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Abstract: Exploring bio-inspired nanomaterials (BINMs) and incorporating them into micro/nanodevices
represent a significant development in biomedical applications. Nanomaterials, engineered to imitate
biological structures and processes, exhibit distinctive attributes such as exceptional biocompatibility,
multifunctionality, and unparalleled versatility. The utilization of BINMs demonstrates significant
potential in diverse domains of biomedical micro/nanodevices, encompassing biosensors, targeted drug
delivery systems, and advanced tissue engineering constructs. This article thoroughly examines the
development and distinctive attributes of various BINMs, including those originating from proteins,
DNA, and biomimetic polymers. Significant attention is directed toward incorporating these entities
into micro/nanodevices and the subsequent biomedical ramifications that arise. This review explores
biomimicry’s structure–function correlations. Synthesis mosaics include bioprocesses, biomolecules,
and natural structures. These nanomaterials’ interfaces use biomimetic functionalization and geometric
adaptations, transforming drug delivery, nanobiosensing, bio-inspired organ-on-chip systems, cancer-
on-chip models, wound healing dressing mats, and antimicrobial surfaces. It provides an in-depth
analysis of the existing challenges and proposes prospective strategies to improve the efficiency, perfor-
mance, and reliability of these devices. Furthermore, this study offers a forward-thinking viewpoint
highlighting potential avenues for future exploration and advancement. The objective is to effectively
utilize and maximize the application of BINMs in the progression of biomedical micro/nanodevices,
thereby propelling this rapidly developing field toward its promising future.

Keywords: bio-inspired nanomaterials; micro/nanodevices; biomedical applications; nanotechnol-
ogy; biomimetic polymers; microfabrication; nano-biotechnology

1. Introduction

Bio-inspired nanomaterials (BINMs), alternatively referred to as biomimetic nanoma-
terials (BNMs), are a class of materials that are intentionally engineered and manufactured
to replicate the intricate structures, functionalities, or mechanisms observed in natural bio-
logical systems [1–3]. These advancements offer a novel trajectory for the field of material
science, facilitating the creation of materials possessing unique characteristics that can effec-
tively tackle a wide range of scientific, technological, and environmental obstacles through
successful applications in multidimensional sectors, including medicine and healthcare [4],
biotechnology and bioengineering [5], energy [6], environment [7], material science [8],
robotics [9,10], and many more [11–13]. Various biological entities, including proteins,
DNA [14,15], cells [16], and complete organisms [17], can serve as sources of inspiration for
these materials. Using DNA’s self-assembling properties has facilitated the construction
of shapes and patterns at the nanoscale level [18]. The adhesive characteristics exhibited
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by gecko feet have served as a source of inspiration for developing sophisticated adhesive
materials [19]. Furthermore, the self-cleaning and hydrophobic characteristics exhibited by
the lotus leaf have prompted advancements in creating self-cleaning surfaces and coatings
with water-repellent properties [20]. The interdisciplinary field of BINMs integrates princi-
ples from biology, chemistry, physics, and material science. A bottom-up approach is often
employed, commencing at the atomic or molecular level and progressing upward. This is
juxtaposed with the conventional top-down methodology, wherein the initial focus is on a
larger system that is subsequently deconstructed into smaller constituent parts. Various
techniques can be employed to fabricate BINMs, such as molecular self-assembly, in which
molecules autonomously organize themselves into desired structures. Another method is
biosynthesis, which involves utilizing biological organisms such as bacteria, fungi, or plants
to synthesize nanomaterials. The field of BINMs holds significant potential for scientific
investigation; however, it is not devoid of inherent obstacles. One of the primary obstacles
lies in the capacity to regulate the synthesis and assembly processes of these materials
in order to attain the intended properties [21]. There exist additional concerns regarding
the potential environmental and health ramifications associated with these nanomaterials,
necessitating the need for further examination and comprehensive testing prior to their
widespread implementation [22]. Notwithstanding these challenges, BINMs constitute a
captivating and burgeoning area of investigation. The advancement of our knowledge in
the fields of biology and nanotechnology is expected to enhance the possibilities for the
development of novel and influential BINMs.

