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Abstract: Silicon photonics has been an area of active research and development. Researchers have
been working on enhancing the integration density and intricacy of silicon photonic circuits. This
involves the development of advanced fabrication techniques and novel designs to enable more
functionalities on a single chip, leading to higher performance and more efficient systems. In this
review, we aim to provide a brief overview of the recent advancements in silicon photonic devices
employed for telecommunication and sensing (biosensing and gas sensing) applications.
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1. Introduction

Silicon (Si) photonics is a groundbreaking technology that merges the fields of Si
microelectronics and photonics to enable the manipulation and transmission of light on a Si
chip. It leverages the exceptional properties of Si, such as its high refractive index and com-
patibility with existing electronic manufacturing processes, to create compact and highly
efficient optical devices. Si photonics has the potential to revolutionize various domains,
including telecommunications, data centers, sensing, and biomedical applications [1–5],
by offering high-speed data transmission, low power use, and integration with electronic
systems. Its ability to seamlessly integrate photonics with Si electronics opens new avenues
for the development of advanced, scalable, and cost-effective solutions for a wide range
of applications.

Si, the second most abundant element on Earth after oxygen, possesses exceptional
qualities that make it highly suitable for various applications. Its simple cubic crystal
structure allows production of defect-free wafers with remarkable purity. Additionally,
Si’s thermal conductivity, hardness, and low density are advantageous in semiconductor
devices. At a specific wavelength, Si demonstrates a high refractive index and remains
transparent to infrared light. The high refractive index of Si allows the miniaturization
of devices to incredibly small scales. Moreover, the well-established techniques used in
semiconductor processing can be easily applied to Si photonics, enabling cost-effective
mass production. Another advantage of Si is its high-quality native oxide, which offers
superior characteristics compared with other semiconductors. The oxide serves as an
excellent material for Si waveguide (WG) cladding and can host rare-earth dopants for inte-
grated circuits. By controlling the oxide cladding layer, it becomes possible to manipulate
light propagation within Si WGs. These properties collectively position Si photonics as a
promising solution for integrating photonic circuits.

Si photonics integrated circuits rely on key components to manipulate and control
light signals. WGs guide light through total internal reflection, whereas modulators alter
light intensity or phase. Photodetectors convert optical signals to electrical ones, and
filters selectively transmit specific wavelengths [6,7]. Splitters and couplers distribute and
combine signals, and optical amplifiers enhance weak signals. These building blocks enable
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applications in optical communication, data centers, sensing, and biomedical imaging,
propelling advancements in photonics technology [8].

Researchers have made substantial progress in increasing the sensitivity and limit of
detection (LoD) of Si photonic sensors. By enhancing the design of WGs and resonators
and incorporating advanced materials, these sensors can now detect even smaller quan-
tities of substances, making them suitable for a wider range of applications, including
environmental monitoring, healthcare, and security. The integration of sensors on a single
Si chip offers numerous benefits, including reduced size, increased portability, and cost-
effectiveness. The ability to combine multiple sensors on a single chip allows for compact
and robust sensing platforms that can be easily mass-produced. Moreover, advancements
in fabrication techniques, such as nanofabrication and complementary metal oxide semi-
conductor (CMOS)-compatible processes, have enabled the cost-effective mass production
of Si photonic sensors [9]. This scalability has opened new opportunities for commercial
applications and broader adoption of the technology.

Although Si photonics offers numerous advantages, it is worth noting that other
optical platforms, such as indium phosphide (InP) [10], gallium arsenide (GaAs) [11],
lithium niobate (LiNbO3) [12,13], and rubidium titanyl phosphate (RTP) [14,15], also have
their own unique strengths and are preferred for certain specialized applications. The choice
of platform depends on factors such as performance requirements, cost considerations, and
the specific needs of the application at hand. For more detailed information on optical
platforms and fabrication methods, we recommend readers to see [16].

Si photonics remains an evolving field, continuously pushing the boundaries of optical
technology. Several review papers have delved into the diverse facets of Si photonics,
shedding light on its current state and prospects [17–19]. In this review, we delve into the
early research efforts and provide an overview of the significant advancements in the field
of Si photonics. We emphasize the critical breakthroughs that have shaped the development
of this technology. Furthermore, we explore the diverse range of applications (as shown
in Figure 1) that leverage Si photonics, showcasing its versatility and potential impact in
various fields.
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2. History

Since the 1970s, researchers have envisioned an optical super chip with integrated
optical components [20]. Early studies focused on ferroelectric materials such as lithium
niobate (LiNbO3) and III-V semiconductors such as gallium arsenide (GaAs) and indium
phosphide (InP). LiNbO3 stood out for its significant electrooptic coefficient, enabling
optical modulation through the Pockels effect. Meanwhile, the III-V compounds offered
advantages in terms of laser fabrication, optical amplification, and electronic integration.
Si’s widespread use as the preferred semiconductor in electronics prompted researchers to
explore the possibilities of Si photonic circuits. This was mainly driven by the potential
benefits of integrating photonics and electronics cost effectively. Si has a high refractive
index compared with other common materials used in photonics. This property allows
for strong light confinement and efficient light guiding within Si WGs and resonators.
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Consequently, Si photonic components can be designed on a small scale due to the strong
confinement of light within Si WGs. This compactness is especially advantageous for
on-chip integration and the creation of complex optical circuits. The investigation of Si
photonic circuits started in the mid-1980s and has been ongoing since then. A signifi-
cant volume of research has been conducted on various materials such as SiON [21–27],
Si3N4 [28–30], SiGe [31–34], SiO2 [35–37], and SiC [38–40]. These materials have been
explored concerning their compatibility with standard CMOS technology. Si dominates as
the primary semiconductor material for electronics due to its affordability, well-understood
properties, and optical confinement capabilities. However, its indirect bandgap limits its
effectiveness as a light-emitting material. Researchers have thus sought ways to modify
Si’s structure for light emission [41].

Additional efforts were undertaken to define a completely integrated monolithic
optoelectronic super chip for Si hybrid integration. This idea was later modified to introduce
a hybrid device that relied on a Si platform, incorporating Si optical WGs [42] as depicted
in Figure 2.
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3. CMOS Fabrication

CMOS is a semiconductor technology commonly used in electronic devices and in-
tegrated circuits and is crucial for Si photonics, enabling the integration of photonic and
electronic elements on a single Si chip. CMOS technology is widely adopted for its energy
efficiency, scalability, and versatility, making it a fundamental component in the design
and manufacture of modern electronics [16]. Photolithography, using optical or extreme
ultraviolet (EUV) light, transfers patterns onto a Si wafer coated with photosensitive mate-
rial. Ultraviolet lithography (UVL) represents a distinct form of photolithography wherein
UV light serves as the exposure source [43]. This technique finds extensive application in
semiconductor manufacturing and various industries to produce patterns on a substrate.
The utilization of UV light with its shorter wavelength enhances resolution and facilitates
the creation of smaller, complex devices [44]. Nonetheless, UVL demands meticulous atten-
tion and specialized equipment due to its distinctive properties. Electron beam lithography
(EBL) is a potent nanofabrication technique that achieves extremely high-resolution pat-
terns in nanometers, enabling precise nanostructures and devices [45]. Though versatile, it
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is relatively slow and expensive compared with other lithography methods due to the time-
consuming electron beam scanning process [46]. Nanoimprint lithography (NIL) offers a
cost-effective alternative [47] to high-resolution lithography techniques such as EBL. It en-
ables high-throughput production by processing large substrate areas simultaneously [48].
Additionally, unlike EBL, NIL does not necessitate complex and expensive equipment.

Reactive ion etching (RIE) [49,50] and chemical wet etching [51,52] are common tech-
niques in microfabrication and semiconductor manufacturing. They offer selective material
removal from a substrate for pattern creation. Chemical wet etching suits simple and
large-area patterning, whereas RIE is better for high-resolution and anisotropic etching [53].

