) (9)
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where wi = 1/m, i = 1, 2, m, and m = 2n. ξi is the cubature point at the intersection of the
unit sphere and its axis.

(2) Cubature Kalman Filter Algorithm Process

Time Update
Cholesky decomposition:

Pk−1|k−1 = Sk−1|k−1ST
k−1|k−1 (10)

The cubature points Xi, k|k−1 can be calculated as:

Xi,k−1|k−1 = Sk−1|k−1ξi + x̂k−1|k−1 (11)

where ζi is the basic cubature points.
Evaluate the propagated cubature points:

X∗i,k|k−1 = f
(

Xi,k|k−1, uk−1

)
(12)

where f ( ) is the known function, and uk−1 is the system noise.
The state prediction x̂k|k−1 and the covariance matrix of the state prediction Pk|k−1 can

be obtained as follows:

x̂k|k−1 =
1
m

m

∑
i=1

X∗i,k|k−1 (13)

Pk|k−1 =
1
m

m

∑
i=1

X∗i,k|k−1X∗Ti,k|k−1 − x̂k|k−1x̂T
k|k−1 + Qk−1 (14)

where Qk−1 is the system-noise covariance.
Measurement Update
Factorize:

Pk|k−1 = Sk|k−1ST
k|k−1 (15)

The cubature points Xi,k|k−1 can be evaluated:

Xi,k|k−1 = Sk|k−1ξi + x̂k|k−1 (16)

Then, the transmission of cubature points Zi,k|k−1 can be obtained:

Zi,k|k−1 = h
(

Xi,k|k−1, vk

)
(17)

where h( ) is the known function, and vk is the measurement noise.
Then, the measurement prediction ẑk|k−1 can be described as:

ẑk|k−1 =
1
m

m

∑
I=1

Zi,k|k−1 (18)

Combining Equations (17) and (18), the innovation-covariance matrix Pzz,k|k−1 can be
estimated:

Pzz,k|k−1 =
1
m

m

∑
I=1

Zi,k|k−1ZT
i,k|k−1 − ẑk|k−1ẑT

k|k−1 + Rk (19)

where Rk is the measurement-noise covariance.
The cross-covariance matrix Pxz,k|k−1 can be calculated as:

Pxz,k|k−1 =
1
m

m

∑
I=1

Xi,k|k−1ZT
i,k|k−1 − x̂k|k−1zT

k|k−1 (20)
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Combining Equations (19) and (20), the Kalman gain Wk can be described as:

Wk = Pxz,k|k−1P−1
zz,k|k−1 (21)

The state update and the corresponding error covariance can be written as:

x̂k|k = x̂k|k−1 + Wk

(
zk − ẑk|k−1

)
(22)

Pk|k = Pk|k−1 −WkPzz,k|k−1W−1
k (23)

2.3. First Step RACKF Algorithm

In terms of heading estimation, gyroscopes and magnetometers have certain limita-
tions. The bias of the gyroscope increases with time, resulting in relative heading drift.
Although magnetometers can calculate the heading based on the measured geomagnetic
field in quasi-static conditions or magnetically clean environments, magnetometers are
easily affected by the indoor environment. Therefore, the heading can be estimated by
fusing these sensors, and the limitation of one sensor can be recovered by another sensor. In
this paper, a robust-adaptive-cubature Kalman filter (RACKF) algorithm is proposed to fuse
the data of MEMS sensors to obtain more accurate results. The fading-memory-weighting
method and the limited-memory-weighting method are used to weigh the old data, and the
model-noise parameters are adaptively corrected. Based on the characteristics of pedestrian
walking, the memory window of the limited-memory-weighting algorithm is modified by
using the latest step-length data of pedestrians. Based on the partial-state inconsistency, an
adaptive factor is constructed to overcome the influence of filtering-model deviation and
abnormal disturbance. To identify and control measurement outliers, a robust factor based
on maximum-likelihood estimation is introduced in the filtering to enhance the robustness
of heading estimation and support more robust dynamic-position estimation. The process
of this method is explained as Figure 2:
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2.3.1. State Equation Based on Gyroscope

The quaternion q is a four-dimension vector and represents the changed heading from
the previous quaternion, which can be calculated from:

.
q =

1
2

q⊗w (24)

where w is the angular-rate vector.
The matrix form of Equation (24) is:

.
q =

1
2

M(w)q =
1
2


0 −wx −wy −wz

wx 0 wz −wy
wy −wz 0 wx
wz wy −wx 0




q0
q1
q2
q3

 (25)
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where wx, wy, and wz are angular-rate values along the X, Y, and Z axes, respectively, of the
device coordinate system.

