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Abstract: Microscopic visual measurement is one of the main methods used for precision measure-
ments. The observation morphology and image registration algorithm used in the measurement
directly affect the accuracy and speed of the measurement. This paper analyzes the influence of
morphology on different image registration algorithms through the imaging process of surface mor-
phology and finds that complex morphology has more features, which can improve the accuracy
of image registration. Therefore, the surface microstructure of ultra-precision machining is an ideal
observation object. In addition, by comparing and analyzing the measurement results of commonly
used image registration algorithms, we adopt a method of using the high-speed SURF algorithm
for rough measurement and then combining the robust template-matching algorithm with image
interpolation for precise measurements. Finally, this method has a repeatability of approximately
54 nm when measuring a planar displacement of 25 µm.

Keywords: precision measurement; image registration algorithm; microstructure

1. Introduction

Precision positioning measurement is widely used in various precision instruments
and CNC machine tools [1,2]. Currently, the commonly used precision positioning methods
are divided into optical methods such as laser interference and optical encoding, and
non-optical methods such as capacitance sensing and eddy current sensing [3,4]. These
methods have certain limitations in range and measurement freedom, and the manufac-
turing of the equipment is complex and costly. Microscopic visual measurement, due to
its advantages such as simple structure, ability to achieve multi-degree-of-freedom and
large-range measurement, and wide application scenarios, has gradually become one of
the main methods of precision measurement [5,6].

Microscopic visual measurement uses equipment such as cameras to obtain digital im-
ages of the observed object via microscopic imaging. Therefore, obtaining high-resolution
observed objects is of great significance to microscopic visual measurement. The develop-
ment of ultra-precision machining makes it possible to obtain high-resolution observed
objects [7]. Ultra-precision machining (UPM) is an important mechanical material removal
method, which is currently applied in many fields, such as optics, electronics, aerospace,
and telecommunications [8]. Through ultra-precision machining, microstructured surfaces
with nanometer surface roughness and sub-micrometer positional accuracy can be obtained,
which can be used as observed objects for microscopic visual positioning measurement.
The current mainstream methods mostly use periodic microstructures [9,10], but their
machining accuracy directly affects the measurement accuracy, so the requirements for
manufacturing and calibration are high, and the high similarity of periodic microstructures
makes the image processing process complex.
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In order to overcome the limitations of the positioning measurement technology
based on periodic microstructures, our team proposed a microscopic visual measurement
method based on non-periodic surface microstructures, using single-point diamond cutting
technology to process non-periodic microstructures as observation objects [11,12]. The
surface microstructure processed by this technology has richer changes in morphology
compared to etching and carries more image information after microscopic imaging [13].
This method can process microstructure patterns of different geometric sizes according to
different range requirements and eliminates tedious calibration operations, which can meet
different occasions and usage requirements.

The non-periodic surface microstructure combined with image registration technol-
ogy achieves microscopic measurement by registering and positioning the continuously
obtained images of the microstructure after microscopic imaging. Commonly used image
registration methods can usually be divided into three categories: feature-based registra-
tion such as SIFT, SURF, etc. [14]; gray information-based registration such as template
matching [15]; and transformation domain-based registration such as phase correlation [16].
The three methods have certain differences in calculation speed, accuracy, and robustness,
so they will show different effects when applied to microscopic measurements with high
resolution and real-time small changes in imaging conditions.

In order to achieve higher precision and faster measurement, this paper proposes a
method based on ultra-precision machining microstructures combined with SURF and
template matching to achieve micro-displacement precision measurement. In the theoretical
part of this paper, the optical imaging principle of the surface microstructure is analyzed
in detail, the influence of surface morphology on imaging results is explored, and its
influence on image registration is further analyzed. Afterwards, experiments were set up to
compare the results of different image registration algorithms for processing ultra-precision
machining microstructure and etching morphology, and we verify the influence of surface
morphology on image registration, obtaining the conclusion of the superiority of ultra-
precision machining microstructure for microscopic measurement. At the same time, by
setting up experiments, we obtain the results of microscopic measurement based on ultra-
precision machining microstructures using the three commonly used image algorithms and
analyze the pros and cons of various algorithms. Finally, based on the conclusion of the
previous step, a positioning method based on ultra-precision machining microstructures
using SURF for rough measurement and template matching for precise measurement is
proposed, and the results are analyzed.