The combination of CMOS technology with various lithography and etching tech-
niques enables the creation of complex and high-performance photonics devices that drive
technological advancements in a wide range of industries. As technology continues to
evolve, further innovations in CMOS and lithography techniques will likely contribute to
even more exciting developments in the field of photonics and beyond.

4. Recent Advances in Si Photonics for Telecommunication

Recent progresses in Si photonics have greatly impacted the field of telecommuni-
cations. It combines the advantages of Si-based electronic circuits with the speed and
bandwidth of optical communications, enabling the development of highly efficient and
scalable optical devices [54,55]. By integrating optical components such as modulators, de-
tectors, and WGs directly onto a Si chip, Si photonics allows for the seamless integration of
optical and electronic functionalities. This technology enables high-speed data transmission
over long distances, facilitates the growth of data-intensive applications, and provides a
pathway for the development of compact, low-cost, and energy-efficient telecommunication
systems. Its compatibility with existing Si manufacturing processes makes it an attractive
solution for driving the next generation of communication networks, data centers, and
high-performance computing infrastructures [56]. In the following sections, we discuss
various technologies and applications associated with Si photonics.

4.1. Si-Based Modulators

In recent times, there has been a remarkable advancement in the efficiency of Si
optical modulators, which corresponds to substantial research endeavors conducted by
academic institutions and businesses on a global scale [57]. The objective behind enhancing
the performance of optical modulators in Si is evident. These modulators play a pivotal
role in most photonics systems used in data communication applications. By utilizing
Si photonics as a cost-effective foundation for constructing these systems, optical-based
communication becomes a viable option for numerous short-distance connections. Over the
years, numerous methods have been explored to achieve modulation in Si by integrating
it with emerging optical materials such as graphene [58–61]. Chip-scale modulation is an
area of great interest, particularly concerning silicon-on-insulator (SOI) modulators [19].

Si modulators employ the phenomenon known as free-carrier plasma dispersion.
In the context of Si photonics devices, implanted dopants are used to achieve optical
modulation in terms of phase and amplitude. This modulation is accomplished by inducing
changes in the complex refractive index of a material containing an excess of either electrons
or holes, which is wavelength dependent. Consequently, by manipulating the concentration
of free carriers within a WG [62], it becomes possible to modulate the phase and amplitude
of the light propagating through it.

Si modulators can be integrated with CMOS technology, which is widely used in
the semiconductor industry. This integration enables the creation of photonic integrated
circuits that combine both electronic and photonic components on the same chip. This
compatibility allows for cost-effective mass production and easy integration with existing
electronic systems. These modulators can be fabricated on a small scale, enabling the
creation of compact devices and circuits. This compactness is especially valuable for
applications where space is limited, such as in data centers, optical interconnects, and
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portable devices. Moreover, Si modulators are capable of achieving high modulation
speeds, making them suitable for high-speed optical communication systems. They can
operate at data rates exceeding tens of gigabits per second and are continuously being
optimized for even higher speeds [63].

However, Si modulators can exhibit nonlinear behavior, which can lead to signal
distortion and the generation of unwanted harmonics. This can limit their performance in
high-speed and high-power applications. The operation of Si modulators often involves
changing the refractive index of the Si material using electrical signals. This can lead to
heat generation, which can induce thermal effects and affect the modulator’s performance
and stability [64]. Additionally, the modulation bandwidth of Si modulators can be limited
by various factors, including the carrier lifetime and the device’s physical dimensions. This
can restrict their performance in applications requiring high data rates.

Multiple studies have documented the use of modulators based on Mach–Zehnder
interferometric (MZI) designs [65–72]. A comprehensive study of an on-chip optical modu-
lator utilizing a non-conventional Si-based platform is proposed [73]. The platform is based
on the optimum design of an ultra-thin Si-on-insulator (SOI) WG, which exhibits low field
confinement within the core WG and high sensitivity to the cladding index. Impressive
results were obtained, with an extinction ratio (ER) exceeding 20 dB and an energy per bit of
13.21 fJ/bit for an applied voltage of 0.5 V [73]. The platform’s performance for modulation
applications was found to be promising and adequate, with the added advantages of cost
effectiveness and ease of fabrication. Researchers, in 2007, introduced ultra-compact Si p+-
i-n+ diode Mach–Zehnder electro-optic modulators measuring 100 to 200 µm in length [68].
The active WG structure’s cross-sectional scanning electron microscope (SEM) image is
presented in Figure 3a. The performance of these modulators was noteworthy, showcasing
remarkable modulation efficiency. Specifically, the Vπ·L figure of merit was determined
to be 0.36 V-mm. The experiment successfully demonstrated optical modulation at data
rates reaching 10 Gb/s while consuming minimal RF power, with an energy consumption
of merely 5 pJ/bit [68].

Micromachines 2023, 14, 1637 6 of 33 
 

 

 
Figure 3. (a) Cross-sectional SEM image of the SOI p+-i-n+ diode nanophotonic rib WG [68]. (b) 
Schematic representation of proposed MZI device for all-optical modulation [74]. 

Another popular type of modulator relies on ring resonators (RRs), which are actively 
being researched by scientists [75–79]. These modulators effectively manipulate light 
signals by leveraging the unique properties of RRs. They offer versatility and are widely 
utilized in photonics for various communication and scientific purposes as researchers 
continue to explore their potential applications [80–87]. A high-speed Si modulator based 
on cascaded double µ-RRs is explained in a study conducted by the authors of [88]. In 
Figure 4a, a top view of a microscopic picture is presented, showcasing the fabricated 
cascaded micro-ring modulator and a schematic 3D view of the interleaved PN junctions. 
The modulator achieved a modulation rate of 40 Gbit/s, with an ER of 3.9 dB [88]. To 
enhance the modulator’s performance, the researchers utilized a cascaded double-ring 
structure that enabled an ultra-high optical bandwidth of 0.41 nm, equivalent to 51 GHz 
[88]. In another study conducted by researchers [89], the generation of an optical comb 
consisting of frequency lines with extremely constant power was reported. The change in 
power among the frequency lines was less than 0.7 dB [89]. To achieve this, a Si RR 
modulator was employed. The fabrication of this structure took place on the SOI platform, 
utilizing processes that are compatible with CMOS technology. Figure 4b presents a top-
down view micrograph of the ring, demonstrating its structure. Additionally, a diagram 
outlines the doped sections of the WG in a cross-sectional representation [89]. To establish 
connectivity with the device, grating couplers were employed, as illustrated in the 
micrograph. These couplers were intentionally designed to exclusively guide the TE mode 
within the C-band, where the mode’s primary axis aligns with the x-direction in Figure 
4c. To facilitate the transmission and capture of light, two PM fibers were positioned at an 
11° angle relative to the chip’s surface normal and precisely aligned with the grating 
couplers, as illustrated in Figure 4d. In this work, researchers characterized the ring’s 
complex transfer function and generated five frequency tones with a 10 GHz spacing 
using a dual-frequency electrical input at 10 and 20 GHz [89]. The optimal operation was 
observed at a small forward-bias voltage, as indicated by a comparison of comb shapes. 
Time domain measurements confirmed highly coherent comb signals, producing 20.3 ps-
long pulses [89]. In Table 1, a comprehensive analysis is provided, showcasing the 
performance of different Si-based modulators that feature diverse structures. 

Figure 3. (a) Cross-sectional SEM image of the SOI p+-i-n+ diode nanophotonic rib WG [68].
(b) Schematic representation of proposed MZI device for all-optical modulation [74].