The discrete form is [9]:

qk+1 = [I ∗ cos(ϑ/2) + A ∗ dt ∗ sin(ϑ/2)/ϑ]qk (26)

where I is the n × n unit matrix, dt is the sampling interval, and A is the incremental-angle
matrix with its form of wx, wy, and wz.

2.3.2. Measurement Equation Based on Accelerometer and Magnetometer

The conversion of the measured values u of the accelerometer and magnetometer and
the quaternion q can be obtained from the relationship between the observation vectors in
the body frame and the navigation frame as follows:

u =



ax
ay
az
mx
my
mz

 =



2(q1q3 − q0q2)
2(q2q3 + q0q1)

q2
0 − q2

1 − q2
2 + q2

3
2(q1q2 + q0q3)mN + 2(q1q3 − q0q2)mU

(q2
0 − q2

1 + q2
2 − q2

3)mN + 2(q2q3 + q0q1)mU
2(q2q3 − q0q1)mN + (q2

0 − q2
1 − q2

2 + q2
3)mU

 (27)

where ax, ay, and az represent the measurement of the accelerometer in the body-coordinate
system. mx, my, and mz represent the measurements of the magnetometer in the body-
coordinate system. mN and mU stand for the components of a magnetic vector in the
navigation-coordinate system.

In this paper, the magnetic-field-correction model is used to weaken the influence of
hard iron and the scale factor as follows [9,17]:

m = K(m∗ + m0) = diag
(
Kx, Ky, Kz

)
(

 m∗x
m∗y
m∗z

+

 mx0
my0
mz0

) (28)

where K denotes a scale-transformation matrix. m∗x, m∗y , and m∗z are the raw measurements,
and mx0, my0, and mz0 are the biases.

Combining Equations (26) and (27), the process and observation models can be de-
scribed as:

Xk = Fk−1Xk−1 + wk−1
zk = h(Xk) + vk

(29)

where wk−1 and vk are the noise.
In the fading-memory-weighted method, combined with the Sage–Husa maximum-

posterior-estimation algorithm and time-variant noise-statistic estimator, the state noise
covariance Q̂k can be expressed as follows [17]:

Q̂k = (1− dk)Q̂k−1 + dk[KkεkεT
k KT

k + Pk|k − (
1

2n

m

∑
i=1

X∗i,k|k−1X∗Ti,k|k−1 − x̂k|k−1 x̂T
k|k−1)] (30)

where dk = (1− b)/(1− bk+1),b is the forgetting factor, εk is the filter innovation, and
εk = zk − ẑk|k−1.

Different from the traditional method, the nearest step data are selected as the length
of the memory window in the pedestrian-walking process in this paper [9]. When the
pedestrian is stationary, a sampling period is selected as the length of the memory window
in the limited-memory-weighting method, and the weighting factor βi can be rewritten as:

βi = βi−1b; 0.95 < b < 0.99,
k

∑
i=1

βi = 1 (31)
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where βi = dwbi−1, dw = (1− b)/(1− bw), b is the forgetting factor.
The state noise covariance Q̂k of the limited-memory adaptive filter can be expressed

as [3]:

Q̂k = bQ̂k−1 + dw[KkεkεT
k KT

k + Pk|k − (
1

2n

2n

∑
i=1

X∗i,k|k−1X∗Ti,k|k−1 − x̂k|k−1 x̂T
k|k−1)] + dwbwQ̂k−w (32)

where Q̂k−w = Wk−wεk−wεT
k−wWT

k−w + Pk−w|k−w − ( 1
2n

2n
∑

i=1
X∗i,k−w|k−w−1X∗Ti,k−w|k−w−1 −

x̂k−w|k−w−1 x̂T
k−w|k−w−1).

At the k-w moment, the state noise covariance of the restricted-memory-weighting
method needs to be known. From the start time to the k − w time, the fading-memory-
weighting method is used to calculate the state noise covariance. From the time k − w + 1,
the state noise covariance is calculated by the limited-memory-weighting method. Com-
bining the faded-memory-weighting method and the limited-memory-weighting method
to estimate and correct the model-noise parameters, the accuracy of the filter estimation
is improved.