2. Theory
2.1. Image Registration for Measuring Displacement

As shown in Figure 1, microscopic visual measurement is carried out in two steps. The
first step is to microscopically image the observed moving object and obtain a continuous
sequence of images. The second step is to register the images obtained from different
positions, obtain the pixel displacement between the two images, and then calculate the
actual displacement of the observed object using the conversion coefficient. Commonly
used image registration methods can usually be divided into three categories. Therefore,
this paper uses three different algorithms, namely, transformation domain-based phase
correlation, gray information-based template matching, and feature-based SURF, to perform
image registration.
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→
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2.1.1. Phase Correlation

Phase correlation is a method of image registration based on spectral analysis. By
performing Fourier transform on the images and analyzing the overlapping part of the
frequency domain images, the transformation parameters between the two images are
calculated. Let [ f1(x, y)] be the pixel matrix of the original image, and when the image
undergoes a translation transformation (x0, y0), its pixel matrix changes to [ f2(x, y)]. The
transformation relationship between the two is as follows:

f2(x, y) = f1(x− x0, y− y0) (1)

Taking the Fourier transform on both sides of the equation to the frequency domain
(u, v), we obtain the following:

F2(u, v) = e−2πj(ux0+vy0)F1(u, v) (2)

Calculating the cross-power spectrum in the frequency domain, we obtain the following:

e−2π j(ux0+vy0) =
F1(u, v)F2(u, v)∣∣F1(u, v)F2(u, v)

∣∣ (3)

Finally, performing an inverse Fourier transform on the cross-power spectrum yields
an impulse function, which is almost zero at other positions except for the maximum value
at (x0, y0). Therefore, by finding the peak position of the impulse function, we can calculate
the translation parameters between the two images.

2.1.2. Template Matching

Template matching is a method of locating images based on gray information. As
shown in Figure 2, let [T]m×n be the gray matrix of the template image, [I]M×N be the
gray matrix of the global image, and [I(x, y)]m×n be the sub-image cut out from the global
image with the upper-left corner coordinates of (x, y). The normalized cross-correlation
coefficient (NCC) between the template image and the sub-image is defined as follows [17]:

NCC(x,y) =
∑m

i=1 ∑n
j=1
[
I(x + i, y + j)− I(x, y)

]
·
[
T(i, j)− T

]
[
∑m

i=1 ∑n
j=1
[
I(x + i, y + j)− I(x, y)

]2] 1
2 ·
[
∑m

i=1 ∑n
j=1
(
T(i, j)− T

)2
] 1

2
(4)

where T is the average gray pixel intensity of the template image [T]m×n, and I(x, y) is the
average gray pixel intensity of the sub-image [I(x, y)]m×n. The larger the value of NCC, the
more similar the pixel gray distribution between the template image and the sub-image.
When NCC is 1, the pixel gray distribution of the template image and the sub-image are
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exactly the same. Therefore, by finding the position with the maximum value of NCC, we
can determine the relative displacement between the two.
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2.1.3. SURF

SURF (speeded up robust features) is a method of image registration based on feature
matching with good invariance to geometric transformations, illumination, and other
factors [18]. SURF uses the determinant value of the Hessian matrix as the feature point
response detection. For any point X = (x, y) in the image space with a scale of σ, the
Hessian matrix is defined as follows:

H(X, σ) =

[
Lxx(X, σ) Lxy(X, σ)
Lxy(X, σ) Lyy(X, σ)

]
(5)

where Lxx(X, σ) represents the convolution of the Gaussian second-order partial derivative
∂2

∂x2 with the image at X, and Lxy(X, σ) and Lyy(X, σ) are similar. To speed up the calcu-
lation, SURF uses a box filter to approximate the second-order partial derivatives of the
Gaussian filter and replaces Lxx, Lxy, and Lyy with Dxx, Dxy, and Dyy, respectively. The
approximate determinant expression of the fast Hessian matrix can be obtained as follows:

det(H) = DxxDyy −
(
0.9Dxy

)2 (6)

In order to extract the feature points, all the points in a 3 × 3 × 3 neighborhood are
subjected to non-maximum suppression. Points with response values det(H) greater than
the neighboring 26 response values are selected as feature points, and then the image
feature points are registered to achieve localization.