With the advancement and comprehension of BINMs, an opportunity arises to investi-
gate the pragmatic utilization of these materials in the configuration of micro/nanodevices.
Micro/nanodevices, as their nomenclature implies, are miniature devices that operate at
the micro- or nanolevel. The significance of micro/nanodevices has increased substantially
due to their potential to enhance capabilities in diverse sectors, including medicine, en-
vironmental monitoring, electronics, and energy production. These devices provide an
unparalleled degree of control and accuracy at a minuscule level, enabling us to devise
and develop solutions to previously insurmountable obstacles. The potential for develop-
ing novel and influential micro/nanodevices using BINMs is anticipated to grow due to
technological advancements and improved comprehension of biological systems. Through
the utilization of the distinct characteristics exhibited by these nanomaterials in the form
of nanocomposite gels [23–26] and films [27–29], structural colored nanomaterials [30–32],
organo-metallic nanomaterials [33], molecular machines [34], and nanobiosensors [35]
have found widespread application and have replaced mainly more conventional bulk
materials in a variety of sectors [36–41] as well as in theoretical inquiries [42]. Researchers
and practitioners can fabricate devices that imitate or draw inspiration from biological
systems to execute targeted functions, frequently surpassing the efficiency and efficacy
of conventional devices. Medicine and healthcare are highly significant domains for ap-
plying micro/nanodevices [43,44]. Environmental monitoring is a field that extensively
utilizes micro/nanodevices [45]. These encompass sensors capable of detecting various
environmental pollutants, even in exceedingly low concentrations. These devices can
continuously monitor air and water quality, thereby offering significant data that can be
utilized to safeguard the environment. The electronics and computing sector represents a
significant domain in which micro/nanodevices are widely used [46]. Modern electronic
and computing devices rely on various components, such as transistors found in com-
puters and sensors present in smartphones, which collectively serve as the fundamental
infrastructure for these technologies. By further reducing the size of these devices and
enhancing their operational capabilities, it is possible to develop electronic devices that
are more potent and consume less energy. Micro/nanodevices are paramount in energy
production and storage [47]. Nanostructured materials have been employed to improve the
efficiency of solar cells, fuel cells, and batteries, among other applications. These devices
have the potential to enhance energy efficiency, mitigate expenses, and foster the adoption
of renewable energy sources. Although the prospect of micro/nanodevices is vast, there
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are still obstacles to overcome in manufacturing, integration, reliability, and safety. Current
investigations in BINMs and their utilization in micro/nanodevices are actively tackling
these obstacles, thus laying the foundation for a novel epoch in diverse industries.

The convergence of BINMs and micro/nanodevices is driving a transformative shift
across various academic fields, with a particular emphasis on biomedicine. The conver-
gence described in this context capitalizes on the distinctive characteristics of BINMs, which
are derived from biological systems, to optimize the functionality of micro/nanodevices.
These devices, in turn, provide a pragmatic framework for implementing these nanoma-
terials. The inherent characteristic of BINMs, known as the “bottom-up” approach, is
highly compatible with the micro/nanoscale. This compatibility facilitates the formation of
intricate structures through the process of self-assembly. The advantageous collaboration
between nanomaterials and biological systems in biomedicine is of great significance, as it
allows for the customization of nanomaterials to enhance their interaction capabilities with
biological entities. One example of improving targeted drug delivery systems involves the
integration of nanomaterials into micro/nanodevices, thereby enabling the accurate admin-
istration of drugs to particular cells or tissues. Moreover, developing micro/nanosensors
with high sensitivity is feasible, thereby improving the capability for early disease detec-
tion and accurate environmental monitoring. Although this interdisciplinary field offers
significant prospects, it is important to acknowledge the persistent challenges associated
with the control of nanomaterial synthesis and assembly, their integration into devices,
and the assurance of safety and efficacy in practical applications. However, the potential
advantages signify a promising outlook for this convergence.

In this thorough analysis, we set out on a complex trip to investigate the field of BINMs
and their significant implications for creating and operating micro/nanodevices, partic-
ularly those used in the biomedical industry. We start by delving deeply into the idea of
biologically inspired nanomaterials, illuminating the intrinsic functional possibilities they
bring, and defining thestructure–function correlations observed in nature (Section 2). The
many forms of BINMs and their key properties are then discussed (Section 3). The benefits
of these intriguing nanomaterials in improving the performance of micro/nanodevices
are underlined as we go along, from their flawless biocompatibility to their adaptability
(Section 4). In other nanotechnology fields, a wide range of non-biomedical uses of BINMs
are also covered (Section 5). The complex synthesis of BINMs, motivated by natural struc-
tures, biomolecules, and processes, is then covered in detail (Section 6). Design guidelines
for BINM interfaces, emphasizing functionalization strategies and associated difficulties,
significantly deepen our understanding (Section 7). We elaborate on the numerous uses
of BINMs in micro/nanodevices, primarily focusing on the biomedical sector, including
drug delivery systems, organ-on-chip technologies, wound healing approaches, and an-
timicrobial surfaces (Section 8). As this analysis draws to a close, we consider the ongoing
difficulties associated with using BINMs in biomedical applications (Section 9). Finally, we
believe in the prospects for the future and offer a few closing thoughts to summarize our
discussion (Section 10). This article offers researchers, academics, and business executives
a comprehensive grasp of the state of the art and the projected trajectory of BINMs in
micro/nanodevices. Figure 1 represents the table of contents of this review article.
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2. Bio-Inspired Nanomaterials: From Concept to Realization