Another study proposed and investigated a nonlinear porous Si-based all-optical
modulator using an asymmetrical MZI design [74]. The MZI comprised two couplers
with an identical splitting ratio and two unbalanced arms. In this configuration, a porous
Si (PS) WG is placed in only one arm of the MZI, whereas the other arm functions as a
short fiber delay line, as shown in Figure 3b. The authors conducted experiments where a
pulsed pump and a continuous probe wave were at the same time launched into the input
port. The results indicated that the device achieved an outcome signal with approximately
14.10 dB modulation depth at the probe wavelength. The experimental conditions include
an initial pulsed pump with a peak of 47.07 dB m, an extinction ratio of 10.88, and a
duration of 100 ps. The continuous probe wave has a power of 0 dB m, and the PS WG is
3 mm long [74].
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Another popular type of modulator relies on ring resonators (RRs), which are actively
being researched by scientists [75–79]. These modulators effectively manipulate light
signals by leveraging the unique properties of RRs. They offer versatility and are widely
utilized in photonics for various communication and scientific purposes as researchers
continue to explore their potential applications [80–87]. A high-speed Si modulator based
on cascaded double µ-RRs is explained in a study conducted by the authors of [88]. In
Figure 4a, a top view of a microscopic picture is presented, showcasing the fabricated
cascaded micro-ring modulator and a schematic 3D view of the interleaved PN junctions.
The modulator achieved a modulation rate of 40 Gbit/s, with an ER of 3.9 dB [88]. To
enhance the modulator’s performance, the researchers utilized a cascaded double-ring
structure that enabled an ultra-high optical bandwidth of 0.41 nm, equivalent to 51 GHz [88].
In another study conducted by researchers [89], the generation of an optical comb consisting
of frequency lines with extremely constant power was reported. The change in power
among the frequency lines was less than 0.7 dB [89]. To achieve this, a Si RR modulator
was employed. The fabrication of this structure took place on the SOI platform, utilizing
processes that are compatible with CMOS technology. Figure 4b presents a top-down view
micrograph of the ring, demonstrating its structure. Additionally, a diagram outlines the
doped sections of the WG in a cross-sectional representation [89]. To establish connectivity
with the device, grating couplers were employed, as illustrated in the micrograph. These
couplers were intentionally designed to exclusively guide the TE mode within the C-band,
where the mode’s primary axis aligns with the x-direction in Figure 4c. To facilitate the
transmission and capture of light, two PM fibers were positioned at an 11◦ angle relative to
the chip’s surface normal and precisely aligned with the grating couplers, as illustrated in
Figure 4d. In this work, researchers characterized the ring’s complex transfer function and
generated five frequency tones with a 10 GHz spacing using a dual-frequency electrical
input at 10 and 20 GHz [89]. The optimal operation was observed at a small forward-
bias voltage, as indicated by a comparison of comb shapes. Time domain measurements
confirmed highly coherent comb signals, producing 20.3 ps-long pulses [89]. In Table 1,
a comprehensive analysis is provided, showcasing the performance of different Si-based
modulators that feature diverse structures.
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Table 1. Performance analysis of Si-based modulators employing MZI and ring structures.

Modulation Principle Structure Ebit (fJ/bit) ER (dB) References

Electro-refractive MZI 13.21 20.36 [73]

Electro-optic MZI 30.18 - [71]

Electro-optic MZI - 30 [72]

Electro-optic MZI 30 - [70]

Carrier-depletion Ring - 3.9 [88]

Carrier-depletion Ring 50 6.5 [87]

Carrier-injection Ring 120 7 [79]

Carrier-depletion Ring 680 8 [81]

Carrier-depletion Ring - >10 [83]

4.2. Wavelength Division Multiplexing (WDM) Systems

The rapid growth of capacity demand in various interconnected systems, such as
massively parallelized systems, intra-data-center networks, and wider communication
networks, necessitates an urgent need to enhance the density of transceiver capacity [90].
Consequently, increasing the number of wavelength-division multiplexing (WDM) chan-
nels emerges as one of the most effective approaches to address this issue. Research and
development in the field of WDM on Si photonics-integrated circuits (PICs) began nearly
twenty years ago, marking the beginning of significant advancements in this area. Since
then, the progress and activity in this field have remained consistently high and continue
to be active even today [91–107]. The rise of photonic integration technology has led
to a notable interest in two prominent components: arrayed WG gratings (AWGs) and
micro-ring-based filters. The footprint of a Si AWG is significantly reduced thanks to the
substantial index contrast between its Si core and oxide cladding. This contrast allows for
efficient light confinement and manipulation within the device. Moreover, the fabrication
process of Si AWGs is compatible with well-established CMOS technology, which not only
facilitates the integration of AWGs with other functional devices but also leads to cost
reductions. This compatibility enables large-scale production of integrated systems, provid-
ing a cost-effective solution for various applications. In a study conducted by researchers
in [108], a module comprising a modulator utilizing five channels for wavelength-division
multiplexing was introduced. The design of this module can be observed in Figure 5a.
This module featured the integration of a Si AWG multiplexer with a channel spacing
of 200 GHz and an array of electro-absorption modulators capable of achieving a data
rate of 20 Gbps [108]. The results demonstrated the module’s promising capability to sup-
port transmission capacities of up to 100 Gbps, all within a compact footprint measuring
1.5 × 0.5 mm2 [108].

The SOI platform emerged as a highly promising avenue for realizing optical transceivers.
Nevertheless, a notable drawback of the SOI platform pertained to the relatively elevated
thermo-optic (TO) coefficient of Si, leading to a significant spectral response drift of ap-
proximately 90 (pm/◦K) within the C-band range. This level of drift posed a considerable
challenge for various applications, prompting the exploration of numerous strategies to
mitigate this issue.

In their groundbreaking study, researchers introduced an innovative advancement
in wavelength filters that exhibited significantly reduced sensitivity to thermal fluctua-
tions [109]. This achievement marked the first instance of such wavelength filters, which
were engineered by combining crystalline Si and hydrogenated amorphous Si (a-Si:H) WGs.
The integration of these WGs took place on a common SOI substrate, facilitated by a process
flow compatible with CMOS technology. To validate the efficacy of their novel concept, the
team meticulously designed and manufactured MZIs and AWGs utilizing this pioneering
approach. Subsequently, precise measurements were conducted to evaluate the impact of
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temperature variations. The results demonstrated an impressively minimal thermal drift,
specifically measuring less than 1 (pm/◦K) for MZIs and under 10 (pm/◦K) for AWGs
within the C band range [109]. This achievement not only showcases the practical viability
of the proposed wavelength filters but also underscores the potential for enhanced stability
in photonic applications.

Researchers have successfully demonstrated a thermally tunable add/drop filter
using a long-period grating configuration that combines Si and TiO2 WGs [110]. The
implementation of an apodized grating between the WGs achieved a high SLSR of 25.7 dB.
Despite a short LPWG length of 800 µm, a narrow bandwidth of 1.4 nm was achieved due to
significant group index differences between the silicon and TiO2 WGs. The distinct thermal
coefficients of Si and TiO2 contributed to a 25-fold increase in the thermal dependence
of the modes. A thermal tuning efficiency of 0.07 nm/mW was achieved using a thin
TiN metallic heater. Additionally, cascading two LPWGs demonstrated a channel spacing
of 185 GHz with low power consumption [110]. This development holds promise for
DWDM applications.

The demand for optical cross-connects and reconfigurable optical add-drop multiplex-
ers requires switches characterized by attributes such as affordability, energy efficiency,
and swift sub-millisecond switching speeds. Addressing these requirements, Si emerged
as a promising technology due to its capacity to integrate optical components with elec-
tronic control circuitry, enabling the development of diverse photonic devices, including
switches [111–113]. In their study [114], researchers presented the design of a 2 × 2 switch-
ing cell, employing a thermo-optic interferometric setup with a critical component, a
sub-wavelength grating. The switching cell demonstrated notable characteristics, including
an extinction ratio of approximately 13 dB, insertion loss below 2 dB, and crosstalk of
12 dB across a 150 nm bandwidth. Impressively, all of this was accomplished within a
remarkably compact footprint of 240 µm × 9 µm [114]. The potential application of this
design in flexible telecommunication satellite payloads was showcased by employing the
switching cell as a fundamental unit in an 8 × 8 dilated Banyan matrix. This configuration
demonstrated impressive attributes such as a broad bandwidth (150 nm), minimal crosstalk
(−38 dB), a compact footprint of around 1620 µm × 576 µm, and a relatively low power
consumption at 276 mW [114]. In other work, researchers successfully demonstrated a
4 × 4 fully non-blocking crossbar switch fabric by utilizing interferometric thermal phase
shifters [115]. These phase shifters employed resistive elements placed around Si WGs to
achieve controlled heating. A resulting switching time of 5 µs was recorded while demon-
strating energy efficiency, with a power consumption of 41 mW per individual switching
element [115].