The gain matrix Wk in the first step of the robust-adaptive-cubature Kalman filter
algorithm has different calculations. The complex motion state of pedestrians makes it
difficult to establish an accurate function model. In addition, pedestrians are inevitably
affected by abnormal external interference during the movement process, resulting in
the state model not truly being able to reflect the movement of pedestrians. When the
observation information is redundant, the state vector can be estimated directly by using
the observation information. To overcome the influence of filter-model error and abnormal
disturbance, an adaptive factor (α) based on partial-state inconsistency is used to overcome
the abnormal influence of state disturbance. This paper uses a three-segment function to
construct the adaptive factor with the statistic of the predicted-state discrepancy, which can
be represented as:

∂k =


1,

∣∣∣∆X̃k

∣∣∣≤ c0

c0
|∆X̃k| (

c1− |∆X̃k|
c1−c0 ), c0 <

∣∣∣∣∆X̃k

∣∣∣∣≤ c1

0,
∣∣∣∆X̃k

∣∣∣> c1

(33)

where c0 and c1 are constants that can be tuned depending on the practical implementation,
and ∆X̃k is the statistic of the state-discrepancy statistic for judging the state-model errors.

∆X̃k =
[
‖X̃k − Xk|k−1‖/tr

(
P̂k|k−1

)] 1
2 (34)

where tr(·) stands for the trace of a matrix, and X̃k is a least-square estimator of the state.
The appropriate gain matrix Wk is obtained as:

Wk = (
1
m

m

∑
I=1

Xi,k|k−1ZT
i,k|k−1 − x̂k|k−1zT

k|k−1)(
1
m

m

∑
I=1

Zi,k|k−1ZT
i,k|k−1 − ẑk|k−1ẑT

k|k−1 + ∂kRk)
−1

(35)

where ∂k is the adaptive factor, and Rk is the equivalent-weight matrix of the measurements.
To control the outliers in the measurements, the equivalent-weight matrix Rk of the

measurements can be calculated as [30,31]:

Rk = Rk/ri (36)

where ri is the variance-inflation factor, which is determined as follows [7]:

rkij
=


1 |vi|≤ k0

k0
|vi |
· ( k1−|vi |

k1−k0
)

2
, k0 <

∣∣∣∣vi

∣∣∣∣≤ k1

0 |vi|> k1

(37)
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where k0 and k1 are two thresholds, usually chosen as 1.5–3.0 and 3.0–8.0, respectively; and
vi is the standardized residual.

2.4. Second Step RACKF Algorithm

At present, the study of PDR has received a lot of attention, but there is still a lack of
comprehensive evaluation [3]. The PDR method on smartphones is independent and does
not require any external infrastructure. This technology can be used anytime, anywhere,
with just a smartphone and without the need for a huge infrastructure. Therefore, the
smartphone-based PDR method will be the focus of future research. Due to inaccurate
estimation of heading and step length, the error of PDR will increase over time, especially
for smartphones with cheap and noisy built-in inertial sensors [17]. The traditional PDR
method uses the heading and step length to calculate the plane position of the pedestrian,
and the positioning accuracy depends on the estimation accuracy of the heading and step
length. In this paper, a robust-adaptive-cubature Kalman filter is proposed to improve the
PDR method, which enhances the adaptability and robustness of the algorithm and further
improves the accuracy of the plane-position solution. This paper improves the method
of selecting the heading angle of each step of the pedestrian. By selecting the average
value of the heading in the step as the heading of the step, the fluctuation phenomenon
starting from the peak (valley) time is weakened, the reliability of the heading angle is
improved, and the randomness is weakened. A nonlinear model is constructed by using
the information from the accelerometer to estimate the step length. Combining heading
and step length, the second step of the robust-adaptive-cubature Kalman filter is proposed
to improve PDR and estimate the position information of pedestrians. The adaptive factor
based on the prediction residual and the robust factor based on the maximum-likelihood
estimation are introduced into the filter to improve the adaptability and robustness of the
filter, reduce the positioning error, and improve the accuracy of the dead-reckoning method.
The process of this method is explained as Figure 3:
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The speed estimation includes step length and frequency. In this paper, the adaptive
step-length-estimation algorithm is used to take the maximum and minimum accelerations
of pedestrians in one step as the characteristic quantity. The nonlinear-step-estimation
model is as follows:

Lk = K1(amax − amin) + K2
4
√
(amax − amin) (38)

where Lk is the step length, and amax and amin are the maximum acceleration and minimum
acceleration in one step, respectively. To improve the adaptability of the algorithm, two pa-
rameters, K1 and K2, can be adjusted in real time and added to the algorithm. These two
parameters can be automatically adjusted according to the positioning result to adapt to
the movement differences of each pedestrian.