2.2. The Influence of Surface Microstructure

In order to explore the influence of surface microstructure defects on localization mea-
surement, it is necessary to first analyze the imaging process of microstructure morphology.
The imaging of surface microstructure is achieved via light reflection. For any reflection
process, it can be described by the reflectance equation [19]:

L0 =
∫

Ω
fr·Li · (n ·ωi)dωi (7)

where n is the normal vector,ω is the solid angle, L0 and Li are the radiance of the outgoing
and incoming light, and fr is a function related to the reflecting surface. Since surface
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microstructure is a typical non-optical plane, the light passes through the complex scattering
process on the surface to form an image, and the reflection function adopts the bidirectional
reflectance distribution function:

L0 =
∫

Ω

(
kd

c
π
+ ks

DFG
4(ω0 · n)(ωi · n)

)
Li(p, ωi)n ·ωidωi (8)

where kd and ks are the proportion coefficients of diffuse reflection and specular reflection, D
is the normal distribution function, G is the geometric function, and F is the Fresnel equation.

D is related to the microplane normal unit vector h, macroplane normal unit vector n,
and roughness α. The larger the α, the larger the function value of D. The expression of D
is as follows:

D(n, h,α) =
α2

π
(
(n · h)2(α2 − 1) + 1

)2 (9)

G represents the self-occlusion of the micro-surface, which causes light loss, and is related
to the macroplane normal unit vector n, roughness α, and reflection direction unit vector v.
The larger the roughness, the greater the occlusion. The expression of G is as follows:

G(n, v,α) =
n · v

(n · v)
(

1− (α+1)2

8

)
+ (α+1)2

8

(10)

F describes the ratio of the reflected light to the refracted light and is related to
the microplane normal unit vector h, reflection direction unit vector v, and plane base
reflectivity F0. The expression of F is as follows:

F(h, v, F0) = F0 + (1− F0)(1− (h · v))5 (11)

The value of fr for different surface structures is different. Therefore, under the same
illumination conditions, the reflectivity of microstructures is different, which leads to
different gray value distributions of the image after imaging. According to the reflectance
equation, the normal distribution and roughness of the surface morphology determine
its reflectivity. Microstructures with a high rate of change in normal distribution and
roughness will also exhibit strong changes in pixel gray values, with a larger gradient in
pixel gray values. When there is a sudden change in normal distribution and roughness,
the pixels of the image at that location will also exhibit a sudden change, resulting in more
obvious image features after imaging. The pixel distribution of the optical image is affected
by surface morphology and processing precision. Therefore, the more complex the surface
morphology is, the higher the accuracy and precision of image registration will be. The
higher the processing precision is, the more controllable the precision of image registration
will be.

Ultra-precision machining microstructure has a complex morphology, whereas the
morphology of etched structures is relatively simple. Therefore, by taking ultra-precision
machining microstructure and etched morphology as observation objects, respectively,
the influence of surface morphology on image registration can be further compared
and verified.