In the realm of on-chip WDM optical interconnects, Si µ-RRs exhibit remarkable
capabilities as wavelength filters, offering significant benefits in terms of their ultra-compact
footprint and extraordinary energy efficiency. However, it is important to note that the
resonant wavelength of Si-µ-RRs is highly sensitive to both temperature variations and
variations in the fabrication process [116,117]. These factors can introduce challenges when
it comes to maintaining precise control over the resonant wavelength of the Si-µ-RRs. In a
notable advancement, a recent experimental study [118], demonstrated gate-tuning on-chip
WDM filters for the first time. The study achieved a substantial wavelength exposure across
the entire channel spacing using a Si-µ-RR array (as shown in Figure 5b) that was controlled
by high-mobility titanium-doped indium oxide (ITiO) gates [118]. The integrated Si-µ-RRs
exhibited an unprecedented level of wavelength tunability, reaching up to 589 pm/V or
VπL of 0.050 V cm while maintaining a high-quality factor of 5200 [118].
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4.3. Photodetectors

In the realm of optical interconnect technology, the photodetector (PD) stands as a
vital component responsible for converting optical signals into electrical ones. As the
demand for high-capacity optical interconnect systems continues to surge, the need for
high-speed PDs becomes increasingly prominent. To meet this demand, researchers have
made significant strides in developing high-performance PDs using diverse absorption
materials and innovative structures on the Si photonics platform. Notable examples include
germanium (Ge) PDs [119–121], germanium tin (GeSn) PDs [122–125], heterogeneous
integrated III–V PDs [3,126,127], all-Si (Si) PDs [128,129], etc. The significance of these
advancements lies in their ability to facilitate efficient and reliable communication in
systems that demand large data transmission capacities. High-speed PDs play a crucial role
in capturing optical signals and converting them into electrical form, enabling seamless
data transfer between optical and electronic domains. As the demand for faster and more
efficient communication continues to grow, the development of high-speed PDs will remain
a focal point of research and innovation in the field of optical interconnect.

The fabrication process of the Ge PD involves the selective growth of a Ge film onto a
Si substrate. The point of this fabrication technique is to exploit the desirable characteristics
of both materials. Ge is renowned for its excellent optical properties, particularly in the
infrared wavelength range, which makes it highly suitable for photodetection applications.
On the other hand, Si is widely recognized as a semiconductor material with superior
electronic properties. In 2007, researchers presented a Ge p-i-n PD that was seamlessly
incorporated into SiON and Si3N4 WGs [130]. They ensured that all the procedures and
substances employed were compatible with CMOS technology and could be readily in-
corporated into the existing integrated circuit process technology. In later work [120],
high-speed Ge p-i-n PDs for vertical incidence were introduced, featuring remarkable
responsivity, and grown using reduced pressure chemical vapor deposition (CVD) [120].
The authors of [131] presented a demonstration of 100 Gbps Si-contacted Ge WG p-i-n PDs
that were successfully integrated on IMEC’s Si photonics platform. In another study [132],
Ge WG PDs were created on SOI substrates using selective epitaxial growth. These PDs
had a width of 4 µm and were fabricated with different lengths.

In a previous study [133], researchers integrated a compact pin Ge photodetector into
a submicron SOI rib WG. They achieved a remarkable reduction in the detector length,
which was brought down to 15 µm through a butt-coupling configuration. The schematic
representations of the integration of the WG Ge PD and the cross section of the pin diode
are shown in Figure 6a,b, respectively. This size reduction allowed the detector to efficiently
absorb light at the specific wavelength of 1.55 µm [133]. When subjected to a 4 V reverse
bias, the photodetector exhibited a −3 dB bandwidth of 42 GHz. Moreover, it demonstrated
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an impressive responsivity of 1 A/W at a wavelength of 1.55 µm, coupled with a low dark
current density of 60 mA/cm2. Under a −0.5 V bias and at a slightly shorter wavelength of
1.52 µm, the photodetector still maintained a responsivity of 1 A/W [133]. In photonics-
integrated circuits, the input of a regular Ge PD consisted of a single-mode Si WG, and
the optical connection between the input WG and PD is linked using a tapered Si WG.
Notably, a novel design featuring a multi-mode WG input PD was introduced [134]. This
innovative approach allowed for the retention of high-order modes from the output end
of the MM-WDMs, thereby ensuring the complete transmission of light to the detector.
Figure 6c illustrates the cross-sectional architecture of the vertical N-I-P photodetector,
whereas Figure 6d displays an SEM image of the manufactured device [134]. The fabricated
devices exhibited low dark current (10 nA at −1 V) and high responsivity (>0.75 A/W
from 1270 to 1350 nm). They showed a 23 GHz optoelectrical bandwidth at −3 V bias
and achieved a clear 50 Gb/s eye diagram with NRZ modulation [134]. These results
highlight the devices’ excellent performance for photodetection and high-speed optical
communication.
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Despite its recent successes, the Ge PD is not suitable for extended wavelength detec-
tion, such as the L band or >2000 nm, due to the rapid drop in Ge’s absorption curve beyond
1610 nm. To address this limitation, adding Sn to Ge to create a GeSn alloy is proposed
as an alternative solution [122–125]. Increasing the Sn concentration decreases the direct
bandgap of GeSn, resulting in an extended absorption cut-off wavelength. According
to [135], researchers successfully showcased the effectiveness of a Si surface passivation
technique that was compatible with CMOS technology. The initial experimental valida-
tion of a germanium–tin (GeSn) lateral p-i-n PD on a unique GeSn-on-insulator (GeSnOI)
substrate was reported [136]. They achieved a cutoff detection beyond 2000 nm, with a
responsivity of 0.016 A/W at the wavelength of 2004 nm [136].