The progression of BINMs serves as a testament to the notable amalgamation of
biology and nanotechnology. They are designed to replicate the structures, functions, or
processes observed in nature. This approach enables the development of novel materials
that possess distinctive properties. The development of BINMs typically commences with
a comprehensive comprehension of the biological system that researchers seek to emulate.
The comprehensive understanding and replication of distinct structures, processes, or
functions observed in nature at the nanoscale necessitate collaboration among biologists,
chemists, and material scientists. The practical implementation of nanomaterials inspired
by biological systems can be a multifaceted undertaking requiring meticulous planning
and regulation. In certain instances, researchers can employ a biological process directly
to synthesize nanomaterials. One illustrative instance involves using bacteria or fungi to
generate nanoparticles (NPs), transforming these organisms into miniature factories for
nanomaterial production.

In some instances, scientists may be required to employ alternative approaches to
accomplish their objectives. The potential application entails the development of artifi-
cial structures capable of autonomous assembly, emulating the structural characteristics
observed in biological systems. One instance illustrating this phenomenon is the advance-
ment in the creation of synthetic peptides capable of self-assembly into nanofibers, which
resemble the nanofibers present in the extracellular matrix of various tissues [48]. Addition-
ally, there exists the challenge of expanding the scale of these processes. Although these
nanomaterials can be synthesized in a laboratory setting, scaling up the production process
while preserving their intended characteristics poses a greater challenge. Furthermore, the
realization of BINM concepts frequently necessitates meticulous optimization. It may be
necessary to carefully adjust their properties to optimize the performance of these nanoma-
terials. This process may entail modifying various parameters, including the dimensions,
morphology, or elemental composition of the nanomaterials. Developing BINMs involves
a complex and intricate journey, necessitating a comprehensive comprehension of biology
and nanotechnology. This research direction holds promise in generating novel materials
that can effectively tackle various scientific and technological challenges. The application of
biomimetics to multiple domains, such as design, product development, service enhance-
ment, and biomedicine, can be facilitated through a basic research method comprising six
distinct steps (Figure 2) [49].
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2.1. Transforming the Functional Possibilities of Biological Inspiration in Design

Biomimicry, the process of using ideas from the natural world to address problems
faced by humans, has long been at the forefront of ground-breaking discoveries. However,
it is crucial to realize that biological things’ functional potential should not be replicated
as it appears in nature. Instead, they should act as a springboard for creative, research-
based designs. It has been seen in nature that millions of years of evolution have shaped
these animals for certain functions in their settings, from the coordinated flight of birds
to the exquisite designs on butterfly wings. It is possible that merely reproducing these
capabilities will not satisfy the particular needs and limitations of human cultures and
technology surroundings. Determining the basic principles and mechanisms that nature
uses and then adapting or improving them for human use are crucial. The Japanese
Shinkansen bullet train is one of the examples [50]. When these trains departed tunnels at
high speeds, noise pollution posed a huge difficulty to the engineers. The engineers rebuilt
the train’s nose by taking inspiration from the kingfisher, whose streamlined beak allows it
to plunge into water with little splash. This improved speed and fuel economy while also
reducing noise. Although nature served as the source of inspiration, the design was an
adaption rather than a close match in this case.

The fundamental motivation should be broader despite the obvious economic attrac-
tiveness of such inventions. Discoveries or the confluence of disparate concepts can increase
profitability and market supremacy. The objective is to improve the comfort and quality
of human life, not just make money from a novelty. Designs that are straightforward but
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innovative, derived from nature but made specifically for people, have the power to change
industries as diverse as transportation, healthcare, energy, and architecture. As a result,
even while nature offers a priceless store of design solutions, the difficulty for innovators is
in interpreting and implementing these solutions. The actual achievement is in developing
goods or procedures that skillfully combine the brilliance of nature with the requirements
and aspirations of people.