At present, the gait-detection algorithm based on MEMS uses the peak-detection
method to find the maximum acceleration of the fixed time window based on the periodic
change in pedestrian acceleration. The main purpose of step-frequency detection is to
identify the starting point of the stride from the continuous sensor data to facilitate data
processing in the unit of the single step when calculating the subsequent step length and
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direction. In this paper, the method of “smooth window + peak detection + dynamic
threshold” is used to detect cadence. The three-axis acceleration of the acceleration sensor
and the rotation matrix are used to calculate the acceleration in the navigation-coordinate
system. When performing pedestrian-gait detection, it is best to use the total acceleration
in three directions during pedestrian walking. The numerical fluctuation of the total
acceleration converted to a navigation system can reflect the human-walking law to a large
extent. The total acceleration can be expressed as:

a =
√

a2
x + a2

y + a2
z (39)

Then, based on the above equation, a smooth window with a length of 2n + 1 is used to
filter the acceleration modulus. When the acceleration of human walking is removed from
the gravity component of the earth, the acceleration value is positive or negative, and the
acceleration value is zero. The zero-crossing method completes the judgment of pedestrian
stride with this law. At the same time, the following conditions should be met: (1) The peak
is greater than the threshold value, (2) the trough is less than the threshold value, (3) the
difference between the peak and the trough is greater than the threshold value, and (4) the
time difference between adjacent peaks is greater than the threshold value.

Usually, when a person walks normally, there is little difference in the step length and
heading between the previous step and the next step [17]. Therefore, the step length and
heading of the previous step can be used as a priori estimates of the next step length and
heading. Combining the step length and heading, this paper proposes a robust-adaptive-
cubature Kalman filter algorithm based on the PDR method to estimate pedestrian-position
information, reducing the estimation error. In this paper, the state-transition equation and
measurement equation are established as:

Xk = Fk−1Xk−1 + wk−1
zk = H(Xk) + vk

(40)

where Xk = [ψ L]T , Fk−1 =

[
1 0
0 1

]
, zk =

[
X
Y

]
, h(u) =

[
S ∗ cos(ϕ)
S ∗ sin(ϕ)

]
, wk−1 and vk are

the noises, ψ is the heading, and L is the step length.
In actual circumstances, it is difficult for pedestrians to maintain regular-motion

mode [9]. Therefore, it is very difficult to establish an accurate function model. In addition,
pedestrians are disturbed by the outside world during the movement, which makes the
state model unable to reflect the real-motion law. Since the observation information is not
redundant, the adaptive factor is constructed by using the prediction residual to overcome
the filter-model error and the influence of abnormal disturbance [17]. In this paper, the
adaptive factor is a two-stage function, which is a statistic of the predicted state difference
and can be expressed as [3]:

∂k =

{
1, ∆X̃k ≤ c0

c0
∆X̃k

, ∆X̃k > c0 (41)

where c0 is a constant, which can be tuned depending on the practical implementa-
tion, and ∆Ṽk is the statistic of the predicted state discrepancy, defined as ∆X̃k =[
‖X̃k − Xk‖/tr

(
cov(∆Ṽ, ∆ṼT

)] 1
2 , where tr(·) stands for the trace of a matrix and X̃k is

a least-square estimator of the state.
The adaptive factor is used to correct the innovation-covariance matrix to control

the influence of the dynamic-model error. Having weakened the negative impacts of
measurement outliers and state-model errors, the innovation-covariance matrix P∗

zz,k|k−1
can

be expressed as [3]:

P∗zz,k|k−1 =
1
m

m

∑
I=1

Zi,k|k−1ZT
i,k|k−1 − ẑk|k−1ẑT

k|k−1 + ∂kRk (42)
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where ∂k is the adaptive factor, and Rk is the equivalent-weight matrix of the measurements.
In this paper, the robust estimation based on maximum-likelihood estimation is used

to correct the equivalent-weight matrix of the measurement to control the outliers in the
measurement. Then, the diagonal rkij

and non-diagonal rkij
elements of the equivalent-

weight matrix are determined as follows [17]:

rkii
=


1

σii
,

∣∣∣r′ki

∣∣∣ ≤ c
c∣∣∣r′ki

∣∣∣ · 1
σii

,
∣∣∣r′ki

∣∣∣ > c (43)

rkij
=


1

σij
,

∣∣∣r′ki

∣∣∣ ≤ c and
∣∣∣r′kj

∣∣∣ ≤ c
c

max
{∣∣∣r′ki

∣∣∣,∣∣∣∣r′kj

∣∣∣∣} ·
1

σi,j
,
∣∣∣r′ki

∣∣∣ > c or
∣∣∣r′kj

∣∣∣ > c (44)

where σii and σij are diagonal and non-diagonal elements of the measurement-noise covari-
ance matrix Rk, c is a constant, and r′ki

denotes the standard residual and is calculated by:

∣∣∣r′ki

∣∣∣ = ∣∣∣∣∣ rki

σrki

∣∣∣∣∣ (45)

3. Experiments and Results Analysis
3.1. Experimental-Site Layout

To evaluate the proposed method, experiments were carried out in indoor scenes.
Smartphones Xiaomi 5 (Mi 5), HONOR V10, and Xiaomi 12(Mi 12 Pro) were selected
as the test equipment, as shown in Figure 4. Based on the data-acquisition software
(2.0_ alpha) we developed, the sampling frequency of the data was 50 Hz. In addition,
the experimental results of the three pieces of experimental equipment can be compared
with each other to improve the reliability of the experimental results. In addition, since the
sensors of each device are different, the experimental results of the three devices can increase
the versatility of the proposed method. The initial-state noise and measurement-noise
covariance matrix of the filter were determined by the experience of each measured-value
output by the smartphone in the test [9]. To verify the accuracy of the proposed method,
experiments were carried out on the fourth floor of a research building. To ensure the
detection of pedestrian-positioning accuracy, we only considered the case where the user
holds a smartphone, which is the most common pedestrian navigation mode. During
the experiment, participants started from the starting point and reached the end point
at a constant speed along the corridor, as shown in Figure 5. In indoor experiments,
pedestrians held the device and kept it level. The trajectory of their walking position was
103.72 m. Participants maintained a uniform walking speed in the experiment. During the
experiment, pedestrians held the smartphone in their hands. The x-axis of the smartphone
was along the forward direction, the y-axis was perpendicular to the x-axis and the right,
and the z-axis was perpendicular to the x–y plane. The experiment was completed by two
people. The first person carried the experimental equipment and walked at a constant
speed. The second participant used a mobile phone to photograph the position of each step
of the previous person’s experimental process and obtained the real position of each step
by pre-measuring the total length of the route.
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3.2. Results Analysis

Figures 6 and 7 show the results and errors of position tracking, which can reflect
the position coordinates of the experiment. The purple line in Figure 6 is the reference
trajectory, which was obtained from the field-measurement coordinates. The red line in
the image is the result of positioning by the Xiaomi 5 mobile phone, the green line is the
result of positioning by the HONOR V10 mobile phone, and the blue line is the result of
positioning by the Xiaomi 12 Pro mobile phone. In Figure 6, it can be concluded that the
positioning results of the three mobile phones were close to the reference trajectory. This
is because the algorithm proposed in this paper introduces adaptive and robust factors,
which reduce the accumulation of errors and improve the accuracy of position estimation.
Figure 7 shows the positioning error of the three mobile phones. From Figure 7, it can be
seen that the positioning error of the three mobile phones was not much different and the
positioning accuracy was very high. In addition, the maximum error was in the corner.
There were two corners in this experiment, and the error was relatively large at the two
corners. This shows that the proposed algorithm needs to further improve the positioning
accuracy of pedestrians in the corner.
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Table 1 and Figure 8 show the statistical data of position errors. Based on the position-
ing results of the three mobile phones in the table, it can be seen that the root mean square er-
ror (RMSE) of the positioning results of the proposed method was 1.3452, 1.5372, and 1.1508,
and the average error of the positioning results was 1.2756, 1.6969, and 1.3086, respectively.
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Table 1. Statistical results of pedestrian-location error (m).
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3.3. The Second Experiment and Results Analysis