In a successful demonstration [137], researchers implemented a GeSn photodetector
on an SOI substrate for 2 µm wavelength applications. The 3D schematic of the normally
illuminated p-i-n PD is depicted in Figure 7a, whereas Figure 7b presents the top-view
SEM image of the device, featuring a mesa with a diameter of 10 µm [137]. The device
exhibited a low dark current of approximately 125 mA/cm2 at room temperature under a
reverse bias of −1 V. It also achieved an impressive optical responsivity of 14 mA/W for a
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2000 nm illumination wavelength under the same bias conditions. Furthermore, the PD
demonstrated a remarkable 3 dB bandwidth of around 30 GHz at −3 V [137]. A recent study
demonstrated CMOS-compatible GeSn WG photodetectors (WGPDs) with a vertical p-i-n
heterojunction design for operation in the 2000 nm wavelength band [138]. The schematic
representation of the fabricated device is shown in Figure 7c, whereas an SEM image of the
fabricated device is presented in Figure 7d. By incorporating 5.28% Sn into the GeSn active
layer, the photodetection range was redshifted to 2090 nm, whereas the proposed GeSn
WGPD exhibited improved light–matter interaction and optical confinement. This resulted
in a responsivity of up to 0.52 A W−1 at room temperature within the 2000 nm wavelength
band [138].
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Over an extended duration, there has been extensive research on III-V PDs that exhibit
exceptional performance. When compared with group IV PDs, III-V PDs demonstrate lower
dark current density, allowing for improved efficiency. Furthermore, they offer wavelength
tunability by employing bandgap engineering techniques, enabling the detection of a wide
range of light wavelengths. Additionally, III-V PDs can achieve ultrahigh-speed operation,
making them highly desirable for applications requiring rapid data processing and commu-
nication. In recent years, numerous instances have showcased the successful combination
of III–V PDs with Si, employing diverse integration techniques. These methods encompass
direct growth [126,139,140], wafer bonding [3,141], and transfer printing [127,142]. Each
approach offers a distinct approach to the heterogenous integration of III–V PDs onto Si,
resulting in significant advancements in this field. Top-illuminated PIN and modified
uni-travelling carrier (MUTC) photodiodes were grown epitaxially on Si templates using
InGaAs/InAlAs/InP as the material composition [143]. In this study, the achieved dark
currents of the photodiodes were as low as 10 nA at 3 V, which corresponds to a low dark
current density of only 0.8 mA/cm2. The responsivity of the photodiodes was reported
to be 0.79 A/W, whereas the 3 dB bandwidth reached 9 GHz [143]. As we have already
discussed, GeSn PDs extend the wavelength range of Ge PDs but face low responsivity
due to lower absorption coefficients at longer wavelengths. In contrast, III–V PDs have no
such limitation and easily achieve high responsivity in the short-wavelength or middle-
wavelength infrared regimes. The researchers in [144], focused on the combination of
InP-based type-II quantum well photodiodes on Si PICs for the range of 2 µm wavelength.
In this research, the authors successfully demonstrated a responsivity of 1.2 A/W at a
wavelength of 2.32 µm. The photodiodes exhibited a dark current of 12 nA at a bias
voltage of −0.5 V at room temperature [144]. Comparing the transfer printed method to
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the direct growth method for PD production, the transfer printing approach offers the
advantages of lower dark current and reduced process complexity. These benefits improve
sensitivity and streamline manufacturing, making it an appealing choice for photodetector
production. In a study [127], the authors proposed and demonstrated the integration of
metal–semiconductor–metal (MSM) PDs based on transfer printing for use in photonic
interposers. The PDs were GaAs based and operated at a wavelength of 850 nm. The
larger PD exhibited a dark current of 22 nA at a bias of 2 V, whereas the smaller PD had
a dark current of 7.2 nA under the same bias conditions [127]. At 2 V bias, the external
responsivities for the 850 nm wavelength were measured as 0.117 A/W for the larger PD
and 0.1 A/W for the smaller PD [127]. Additionally, the PDs reached a bandwidth of
20 GHz, and open-eye diagrams at a data rate of 40 Gb/s were successfully obtained [127].

All-Si PDs refer to all-Si photodetectors, which are a specific category of high-speed
PDs developed within the field of Si photonics. These PDs are designed and fabricated using
Si-based materials and have proven to be capable of operating at high speeds. Over time,
researchers have demonstrated various types of all-Si PDs [128,129,145–147], showcasing
the versatility and potential of this technology. The authors of study [148] reported a
sub-bandgap linear-absorption-based photodetector operating in avalanche mode at a
wavelength of 1550 nm. This photodetector was realized by integrating a PN diode into a
Si µ-RR [148].

In another study [149], the authors suggested and operated active resonance wave-
length stabilization for Si µ-RRs. This was achieved by utilizing an in-resonator defect-
state-absorption (DSA)-based PD specifically designed for optical interconnects [149]. The
researchers conducted a demonstration of a CMOS-compatible PD based on all-Si WGs,
achieving a measured speed exceeding 35 GHz [150]. The device configurations are illus-
trated in Figure 8a–c. To create the device, Si ions were inserted into an intrinsic Si ridge
WG, which was then subjected to annealing. This PD exhibited operational capabilities
within the wavelength range of 1100 to 1750 nm, with internal responsivity varying from 0.5
to 10 A/W under different bias voltages [150]. With the assistance of a cavity enhancement
effect, numerous photodiodes in the past demonstrated significantly high responsivity at
telecommunication wavelengths, specifically at 1310 nm. However, the underlying mech-
anisms that contribute to such heightened responsivity have yet to be fully understood.
In a recent study [151], the researchers systematically investigated an all-Si micro-ring as
a photodiode to unravel the diverse absorption processes involved [151]. The schematic
representation of the all-Si MRR APD is shown in Figure 8d [151]. At a bias voltage of
−6.4 V, the micro-ring exhibited a responsivity of approximately 0.53 A/W, accompanied
by avalanche gain. The device further showcased a 3 dB bandwidth of around 25.5 GHz
and produced open-eye diagrams with a transmission rate of up to 100 Gb/s, as shown
in Figure 8e,f [151]. Table 2 provides a detailed and comprehensive analysis, offering a
thorough comparison and summary of the performance of different optical photodetectors.

Table 2. Performance Comparison and Summary of Different Optical Photodetectors.

Material WL
(nm)

Dark
Current

(nA)

Dark Current
Density

(mA/cm2)

Responsivity
(A/W)

BW
(GHz)

Speed
(Gbps) Refs

Ge 1550 35 - 0.81 75 64 [119]

Ge 1550 42 18.5 0.47 36 40 [120]

Ge 1550 1 5 0.82 29 50 [124]

GeSn 1887 - 73 0.017 - - [131]

GeSn 2000 0.0014 - 0.016 - - [132]

GeSn 2000 - 125 0.014 30 - [133]

InGaAs/InAlAs/InP 1550 10 0.8 0.79 9 - [141]
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Table 2. Cont.

Material WL
(nm)

Dark
Current

(nA)

Dark Current
Density

(mA/cm2)

Responsivity
(A/W)

BW
(GHz)

Speed
(Gbps) Refs

InP/InGaAs 1550 0.55 - 0.3 >40 40 [137]

All Si 1550 - - 0.0728 ~7 15 [148]

All Si 1550 - - 0.0033 - 30 [149]

All Si 1310 - - 0.53 25.5 100 [151]
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Figure 8. (a) Cross-sectional schematic of a Si WG detector, (b) cross-sectional schematic WG segment
of the Si WG detector, (c) top view micrograph of Si photodetector [150], (d) schematic diagram of
all-Si MRR APD, (e) eye diagrams of 80 Gb/s NRZ, and (f) 100 Gb/s PAM4 modulations [151].

5. Si Photonics Sensors

Si photonic sensors have gained significant attention and interest in both gas sensing
and biosensing applications due to their exclusive advantages, such as high sensitivity,
miniaturization capabilities, and potential for integration with existing Si-based electronic
systems [152]. In this section, we reviewed recent advancements in Si photonic sensors
employed in biosensing and gas-sensing applications.

5.1. Si Photonics in Biosensing

Technological progress has brought about the convergence of various fields of science
and engineering, such as electronics, medicine, and biology. This convergence has led to
the development of biosensors, which are now commonly associated with point-of-care
medical diagnosis and precise healthcare [153]. Biosensors have found applications in
multiple areas, involving food safety, pharmaceutical research, healthcare, and cancer
research [4,154]. These devices can identify and transform biological signals into electrical
or optical signals [155].

Si-based materials offer significant advantages over alternative substances such as
lithium and GaAs, which are commonly utilized in optical biosensors. One key advantage
is their comparatively lower cost, making them more economically viable. Additionally,
they can be produced on a large scale utilizing CMOS technology [156]. Moreover, Si-based
materials exhibit a substantial difference in refractive index due to the distinct refractive
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index values of Si and Si dioxide, which are employed as the core and cladding materials,
respectively. This discrepancy in the refractive index helps minimize potential errors that
may arise from fluctuations in the refractive index of the sensor interface. The use of SOI
wafers enables the production of both electronic and photonic components on a single
chip, resulting in a compact platform consolidated on a solitary Si-based substrate [157]. In
optical biosensor applications, two primary factors are consistently considered: sensitivity
(S) and quality factor (Q) [158,159]. These parameters play a crucial role in distinguishing
the performance of various sensors.

S is the measurement of the ratio between the change in sensor output and the corre-
sponding change in the quantity being measured. It serves as an indicator of how effectively
the sensor can detect and respond to variations in the measured parameter. The S of a
biosensor is typically calculated as follows:

S =
∆λ

∆n

Q is another essential parameter in optical biosensing. It characterizes the effectiveness
and selectivity of a biosensor. A higher Q indicates a more precise and accurate measure-
ment, with reduced noise and interference. The Q is determined by factors such as the
sensor’s resonance properties, the stability of its components, and the overall system design.
The Q is calculated by the following expression:

Q =
∆λ(res.)