3. Experimental Setup
3.1. Microstructure Machining Experiment

The ultra-precision machining microstructure used in this paper was machined us-
ing a single-point diamond cutting method on a Moore ultra-precision lathe (Nanotech
450 UPL, Moore Nanotechnology Systems, Swanzey, NH, USA). The experimental setup
and machining process are shown in Figure 3. During the SPDT (single-point diamond
turning) process, the workpiece rotates along the C-axis, and the tool feeds along the X-axis
direction. The rotational speed and feed rate are controlled to control the relative motion
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between the tool and the workpiece, thus realizing different machining morphologies. The
machining is divided into three steps. In step 1, the workpiece surface is first turned to
a mirror finish with a tool radius of 1 mm, a cutting depth of 5 µm, a spindle speed of
1500 r/min, and a feed rate of 0.002 mm/min. In step 2, circular micro-grooves are cut on
the obtained mirror surface with a tool radius of 0.1 mm and a cutting depth of 3 µm. In
step 3, linear micro-grooves are cut based on step 2, using a tool radius of 0.1 mm and a
cutting depth of 3 µm.
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Figure 3. (a) Experimental setup; (b) workpiece.

After the microstructure machining is completed, the machined surface is observed
using an optical microscope, and a series of images are taken under the same lighting
conditions. Figure 4 shows the results of microstructure processing. As shown in Figure 4a,
there are small defects such as pits and scratches on the surface after machining. This is
because there are unevenly distributed hard points inside the workpiece material. During
the machining process, the hard points are exposed on the workpiece surface and fall off
at the original position under the action of the tool, causing pits. They can also undergo
tiny plastic deformation due to the action force of the tool, or follow the movement of
the tool to produce scratches on the machined surface. The generated small defects have
randomness in location and morphology, causing local mutations in the ultra-precision
machining microstructure.

Figure 4b shows the depth and grayscale distribution of the ultra-precision machining
microstructure at the A-A and B-B cross-sections. The processing quality of section A-A
is good. The horizontal part of its depth distribution corresponds to the plane, and the
arc part corresponds to the groove. The grayscale distribution exhibits a sudden change
as the surface transitions from flat to grooved, whereas there is no significant mutation in
the groove. On the other hand, the processing quality of the B-B cross-section is poor with
three processing defects present. The depth distribution is roughly similar to that of the
A-A cross-section, whereas the grayscale distribution exhibits three sudden changes in the
groove, corresponding to the positions of the processing defects. This demonstrates that
defects that only have small morphological mutations can have a significant impact on the
grayscale after imaging.
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micro-groove B-B section.

3.2. Micro-Displacement Measurement Experiment

The micro-displacement measurement experimental system is composed of an optical
microscopy imaging system, a micro-displacement control system, and the measured work-
piece. The Leica DM2700 M microscope (Leica Microsystems GmbH, Wetzlar, Germany)
was selected for the optical microscopy imaging system, and its imaging results were
controlled and recorded by a computer at the imaging terminal. The P18.X single-axis
piezoelectric micro-motion positioning stage from COREMORROW (Harbin, China) was
selected for the micro-displacement control system, and the platform was driven by a
computer at the control terminal to move the workpiece by several micrometers to the
specified position, with a closed-loop resolution of 7 nm. The entire experimental system is
shown in Figure 5a.

The objects selected for microscopic imaging are the etched morphology and the ultra-
precision machining microstructure, with the observation position of the ultra-precision
machining microstructure being the intersection of the straight groove and the annular
groove on the workpiece surface, and the observation position of the etching being the
intersection of two perpendicular grooves. The magnification was adjusted to 27.5×, and
the imaging results showed a “cross” shape, as shown in Figure 5b.
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(ii) ultra-precision machining microstructure.

The micro-displacement measurement experiment was divided into two groups: the
reciprocating movement experiment and the unidirectional movement experiment, as
shown in Figure 6. In the reciprocating movement experiment, the initial position of the
object was recorded as (x1, y1). The micro-displacement stage was controlled to move a
small distance, and when it stabilized, the object’s position was recorded as (x2, y2). Then,
the micro-displacement stage was controlled to move in the opposite direction to the initial
position by the same distance, and the position of the object was recorded as (x3, y3). The
experiment was repeated several times. After each movement, the object was optically
imaged. In the unidirectional movement experiment, the initial position of the object was
also recorded as (x1, y1). The micro-displacement stage was controlled to move the same
distance in the same direction each time. After the i-th movement, the position of the object
was recorded as (xi+1, yi+1). By performing image registration on the optical microscopy
images, the pixel movement values, ax and ay, in the x and y directions, respectively, were
obtained. When calculating the distance between the measurement positions (xi, yi) and(

xj, yj
)
, the displacements ∆x and ∆y along the x and y directions, respectively, can be

calculated using the following equations:

∆x =
ax

fx
, ∆y =

ay

fy
(12)

where fx and fy are the conversion coefficients between pixels and actual sizes. The
cumulative displacement recorded in each group of experiments ultimately presents a
straight line passing through the origin. The slope of the line, which is the pixel shift
value of adjacent two displacements, can be obtained using the least squares method. The
conversion coefficient is obtained by dividing the actual displacement value input on the
micro-displacement stage by the slope. The actual displacement ∆ can be calculated using
the Pythagorean theorem, as shown in the following equation:

∆ =
√

∆2
x + ∆2

y (13)
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Figure 6. (a) Schematic diagram of reciprocal movement experiment; (b) schematic diagram of
unidirectional movement experiment.

4. Results and Discussion
4.1. Different Surface Morphologies

Figure 7 shows the three-dimensional pulse function plots obtained by performing
phase correlation calculations on the images captured before and after moving the etched
morphology and ultra-precision machining microstructure by 30 µm, respectively. The
x-axes and y-axes represent the pixel coordinates of the image, and the z-axis represents
the pulse function value. The coordinates corresponding to the maximum value of the
pulse function are the pixel values of the observed object’s translation. Figure 7a shows the
three-dimensional pulse function plot of the etched morphology, and Figure 7b shows the
three-dimensional pulse function plot of the ultra-precision machining microstructure.
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Figure 7. Three−dimensional pulse function of etched morphology and ultra−precision machining
microstructure at each pixel position for calculating a displacement of 30 µm using phase correlation
method. (a) Three−dimensional pulse function of etched morphology; (b) three−dimensional pulse
function of ultra−precision machining microstructure.
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As can be seen from the figures, the peak value of the pulse function for the etched
morphology is less than 0.04, and there is significant fluctuation in a large range around
the peak value. In contrast, the peak value of the pulse function for the ultra-precision
machining microstructure is greater than 0.2, and the fluctuation in the non-peak region
is small. This is because ultra-precision machining microstructures exhibit richer changes
in pixel intensity and distribution after imaging, resulting in the ability to decompose
more frequency and amplitude waves after Fourier transform. As a result, the spectrum
of the microstructure becomes more complex. Therefore, after transformation into a pulse
function, it has a sharp peak, which means that using the phase correlation method to
measure the displacement of the ultra-precision machining microstructure has higher
accuracy than that of the etched morphology.

Figure 8 shows the distribution of the normalized cross-correlation (NCC) values in
the global images obtained by template matching on the images captured before and after
moving the etched morphology and ultra-precision machining microstructure by 30 µm,
respectively. The image captured before moving is used as a global image, and sub-images
from the moved image are captured as template images. Then, all positions in the global
image are transversed to capture sub-images of the same size, matched with the template
image, and the NCC value for each pixel position is calculated. The x and y axes represent
the pixel coordinates of the image, and the z-axis represents the NCC value. A higher NCC
value means that the template image and the matching image have a higher similarity.
Figure 8a shows the distribution of the NCC values in the global image of the etched
morphology, and Figure 8b shows the distribution of the NCC values in the global image of
the ultra-precision machining microstructure.
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Figure 8. The distribution of NCC values in the global image of etched morphology and ultra-
precision machining microstructure at each pixel position for calculating a displacement of 30 µm
using the template-matching method. (a) The distribution of NCC values in the global image of etched
morphology. (b) The distribution of NCC values in the global image of ultra-precision machining
microstructure.