To further verify the superiority of the proposed method, the second test was con-
ducted in the corridors on the fourth floor of a research building. The floor plan is presented
in Figure 9. In the test, the smartphone was held at a constant speed and started from
the starting point and returned to the start point along the corridor. The trajectory of the
walking position was 128.24 m.
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Figures 10 and 11 show the results and errors of the position tracking, which reflect
the position coordinates of the experiment. In Figure 10, the purple line is the reference
trajectory, which was obtained from the field-measurement coordinates. The red line in
the image is the result of positioning with the proposed method. The green line is the
result of positioning with the IPDR method. From Figure 10, it can be concluded that
the proposed method provided more stable and accurate location information compared
with the IPDR algorithm. This is because the IPDR algorithm uses a quaternion-based
robust-adaptive-cubature Kalman filter algorithm to estimate pedestrian heading and
calculate pedestrian-position information with the PDR method. The proposed method
uses a two-step robust-adaptive-cubature Kalman filter algorithm to calculate pedestrian-
position information. Compared to the IPDR algorithm, the proposed method uses a
robust-adaptive-cubature Kalman filter to reduce the positioning error and improve the
accuracy of the IPDR method, which enhances the adaptability and robustness of the
algorithm and further improves the accuracy of the plane-position solution. Figure 11
shows the positioning error of two methods, and it can be seen that the positioning error of
the proposed method was smaller than that of the IPDR method. In addition, Table 2 shows
the statistical data of the position errors for the two methods. Based on the positioning
results in the table, it can be seen that the root mean square error (RMSE) and the average
error of the positioning results of the proposed method were smaller than those of the
IPDR method. Compared with the IPDR method, the RMSE and the average error of the
proposed method diminished to about 38.93% and 41.54%, respectively.
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Table 2. Statistical results of pedestrian-location error (m) of second test.

Experimental Devices Average RMSE

IPDR 2.4726 2.9017
The proposed method 1.4456 1.7721

In general, the above results show that the proposed two-step robust-adaptive-cubature
Kalman filter method can not only provide the optimal model for heading estimation but
also further optimize the IPDR algorithm. It is worth noting that based on the different
smartphone experiments, it can be inferred that the proposed two-step robust-adaptive-
cubature Kalman filter algorithm has the advantages of small error and high stability in
indoor scenes. Therefore, it can be concluded that the proposed two-step robust-adaptive-
cubature Kalman filter algorithm can obtain good positioning accuracy, making it more
suitable for the application of low-cost MEMS sensors for pedestrian indoor positioning.

4. Discussion

In this paper, a two-step robust-adaptive-cubature Kalman filter based on the MEMS
sensor of a smartphone is proposed for indoor pedestrian positioning. Although the
first step of the robust-adaptive-cubature Kalman filter and the second step of the robust-
adaptive-cubature Kalman filter in the two-step robust-adaptive-cubature Kalman filter
proposed in this paper adopt adaptive factors and robust factors, they are different. The
differences are as follows:

Firstly, only the first step of the robust-adaptive-cubature Kalman filter uses the fading-
memory-weighting method and the limited-memory-weighting method to adaptively
correct the statistical characteristics of the nonlinear system and reduce the estimation bias
of the filter.
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Secondly, the adaptive filtering of the two-step robust-adaptive-cubature Kalman filter
has different value ranges for the adaptive factor. The three-stage function-adaptive factor
is suitable only for the weighted average solution, not for the recursive solution. The
two-stage function-form adaptive factor can be applied to the weighted average solution
and the recursive solution. When the observation information is sufficient, the adaptive
factor should adopt the three-stage function and the corresponding state-inconsistency
statistics. When the observation information is seriously insufficient, the adaptive factor
must be constructed based on the prediction residual and cannot be zero, and the non-zero
adaptive factor must be used.

Finally, although the first step of the robust-adaptive-cubature Kalman filter and the
second step of the robust-adaptive-cubature Kalman filter both use the robust factor based
on the maximum-likelihood estimation, the two robust factors are different methods.

In addition, in the two-step robust-adaptive-cubature Kalman filter proposed in this
paper, the first step of the robust-adaptive-cubature Kalman filter is to fuse the heading
results calculated by the gyroscope and magnetic field, which further optimizes the heading
estimation and improves the estimation accuracy. The second step of the robust-adaptive-
cubature Kalman filter is to improve the traditional PDR method. The traditional PDR
method uses the heading and step length to calculate the plane position of the pedestrian,
and the positioning accuracy depends on the estimation accuracy of the heading and step
length. In this paper, the second step of the robust-adaptive-cubature Kalman filter is
used to improve the PDR method, which enhances the adaptability and robustness of the
algorithm and further improves the accuracy of the plane-position solution.