∆λ(FWHM)
.

Both S and Q are crucial considerations when evaluating the performance and reliabil-
ity of optical biosensors. Achieving high sensitivity and a high-quality factor is essential
for accurate and precise measurements in biosensing applications.

To enhance the sensitivity of the Si-based photonic sensors, researchers have proposed
highly sensitive WG structures such as suspended silicon WG [160–162] and subwavelength
grating (SWG) WGs [163]. Suspended WGs are typically fabricated on SOI substrates,
where a thin silicon layer is separated from a SiO2 layer by a buried oxide layer. The
term “suspended” refers to the fact that the Si WG core is physically suspended above the
substrate by removing the surrounding SiO2, thus allowing for tighter confinement of the
optical mode and interaction with the surrounding environment. The suspended design
allows for strong interaction between the optical mode and the analyte being sensed. This
leads to increased sensitivity, making them suitable for detecting even small changes in
the refractive index or other properties of the surrounding medium. Moreover, the strong
confinement of light in the WG core enables compact device designs. This is particularly
useful for on-chip integration with other optical components and for creating dense arrays
of sensors.

SWG WGs use a periodic pattern of subwavelength-sized features to guide and
manipulate light. They have gained significant attention in the field of photonics and
sensing due to their unique properties and capabilities [164]. SWG WGs can be used for
various applications, including sensing, due to their ability to confine and interact with
light in a compact and efficient manner [165]. The periodic subwavelength structure of
the WG can be tailored to achieve strong light–matter interactions with specific analytes.
This enhanced interaction can enable higher sensitivities in detecting changes in refractive
index, temperature, or other environmental parameters [166]. SWG WGs support the
propagation of evanescent fields beyond the core region of the WG. These evanescent fields
can be used to interact with substances on the WG’s surface. By monitoring changes in
the evanescent field due to the presence of target molecules or changes in the surrounding
medium, sensitive and label-free sensing can be achieved [167].

Extensive research has been conducted in the field of biosensors based on Si photonics,
resulting in the development of several types with diverse applications [168–174]. These
biosensors utilize the advantageous properties of Si photonics to detect and analyze bio-
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logical substances effectively. The initial implementation of an interferometer WG-driven
biosensing application was documented during the early 1990s [175]. This interferometer
employed the Mach–Zehnder interferometer (MZI) principle, where light is divided into
two separate arms and then both signals are brought together once again using a Y-shaped
junction [175]. In the year 2000, the initial use of a Young interferometer (YI) as a biosensor
was documented, achieving a bulk sensitivity of 9 × 10−8 RIU [176]. The YI employs
a Y-junction to split a single optical path into two separate arms. Unlike the MZI, the
interference pattern is generated outside the chip since there is no recombination of the
two arms. The authors of [177] introduced a biosensor based on Si3N4 slot WGs, utilizing a
Mach–Zehnder Interferometer (MZI) design, as shown in Figure 9 [177]. The biosensor was
specifically engineered to exhibit minimal temperature dependency while maintaining high
sensitivity and a low LoD. The measured surface sensitivity and LoD were reported to be
7.16 nm/(ngmm−2) and 1.30 (pgmm−2), respectively [177]. Additionally, the temperature
dependence was found to be as low as 5.0 pm/◦C. On the other hand, when water was used
as the cladding material, the bulk sensitivity and LOD were reported to reach 1730(2π)/RIU
and 1.29 × 10−5 RIU, respectively. By incorporating the Vernier effect via cascaded MZI
structures, the authors achieve a sensitivity improvement factor of 8.38, resulting in a
surface LoD of 0.155 (pgmm−2) [177].
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The efficiency of the photonic WG sensor can be validated by considering the pa-
rameter of bulk sensitivity. Current improvements in point-of-care Si photonic biosensing
have led researchers to focus on identifying effective methods for improving sensitivity.
One approach involves integrating a microfluidic channel made of polydimethylsiloxane
(PDMS) into the sensor architecture. However, this integration may result in decreased
sensitivity due to molecule leakage at the edges of the channel [178]. To address this issue,
a Si3N4 MZI is utilized, which takes advantage of the refractive index of different cancer
cells [179]. The authors examined the effectiveness of both gradient rib and gradient rib-slot
WGs in this analysis, as depicted in Figure 10 [179]. This structure is specifically proposed
to securely secure the liquid sample without the use of PDMS material. Compared with the
gradient rib WG, this novel WG demonstrates significantly higher WG bulk sensitivity and
device bulk sensitivity [179]. The researchers were able to achieve a WG bulk sensitivity of
2.0699 RIU/RIU and a device sensitivity of 568 nm/RIU [179].
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Figure 10. The setup of a Si3N4 biosensor with MZI and a grating coupler [179].

Researchers have designed a RR-based biosensor aimed at detecting cancer cells and
hemoglobin concentrations while optimizing its structure to enhance S and Q [180]. The
biosensor demonstrated the capability to detect a range of cancer cells and hemoglobin
concentrations with a remarkable sensitivity of 200 nm/RIU and a high Q factor of approxi-
mately 2000 [180]. In a recent study conducted by researchers, an optical-based label-free
biosensor was developed and optimized for sensing applications. The biosensor consisted
of two indirectly coupled double-slot-WG-based µ-RRs, as shown in Figure 11 [181]. The
optimized system was then employed to detect hemoglobin concentration, specifically
targeting the identification of anemia disease [181]. To evaluate the biosensor’s perfor-
mance, nine different concentrations of hemoglobin were introduced to the sensor for both
men and women. The study aimed to determine the condition of anemia based on gender
and various levels of the disease, involving normal, mild, moderate, severe, and deadly
conditions [181]. Remarkably, the biosensor exhibited a high sensitivity of 1024 nm/RIU,
accompanied by a minimum deflection limit of 4.88 × 10−6 RIU [181]. These results demon-
strate the biosensor’s ability to provide precise measurements at a microscale, presenting a
promising lab-on-a-chip microdevice for monitoring the health of individuals with anemia.
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The application of porous Si (PSi) as an optical sensor to detect chemicals and molec-
ular interactions has been explored. The researchers employed electrochemical etching
of crystalline Si in solutions containing HF to create various PSi layers. Additionally,
they employed a combination of physical, physicochemical, chemical, and electrochemical
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post-procedures to further enhance the properties of the PSi layers [182,183]. PhC-based
biosensors have captured significant attention as a promising and groundbreaking tech-
nology. Researchers have conducted investigations into Si-based PhC devices on the SOI
platform, and these devices have experienced rapid development. This technological ad-
vancement has led to the creation of various architectures, such as 1D PhC [172] and 2D
PhC [184], specifically designed for the detection of biomolecules.