As can be seen from the figures, the maximum NCC values of both the etched mor-
phology and ultra-precision machining microstructure tend to reach 1, which means that
both have high accuracy in measuring displacement using template matching. However,
compared with the ultra-precision machining microstructure, the etched morphology has
relatively high NCC values at nonoptimal matching points, whereas ultra-precision ma-
chining microstructures have smaller NCC values at nonoptimal matching points. This is
because the etched morphology has a certain regional similarity, while the ultra-precision
machining microstructure morphology has a large change, resulting in a larger change in
grayscale distribution after imaging, which has a certain location uniqueness. Therefore, a
larger NCC value of the ultra-precision machining microstructure is only obtained when
the template image is coincident with the matching image. This makes the ultra-precision
machining microstructure more robust in template matching. Due to the non-uniformity of
the light intensity of the light source in both time and space, there may be slight differences
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in the lighting conditions before and after moving the camera. When the lighting conditions
change, the image noise after imaging also changes, resulting in a change in the grayscale
variance of the image. The NCC value at each position fluctuates to a certain extent. The
sharp NCC peaks of ultra-precision machining microstructure images still have higher
accuracy than the etching morphology when the lighting conditions change.

Figure 9 shows the feature-matching results obtained by using the SURF algorithm on
the images captured before and after moving the etched morphology and ultra-precision
machining microstructure by 30 µm, respectively. The extracted feature points and match-
ing results are displayed, where the red circles represent the feature points in the image
before translation, the green crosses represent the feature points in the image after transla-
tion, and the yellow lines represent the matching results. Figure 9a shows the matching
result of the etched morphology, and Figures 8 and 9 show the matching result of the
ultra-precision machining microstructure.
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Figure 9. Feature point extraction of etched morphology and ultra-precision machining microstruc-
ture for calculating a displacement of 30 µm using the SURF algorithm. (a) Feature point matching
result of etched morphology before displacement. (b) Feature point matching result of ultra-precision
machining microstructure before and after displacement.

As can be seen from the images, both effective and ineffective matches exist in the
feature-matching process of the etched morphology and ultra-precision machining mi-
crostructure. This is because the imaging conditions of the observed object may slightly
change before and after translation, resulting in noise in the imaging results and different
feature points extracted before and after the translation. Therefore, the more feature points
extracted, the more effective matches, and the higher the accuracy and precision of the
measurement results. Due to the simple structure of the etched morphology, fewer SURF
feature points can be extracted, whereas the complex morphology of the ultra-precision
machining microstructure results in a larger number of extractable feature points and more
effective matches. Therefore, when measuring displacement using the SURF feature match-
ing method, the accuracy and precision of the ultra-precision machining microstructure are
higher than those of the etched morphology.

During the SURF matching process of the ultra-precision machining microstructure,
many small machining defects are extracted as feature points. This is because after imaging,
the pixel grayscale gradient at the point of the small defect is large, and the determinant
value of the Hessian matrix is large, making it a good feature point. However, due to the
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randomness of the distribution of machining defects, the matching property is poor, and in-
effective matches may occur. Therefore, processing smaller and more regular morphologies
to provide more features for matching is of great significance for our future research.

In summary, the ultra-precision machining microstructure has superior performance
over the etched morphology in measuring displacement using image registration meth-
ods due to its richer morphology features, unique frequency spectrum distribution, and
grayscale distribution. It has higher accuracy and precision, as well as stronger robust-
ness. Therefore, the ultra-precision machining microstructure is superior to the etched
morphology in displacement measurement using image registration methods.

4.2. Different Measurement Algorithms

Figure 10 shows the results of calculating the absolute displacement of ultra-precision
machining microstructure movement using phase correlation, template matching, and
SURF matching methods. The ultra-precision machining microstructure was moved uni-
directionally 30 times, and the displacement of each movement was the same for each
experiment. In Figure 10a, the left y-axis represents the absolute displacement, the right
y-axis represents the measurement error, and the x-axis represents the image sequence.
The blue solid line represents the absolute displacement, the red triangle line represents
the measurement error of the phase correlation method, the yellow square line repre-
sents the measurement error of the SURF algorithm, and the purple diamond line rep-
resents the measurement error of the template-matching method. Figure 10ai–v corre-
spond to the displacement values of 1 µm, 2 µm, 3 µm, 4 µm, and 5 µm, respectively. In
Figure 10b, the results of the three algorithms are compared. The red bar represents the
phase correlation method, the yellow bar represents the SURF algorithm, and the purple
bar represents the template-matching method. The x-axis represents the displacement value
for each experiment. Figure 10bi represents the average measurement error for each experi-
ment, Figure 10bii represents the maximum measurement error for each experiment, and
Figure 10biii represents the time required for each experiment.