Although the proposed method achieved stable and accurate positioning results, there
are still some problems to be discussed.

(1) Different from most pedestrian-indoor-positioning methods, the method proposed in
this paper is based on smartphone MEMS sensors to determine indoor positioning.
Considering the adaptability and robustness of the filter, a two-step RACKF algorithm
is proposed to estimate the pedestrian position to improve the positioning accuracy
and weaken the error accumulation of the PDR method. However, the proposed
method only applies to pedestrians holding a smartphone with their hands and
maintaining it level. It does not apply to pocket and swing modes of the phone, which
will be the subject of future research work. Based on these limitations, our future
work will focus on a more comprehensive positioning model. In addition, because the
two-step RACKF algorithm comprehensively considers robustness and adaptability,
the complexity of the algorithm is increased.

(2) Due to the complex and changeable indoor environment, the influencing factors
of pedestrian positioning are uncertain. Although the proposed two-step robust-
adaptive-cubature Kalman filter indoor-positioning method can reduce the positioning-
accumulation error of PDR to a certain extent, pedestrian-indoor-positioning error
may still accumulate. Therefore, it is necessary to further improve the performance of
the algorithm and reduce error accumulation.

(3) It can be inferred from the experimental results that the method proposed in this paper
can meet the needs of most ordinary pedestrians. However, the error is relatively
large in the place of turning. How to further improve the positioning accuracy of
pedestrian turning is a future research direction.

(4) Pedestrian-behavior patterns in complex environments are complex and changeable.
In actual scenes, pedestrian-walking patterns are changeable during walking, which
may affect the accuracy of pedestrian positioning. It is necessary to conduct an in-
depth analysis of multi-sensor data characteristics of smartphones and use recognition
algorithms to intelligently identify pedestrian-behavior characteristics.
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5. Conclusions

In this paper, a two-step robust-adaptive-cubature Kalman filter positioning method
based on a smartphone MEMS sensor is proposed for pedestrian indoor positioning. The
quaternion-based robust-adaptive-cubature Kalman filter (RACKF) algorithm is used to
estimate the heading, which reduces the weight of the old data and adaptively modifies
the model-noise parameters. The fading-memory-weighting method and the limited-
memory-weighting method are combined to adaptively correct the statistical characteristics
of the nonlinear system and reduce the estimation bias of the filter. An adaptive factor
is constructed based on the partial-state inconsistency to overcome the influence of the
filter-model error and abnormal disturbance. In addition, the robust factor based on
maximum-likelihood estimation is used to identify and control the measurement outliers to
enhance the robustness of heading estimation. Each step of the pedestrian contains multiple
heading angles at different times, and the average heading of the step is selected as the
heading of the step to reduce the influence of fluctuation. Step-length estimation is achieved
by using accelerometer data in smartphones. In addition, based on PDR, a second step
of the robust-adaptive-cubature Kalman filter is proposed to estimate pedestrian-position
information. Combining the adaptive factor based on the prediction residual and the robust
factor based on maximum-likelihood estimation, the adaptability and robustness of the
filter are improved and the positioning error is reduced. The proposed indoor-positioning
method effectively reduces the influence of sensor cumulative error on position calculation
and improves positioning accuracy.

The experiment is carried out in an indoor environment to verify the superiority of
the proposed method. The experimental results show that the two-step robust-adaptive-
cubature Kalman filter can improve the indoor-positioning accuracy of pedestrians, and the
algorithm can provide more stable and accurate position-estimation information. Therefore,
the experimental results show that the proposed indoor-positioning method can provide an
optimization model for pedestrian indoor positioning and navigation estimation. Therefore,
it can be concluded that the proposed method can obtain better accuracy and make it more
suitable for indoor positioning using low-cost MEMS sensors of smartphones.

In the future, we will focus on pedestrian-motion-pattern recognition to improve the
accuracy of positioning. In addition, different ways of carrying mobile phones will also be
the focus of our research.
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Abbreviations

LBS location-based services
MEMS micro-electro-mechanical systems
PDR pedestrian dead reckoning
RACKF Robust-adaptive-cubature Kalman filter
RMSE root mean square error
GNSS Global Navigation Satellite System
CF complementary filter
KF Kalman filter
EKF extended Kalman filter
UKF unscented Kalman filter
CKF cubature Kalman filter
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