In a study conducted by researchers [185], a biosensor platform was introduced
that utilized microcavities coupled to an optical WG. The researchers emphasized the
high sensitivity of this platform, measuring approximately 97 nm/RIU. Furthermore, the
biosensor exhibited an LoD as low as 0.0055 fg [185]. In their research, the detection of the
hepatitis B virus was monitored using a 1D PhC [186]. The study focused on utilizing an
antibody to specifically detect the surface antigen (HBsAg-ayw). The biosensor based on the
1D-PhC design achieved an impressive LoD of 460 pg [186]. In 2021, a study was conducted
to suggest a refractive index sensor capable of the detection of cancer and diabetes using
PhC at the same time [187]. The fundamental structure of the proposed PhC consisted of
Si rods arranged in a hexagonal lattice within an air bed. To facilitate the measurements,
two tubes were utilized to accommodate the samples of cancerous or diabetic substances,
as illustrated in Figure 12a [187]. The researchers recognized the importance of sensitivity
and accuracy in sensor design. Consequently, they evaluated the performance of the sensor
by considering the FWHM value, which was measured at 1.8 nm. Moreover, they assessed
the sensitivity and FOM of the sensor following modifications made to the shape of the
dielectric rods and nanocavities. The results indicated that the sensor achieved a best
sensitivity value of S = 20,393 nm/RIU and an FOM of 9104.017 ± 606.93 RIU−1 [187]. A
recent study proposed the utilization of a RR in 2D PhC biosensors [188]. The biosensor
configuration, as depicted in Figure 12b, consists of an RR accompanied by two bus
WGs. To form the resonator and WG, a row of rods was selectively removed from the
structure. Specifically, the ring RR was composed of a large green dielectric rod encircled
by four smaller rods, measuring 340 nm and 162 nm in radius, respectively [188]. The
objective of this design was to enable the detection and differentiation of both normal and
cancerous cells. The researchers assessed the performance of the proposed structure based
on various parameters. The obtained average values for S, Q, FOM, and transmission
were 308.5 (nm/RIU), 3803.55, 848.06 RIU−1, and 98.78%, respectively [188]. In another
recent study [189], the authors introduced a biomedical sensor based on PhC, as illustrated
in Figure 12c. The sensor was designed to accurately identify and differentiate between
normal and abnormal brain tissues, including lesions, tumors, and cancerous tissues.
Impressively, the sensor exhibited remarkable performance metrics. Specifically, it achieved
a sensitivity of 1332 nm/RIU. Additionally, the sensor demonstrated an exceptionally low
LoD of 9.08 × 10−6 and exhibited an ultra-high quality factor of 16,254 [189]. A list of some
of the noteworthy proposed biosensors is presented in Table 3.

Table 3. Comparative analysis of different optical biosensors.

Sensor Configuration Sensitivity
(nm/RIU) Q-Factor LOD References

Si3N4-based MZI 568 - - [179]
Silica-based RR 200 2000 - [180]
Si/SiO2 double-slot-WG, MRR 1024 - 4.88 × 10−6 RIU [181]
SOI-based PhC WG, microcavity 97 - 0.0055 fg * [185]
PhCs, nanocavities on Si 20,393 - - [187]
Si PhCs, RR 308.5 3803.55 - [188]
Si-based PhCs 1332 16,254 9.08 × 10−6 RIU [189]
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5.2. Si Photonics in Gas Sensing

The significance of gas sensing has been increasingly recognized in diverse domains
and for a broad spectrum of uses, including the detection of dangerous and harmful gases,
inspection in industrial settings, and monitoring of the environment [190–192]. Numerous
optical gas sensors have been created throughout time, benefiting from their remarkable
attributes such as heightened sensitivity, dynamic range, stability, rapid response time, and
the ability to perform multiple measurements simultaneously [193–199]. The ability of RI
sensing to directly detect biomolecules without the need for labelling and its remarkable
sensitivity to even slight variations in the surrounding medium has garnered growing
attention. In 2003, an optical nanosensor utilizing Si microelectronics technology was
developed; it featured an integrated MZI structure formed by total internal reflection (TIR)
WGs [200]. A novel fiber MZI sensor, utilizing a single “S”-shaped fiber taper, was success-
fully constructed by employing nonaxial pull during the fusion splicing process [201]. The
fabricated structure had a characteristic size of 660 µm in length and an axial offset of 96 µm.
This particular MZI, based on the S-shaped fiber taper, demonstrated a high RI sensitivity
of 1590 nm/RIU within the refractive index range of 1.409–1.425. Additionally, it exhibited
a strain sensitivity of approximately −60 pm/microstrain [201]. In another study, a novel
mid-infrared (MIR) gas sensor utilizing a suspended Si WG was proposed [202]. Two
optimized designs for wavelength and intensity interrogation were developed, achieving
high sensitivity and figure of merit [202]. In a recent study [203], researchers introduced a
compact refractive index gas sensor by employing an SOI loop-terminated MZI (LT-MZI)
and incorporating a slot WG in the sensing arm, as depicted in Figure 13a [203]. Despite its
short sensing arm length of 150 µm, the sensor achieved a device sensitivity of 1070 nm/RIU
and an impressive figure of merit (FOM) of 280.8 RIU−1 at a wavelength of 1.55 µm [203].
Another recent study, [204], examined the gas sensing capabilities of a compact Si photonics
MZI with a coiled sensing arm, as shown in Figure 13b. The sensor, fabricated using deep
UV lithography, demonstrated a sensitivity of approximately 1458 nm/RIU and an LoD of
approximately 8.5 × 10−5 RIU when tested with helium (He) and nitrogen (N2) gases [204].
The sensor’s temperature sensitivity was found to be 166 pm/◦C. Incorporating a cladded
ring-resonator post-MZI (Figure 13b) allowed for accurate temperature compensation and
resolved temperature drift due to gas flow [204].
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µ-RRs in SOI structures have gained attention in sensing due to their high sensitivity to
refractive index changes, wavelength multiplexing capability, and compact size [205–207].
µ-RRs offer precise detection of analytes, simultaneous measurement of multiple parame-
ters, and integration into portable sensing systems, making them promising for diverse
applications. In 2011, the on-chip interrogation of a gas sensor based on SOI µ-RRs was
demonstrated using a compact AWG spectrometer [208]. The researchers utilized a 200 GHz
SOI AWG with closely spaced output channels to analyze the response of an µ-RR sen-
sor to ethanol vapor concentrations ranging from 100 to 1000 ppm [208]. Researchers,
in [209], demonstrated a chip-scale photonic system using a slotted µ-RR cavity, as shown
in Figure 14a, to perceive minute refractive index changes in acetylene gas [209]. The
nanoscale slot geometry resulted in a significant interaction factor of 0.64, leading to a
device sensitivity of 490 nm/RIU. By utilizing a resonator with a Q factor of 5000, they suc-
cessfully detected refractive index changes at the order of 10−4 [209]. Recently, researchers
investigated and introduced a compact grating double-slot µ-RR (GDS-µ-RR) on an SOI
platform as a potential solution for achieving a refractive index sensor with a wide measure-
ment range and high sensitivity [210]. The refractive index sensing experiments yielded a
sensitivity of 433.33 nm/RIU, a Q-factor of 4325, and a DL value of 8.26 × 10−4 RIU [210].
The researchers concluded that the proposed compact GDS-µ-RR exhibited outstanding per-
formance and held significant potential for various sensing applications. Another study on
µ-RR, suggested a high-performance refractive index sensor utilizing a single trapezoidal
subwavelength grating slot-µ-RR (T-SWGS-µ-RR)) [211]. The T-SWGS-µ-RR design shown
in Figure 14b, achieved a high sensitivity of 823 nm/RIU, a large Q-factor of 2.50 × 104,
and a low LoD of 7.53 × 10−5 RIU [211]. The researchers also demonstrated an improved
sensitivity of 12,151 nm/RIU and a lower LOD of 2.47 × 10−5 RIU by employing two
cascaded T-SWGS-µ-RRs, as depicted in Figure 14c [211].

The MIR region has become the subject of significant interest and research due to
its diverse range of applications. One of the reasons the mid-IR region is particularly
significant is because it holds the absorption lines of numerous important gases. Gases such
as carbon dioxide (CO2), carbon monoxide (CO), and methane (CH4) [4,193,212,213] exhibit
characteristic absorption patterns in the MIR range. These absorption lines correspond to
specific vibrational and rotational modes of the gas molecules, allowing for their identifica-
tion and quantification [214,215]. The ability to detect and measure these gases accurately
is crucial for various applications, including environmental monitoring, industrial safety,
atmospheric studies, and climate research. In [213], Khonina et al. achieved a substantial
development in the evanescent field ratio by transforming a ridge WG into a dual hybrid
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plasmonic WG, as shown in Figure 15a. The WG geometry was adjusted at 3.392 µm,
aligning with the absorption line of CH4 gas. The suggested method allowed for a larger
WG cross section, facilitating flexible butt coupling of light with an augmented evanescent
field. The study validated the results through finite element method (FEM) analysis and
reported an elevated evanescent field ratio of 0.74 and a propagation loss of 0.7 dB/µm.
A sensitivity of 0.0715 (mW/gas conc.) was also calculated by measuring the decay in
transmission power due to gas absorption in the medium [213]. The schematic of the
proposed gas sensing procedure is shown in Figure 15b.
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Figure 15. (a) Schematic representation of dual hybrid plasmonic WG. (b) Dual hybrid plasmonic
WG employed for CH4 gas sensing. Inspired by [213].