The results indicate that when the displacement value for each movement is 1 µm, the
measurement accuracy of the SURF algorithm is lower, and the average and maximum
measurement errors are much larger than the other two algorithms. As the displacement
value for each movement increases, the measurement accuracy of the SURF algorithm
gradually improves. When the displacement value for each movement reaches 5 µm,
the measurement results of the SURF algorithm are significantly better than the other
two algorithms due to the gradually decreasing error caused by incorrect matching with
the increase in displacement value. The measurement errors of the phase correlation
and template-matching methods are relatively stable and not strongly correlated with the
displacement value for each movement.

In terms of measurement time, the size of the absolute displacement has little effect on
the measurement time, and the SURF algorithm shows obvious superiority in measurement
speed, followed by the template-matching algorithm, while the phase correlation method
has the largest calculation amount and the longest measurement time.

When measuring larger displacements, the SURF algorithm shows obvious superiority
over the other two algorithms, with higher measurement accuracy and faster measure-
ment speed. However, when the displacement value for each movement is less than
4 micrometers, considering both measurement accuracy and measurement speed, the
template-matching algorithm is the optimal choice.
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Figure 10. Results of calculating the absolute displacement of ultra−precision machining microstructure
unidirectional movement using phase correlation method, template−matching method, and SURF
feature extraction. (a) Measurement errors at different single displacements: (i) single displacement of
1 µm; (ii) single displacement of 2 µm; (iii) single displacement of 3 µm; (iv) single displacement of 4 µm;
(v) single displacement of 5 µm. (b) Statistical results at different single displacements: (i) maximum
measurement error; (ii) average measurement error; (iii) measurement time.

4.3. Coarse-to-Fine Positioning Method

From Section 4.2, it can be seen that the SURF algorithm has high computational
speed but unstable measurement accuracy, whereas the template-matching algorithm has
a larger computational amount but robust and high accuracy under various conditions.
Therefore, in this section, we propose a method that combines the advantages of both
algorithms. Specifically, the SURF algorithm is used for coarse positioning of the image
to narrow down the search range for template matching and reduce the computational
amount, thus facilitating the subsequent fine positioning using template matching. In
addition, to improve the measurement accuracy, bilinear interpolation is used to process
the image.

Figure 11 shows the results of measuring the relative displacement using coarse
positioning with SURF and fine positioning with template matching on ultra-precision
machining microstructures that moved back and forth the same distance 30 times, with each
movement distance of 25 µm. The absolute displacement between every two movements
is measured and the difference between it and the actual displacement value input in the
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micro-displacement stage is calculated. The x-axis represents the interpolation factor for
bilinear interpolation preprocessing of the image, with the experimental groups with no
interpolation (1× interpolation), 2× interpolation, 4× interpolation, and 6× interpolation.
The group without interpolation is used as a control for coarse measurement using SURF.
The yellow line represents the average measurement error, the blue line represents the
maximum measurement error, and the red line represents the measurement time.

Micromachines 2023, 14, x FOR PEER REVIEW 14 of 16 
 

 

micro-displacement stage is calculated. The x-axis represents the interpolation factor for 
bilinear interpolation preprocessing of the image, with the experimental groups with no 
interpolation (1× interpolation), 2× interpolation, 4× interpolation, and 6× interpolation. 
The group without interpolation is used as a control for coarse measurement using SURF. 
The yellow line represents the average measurement error, the blue line represents the 
maximum measurement error, and the red line represents the measurement time. 

 
Figure 11. Results of measuring relative displacement using SURF coarse positioning and template-
matching fine positioning. 