2.2. Understanding Biomimicry: Deciphering the Structure-Function Relationship in Organisms

Understanding the connection between an organism’s function and the governing
principles of that function is a crucial component of biomimicry, a discipline that aims to
mimic nature’s time-tested patterns and tactics. The development of bio-inspired designs
and technologies is based on this understanding. To this aim, conducting a diligent study
and assembling thorough databases to amass knowledge and utilize various materials
according to their features is essential. In biomimicry, the interesting relationship between
form and function is crucial. Designing self-cleaning materials, for instance, is influenced
by the complex surface structure of a lotus leaf, which makes it water-repellent. A thorough
knowledge of thisstructure–function link can be gained through cutting-edge scientific
methods like scanning electron microscopy. This method makes it possible to notice the
little details critical to an organism’s ability to operate, which is an essential first step in the
biomimicry process.

Scanning electron microscopy provides a thorough image of the surface topography
and composition of a material to understand better how an organism functions. For instance,
the invention of specifically textured surfaces that limit fouling or microbial growth was
motivated by observing the microscopic structure of a shark’s skin, which is made up
of tiny, tooth-like scales known as denticles [51]. To effectively employ biomimicry, it is
imperative to acquire a comprehensive understanding of the relationship between structure
and function in living organisms, which should be underpinned by robust research and
meticulously curated databases. This approach has the potential to further unlock the
vast possibilities of nature-inspired concepts and technologies, thereby facilitating the
development of a sustainable future.

2.3. Decoding Nature’s Complexities: Challenges and Prospects in Biomimetic Research

Biomimetics, the study and creation of engineering systems and contemporary tech-
nologies using biological techniques and systems found in nature, presents special potential
and challenges. Understanding the intricate connections between organisms, their micro-
and nanostructures, and their environment is perhaps the most important of them. Har-
nessing the potential of these structures requires understanding how they work, especially
for those that have not yet been adequately investigated. These difficulties are multifaceted.
For instance, an organism may use a certain structure to perform a given function in a par-
ticular environment, yet the same structure may be used otherwise in a different situation.
Additionally, there could be less obvious tertiary or even secondary functions. Resolving
this complex dance between structure and function that depends on the surrounding en-
vironment is like solving a complex puzzle for biomimetics. Understanding biological
complexities and reproducing them in synthetic materials are complex tasks in biomimetic
research. It takes skill and accuracy in material design and engineering to replicate the
structures seen in nature, which frequently exist on the nano- or microscale [52,53].

The merging of biology, natural history, and material science is the next step in
biomimetic research to address these issues. Each of these disciplines gives a unique
viewpoint and set of instruments that can aid in revealing the mysteries of biological
architecture. Understanding living things and how they work is made possible by biology,
which serves as the basis for biomimicry. Natural history sheds light on how these processes
have changed over time and their contributions to the organism’s success and survival. Last
but not least, material science provides the skills and knowledge required to mimic these
biological structures with artificial materials, enabling the implementation of biomimetic
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principles in practical settings. This integrative approach to biomimetics has great potential
benefits. Medicine, architecture, energy, and manufacturing are just a few industries that
might undergo a revolution if we can mimic and exploit the efficiency, adaptability, and
sustainability inherent in natural systems. Though the road is difficult, the promise of
biomimetic research keeps scientists and engineers motivated to discover the mechanisms
behind nature’s intricate design.

2.4. Harnessing Nature’s Efficiency: Biomimetic Materials and Energy-Minimizing Designs

Exciting research prospects in the developing discipline of biomimicry are focused
on identifying unique functional and environmental adaption strategies of organisms.
Discovering how these organisms adopt energy-minimizing designs, a concept essential
for our sustainable future, is a critical part of this frontier [54–56]. This is about using the
creativity and efficiency of nature to inform and advance our designs and technologies.
One successful instance of innovation is the development of antireflective coatings, which
drew inspiration from an initially unremarkable source, namely the structure of a moth’s
eye [57]. Despite their tiny size, moth eyes feature complex designs about 200 nm and
astonishingly reflect visible light. The efficiency of solar panels can be increased by mini-
mizing light reflection, and the legibility of electronic displays can be improved. Scientists
have duplicated these nanostructures to create antireflective coatings, which have a variety
of applications.

Remodeling hierarchical structures and the associated functions taken from nature
is crucial in creating novel biomimetic materials. This procedure involves copying these
structures and comprehending and using the guiding concepts. Then, designs and tech-
nologies that impact human society adapt and incorporate these concepts. Advancements
in several sectors may result from creating novel materials motivated by the hierarchical
structures found in nature [58]. Scientists have developed reusable, residue-free, and
temperature-resistant adhesives by comprehending the nanoscale hair-like structures on a
gecko’s feet.