In [216], Kazanskiy et al. proposed a polarization-independent strategy of a hybrid
plasmonic WG (HPWG) that can be employed as an evanescent field absorption gas
sensor, as illustrated in Figure 16, optimized at a wavelength of 3.392 µm for CH4 gas
absorption [216]. The HPWG exhibited high sensitivity (Smode) and evanescent field ratio
(EFR) for both TE and TM hybrid modes [216]. Modal analysis using the FEM confirmed
the TE mode with Smode = 0.94 and EFR = 0.704 and the TM mode with Smode = 0.86 and
EFR = 0.67. For a 20 µm-long HPWG at 60% gas concentration, both modes achieved a
power dissipation of approximately 3 dB [216].
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In the past, researchers developed numerous microstructured gas detectors to integrate
them into micro-GC and/or microfluidic systems for rapid on-site gas detection [217,218].
Among the various detection methods, an encouraging approach relied on the utilization of
the Fabry–Perot (FP) cavity. This detection scheme had gained popularity, not only in gas
detection but also in other fields such as biosensing such as for temperature, strain, and hu-
midity sensing. The FP cavity was favored due to its uncomplicated fabrication process and
straightforward measurement setup. Researchers, in [219], investigated a stable optofluidic
FP resonator that comprised Si cylindrical Bragg mirrors along with a central capillary
tube [219]. In other work, a non-destructive and versatile microfluidic-based Fabry–Pérot
(FP) gas detector (as shown in Figure 17a) was created and investigated by researchers [220].
The detector underwent testing using different analytes possessing diverse chemical and
physical properties, as well as various concentrations. The experimental outcomes revealed
a sensitivity of 812.5 nm/RIU and an LoD of 1.2 × 10−6 RIU for the detector [220].

PhC gas sensors have gained significant attention in recent years due to their high
sensitivity and selectivity in detecting various gases [221–226]. These sensors are based on
the principle of manipulating light propagation through a periodic arrangement of materials
with different refractive indices. An investigation was conducted by researchers [227] on
an air-slot photonic crystal cavity to achieve high-precision refractive index sensing. The
cavity exhibited a high Q-factor of approximately 2.6 × 104, and a significant overlap was
observed between the resonant mode and the hollow core region. The experimental results
demonstrated a sensitivity of 510 nm/RIU and an LoD below 1 × 10−5 RIU [227]. A series
of Ln slot PhC microcavities were proposed and experimentally demonstrated (in [228])
for their application as refractive index gas sensors, as shown in Figure 17b. The cavities,
composed of a Si slab triangular PhC with n holes replaced by slots, showed exponential
increases in quality factor with increasing n. An L9 slot PhC microcavity achieved a high-
quality factor exceeding 30,000, a sensitivity of 421 nm/RIU, and an LoD below 1 × 10−5

RIU [228].
A comprehensive comparison and summary of the performance of various optical gas

sensors can be found in Table 4. By examining the data presented in Table 4, readers can gain
insights into the strengths and limitations of each sensor type, aiding in the selection and
implementation of appropriate optical gas sensing technologies for specific applications.
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Table 4. Comparative overview of cutting-edge optical sensors designed for detecting different types
of gases.

Sensor Configuration Gas Sensitivity
(nm/RIU) Q-Factor LOD (RIU) Refs.

MZI RR-MZI He, N2

1458
5500

(Suspended MZI)
- 8.5 × 10−5 [204]

RR RIB-slotted RR CO2, CH4 20,600 - 3.675 × 10−4 [205]

RR Slotted MRR CH4, CO2 2308 - - [206]

RR Slotted RR CO2 300 - - [207]

RR Slotted MRR Acetylene 490 5000 10−5 [209]

SPP PSWG CO2 - -

274.6
(Free-standing structure)

70.1
(Asymmetric structure)

[212]

PhC
Cryptophane-E-
infiltrated PhC

microcavity
CH4 363.8 12,923 - [224]

PhC PhC cavity Tetrahydrofuran
(THF) vapor 194 2 × 105 4 × 10−5 [226]

PhC PhC air-slot cavity CO2, N2, He 510 2.6 × 104 1 × 10−5 [227]

PhC Slot PhC microcavities N2, CO2, He 421 >3.0 × 104 1 × 10−5 [228]

6. Concluding Remarks

Si photonics is an advancing field of technology that combines optics and electron-
ics using Si as the material platform. It focuses on the development of integrated pho-
tonic circuits that manipulate and control light signals, such as how electronic circuits
manipulate electrical signals. Si photonics holds tremendous potential to revolutionize
telecommunication by enabling faster, more efficient, and cost-effective data transmission
and communication systems. As this technology continues to evolve, it is expected to
play an increasingly crucial role in shaping the future of telecommunication networks.
One of the primary applications of Si photonics in telecommunications is for high-speed,
energy-efficient optical interconnects. These interconnects are used to transfer data between
different components within data centers and supercomputers. Si photonics allows for the
integration of high-performance optical transmitters, receivers, and WGs on a single chip,
enabling faster data transfer rates and reducing power consumption compared with tradi-
tional copper-based interconnectors. Si photonics can be used to create optical amplifiers
and regenerators that boost the optical signal’s strength, compensating for signal losses in
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long-distance optical communication. These components help maintain the quality and
reach of optical signals in telecommunication networks.

Si photonics enables the development of compact and cost-effective optical transceivers
used in fiberoptic communication systems. These transceivers integrate lasers, modulators,
detectors, and other optical components on a Si chip. They are used for data transmission
over long distances in optical networks, such as metropolitan area networks (MANs) and
long-haul communications. Moreover, Si photonics provides the means to create compact
and efficient wavelength division multiplexing devices, enabling higher data transmission
capacity and increasing network bandwidth. Si photonic switches are also used in optical
networks to route data packets efficiently. They can be reconfigured rapidly to establish
various communication paths, enabling dynamic and flexible network architectures. Si pho-
tonics’ fast response times and low power consumption make it ideal for next-generation
optical switches.

Additionally, Si photonic sensors leverage the unique properties of Si to interact with
light and enable highly sensitive and selective detection. These sensing devices find applica-
tions in diverse fields, including environmental monitoring, healthcare, industrial process
control, and more. Gas sensing devices based on the Si platform can detect and quantify
the presence of specific gases in the environment. As mentioned earlier, the interaction
between gas molecules and light in Si WGs can lead to changes in light properties, enabling
the detection of various gases with high sensitivity. Moreover, Si photonics biosensors
are designed to detect and analyze biological molecules or entities. By functionalizing
the Si surface with specific biomolecule receptors (e.g., antibodies or DNA probes), these
sensors can detect the binding of target biomolecules, such as proteins or DNA, leading
to measurable changes in the transmitted light. Si photonics chemical sensors can also
be used to detect and quantify the presence of certain chemicals or analytes. They are
widely employed in environmental monitoring and industrial safety applications. The
advantages of Si photonics sensors include high sensitivity, label-free detection (in the
case of biosensors), compact size, and the potential for integration with existing Si-based
electronic and photonic systems.

We believe that Si photonics sensors are still an active area of research and development
and that ongoing advancements in materials, fabrication techniques, and device design
are continuously improving their performance and expanding their range of applications.
As the technology matures, Si photonics sensors are expected to play an increasingly
significant role in diverse sensing applications, contributing to advancements in fields such
as environmental monitoring, healthcare, and beyond.
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