The results show that both the average and maximum measurement errors decrease 
with increasing interpolation factor, and after 6× interpolation, the average and maximum 
measurement errors are less than 20 nm. When the interpolation factor is greater than 2×, 
the decrease in measurement error becomes less significant, which is due to overfitting 
caused by a too-high interpolation factor, leading to new errors. As the interpolation factor 
increases, the measurement time increases rapidly due to the sharp increase in computa-
tional amount, so it is not advisable to choose a large interpolation factor. When the inter-
polation factor is 4×, the measurement time is less than 70 s, the average measurement 
error is less than 15 nm, the maximum measurement error is less than 20 nm, and the 
repeatability is approximately 54 nm, which can achieve fast and high-precision measure-
ment.  

5. Conclusions 
This paper proposes a novel precision positioning method that combines an ultra-

precision machining microstructure with SURF and template matching to achieve fast and 
high-precision microscopic visual measurement without calibration. The impact of differ-
ent surface morphologies on imaging results is also analyzed, revealing that more com-
plex surface morphologies lead to higher accuracy of image registration due to richer im-
age information and features. Experimental verifications were conducted on ultra-preci-
sion machining microstructures with complex and simple morphologies, comparing three 
commonly used image registration algorithms in terms of the speed and accuracy of mi-
cro-displacement measurement. In addition, the proposed micro measurement method 
based on ultra-precision machining microstructure was experimentally tested, which 
combines SURF, template matching, and image interpolation to achieve fast and high-
precision measurement. When the interpolation factor is four, the repeatability of the 
measurement is 54 nm when measuring a planar displacement of 25 µm. 

This paper mainly considers the measurement of translation degrees of freedom 
without considering the influence of image scaling and rotation on the measurement 

Figure 11. Results of measuring relative displacement using SURF coarse positioning and template-
matching fine positioning.

The results show that both the average and maximum measurement errors decrease
with increasing interpolation factor, and after 6× interpolation, the average and maximum
measurement errors are less than 20 nm. When the interpolation factor is greater than 2×, the
decrease in measurement error becomes less significant, which is due to overfitting caused
by a too-high interpolation factor, leading to new errors. As the interpolation factor increases,
the measurement time increases rapidly due to the sharp increase in computational amount,
so it is not advisable to choose a large interpolation factor. When the interpolation factor is
4×, the measurement time is less than 70 s, the average measurement error is less than 15 nm,
the maximum measurement error is less than 20 nm, and the repeatability is approximately
54 nm, which can achieve fast and high-precision measurement.

5. Conclusions

This paper proposes a novel precision positioning method that combines an ultra-
precision machining microstructure with SURF and template matching to achieve fast and
high-precision microscopic visual measurement without calibration. The impact of different
surface morphologies on imaging results is also analyzed, revealing that more complex
surface morphologies lead to higher accuracy of image registration due to richer image
information and features. Experimental verifications were conducted on ultra-precision
machining microstructures with complex and simple morphologies, comparing three
commonly used image registration algorithms in terms of the speed and accuracy of micro-
displacement measurement. In addition, the proposed micro measurement method based
on ultra-precision machining microstructure was experimentally tested, which combines
SURF, template matching, and image interpolation to achieve fast and high-precision
measurement. When the interpolation factor is four, the repeatability of the measurement
is 54 nm when measuring a planar displacement of 25 µm.

This paper mainly considers the measurement of translation degrees of freedom
without considering the influence of image scaling and rotation on the measurement results.
Further research needs to consider the impact of scale transformation and increase the
measurement of rotational degrees of freedom. In addition, the lighting conditions have a
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significant impact on the imaging process, thus directly affecting the measurement accuracy.
However, this study did not explore the impact of lighting changes on measurement results.
Therefore, further testing of the robustness of this method to lighting conditions is needed
in subsequent research, and in-depth consideration of BRDF is needed to process more
suitable microstructures via imaging mechanisms. Because the method proposed in this
study is currently not suitable for large-scale measurements, its usage has been limited.
In future research, we will propose a method to expand the range based on the current
research results.
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