2.5. Merging Novelty with Nature: Challenges and Possibilities in Biomimetic Material Research

Biomimetics is constantly growing, and new innovations and discoveries are routinely
made. Integrating recently found materials with ongoing biomimetic research is crucial to
this subject. This integration is believed to be crucial to comprehend the possible uses and
constraints of such materials, opening up new avenues in technology and design. However,
in order to fully fulfill this potential, it is imperative to develop a thorough grasp of both
the advantages and disadvantages of biomimetics. Every newly discovered substance or
method has special benefits and drawbacks. In contrast to conventional materials and
processes, biomimetic designs, while frequently bringing about enhanced efficiency and
sustainability, can also present cost, manufacturing complexity, or durability obstacles.
Understanding the morphological and functional applications of novel materials is crucial,
in addition to considering the pros and downsides. While the functional features describe
how the material functions or interacts under various circumstances, the morphological
qualities specify the material’s physical and structural properties. By gaining informa-
tion into these areas, scientists can forecast how the material would perform in various
applications and what adjustments might be required to maximize its performance.

Unexpected outcomes may arise from integrating novel materials into biomimetic
designs [59–61]. These results need to be carefully examined and comprehended since they
can indicate new applications for the materials or unforeseen limitations of the designs.
Untangling these findings requires a systematic, step-by-step approach that progressively
unveils the essence of the substance and its potential, much like peeling back the layers of
an onion. It is difficult to advance in this field, it is true. The complicated and sophisticated
nature of the systems being investigated and imitated makes biomimetic material research
challenging. Nevertheless, despite the difficulties, there is an intense study going on
because of the potential that biomimetics provides for developing future solutions that are
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more sustainable, effective, and innovative. There are many challenges in realizing the full
potential of novel materials in biomimetics. Despite this, there is still a strong commitment
to overcoming these obstacles since it is recognized that the benefits, such as advancing our
technological skills and promoting sustainable practices, make the effort worthwhile.

2.6. Biomimetic Innovation: Creating New Materials Inspired by Nature

At its essence, biomimicry is about taking inspiration from nature to create new
things. Analyzing the structure and function of biological components is a vital step in this
process. This knowledge frequently acts as the starting point for creating new materials
and the creative application of existing ones. For instance, new high-strength fibers have
been developed due to the structural versatility of spider silk, a substance that is both
stronger and lighter than steel. Similarly, the development of color-changing materials
has been driven by the unique design of butterfly wings, which can reflect light without
pigmentation. The fundamental principle is to gain knowledge from the complexity of
natural structures and functions and then apply this knowledge to inspire and guide the
creation of new materials. It is required to conduct thorough testing and analyses of the
structures and operations of biological materials to accomplish this. This gives researchers
important insights into these materials’ potential by enabling them to comprehend how
they behave under diverse circumstances. These revelations can then influence the design
and synthesis of novel materials with comparable properties.

Once these novel materials are created, they can be integrated with recent develop-
ments in various industries, including chemistry, nanotechnology, and medicine. This
interdisciplinary approach can open up a wealth of cutting-edge uses that will considerably
enhance human lives. For example, in the field of medicine, materials modeled after gecko
feet are being created for their exceptional adhesive characteristics, which have the potential
to revolutionize surgical techniques and wound healing [62]. The creation of catalysts based
on enzymatic processes has been stimulated by biomimicry in chemistry. The design of
water-repellent coverings in nanotechnology results from features like the nanoscale hairs
that make lotus leaves self-cleaning [63]. Despite the enormous promise, it is necessary to
recognize the difficulties. The intricacy of natural systems differs significantly from that of
artificial systems; therefore, merely mimicking nature is not the solution. Instead, it is about
comprehending and putting these biological systems’ core principles to use to develop
novel, long-lasting, and efficient solutions.

3. Brief Overview of Micro/Nanodevices and Types of Bio-Inspired Nanomaterial

Micro/nanodevices frequently exhibit distinct properties and behaviors, which can
be attributed to quantum effects and other phenomena that manifest exclusively at these
reduced dimensions. They encompass a diverse array of instruments, such as sensors, actu-
ators, and electronic components, among various others. Historically, micro/nanodevices
have predominantly employed silicon-based materials due to their exceptional semicon-
ductor characteristics, widespread availability, and well-developed knowledge of silicon
processing methodologies. The significant impact of the semiconductor industry on this
phenomenon can be attributed to its extensive utilization of silicon in producing micro-
processors and various electronic components. Other materials, such as gallium arsenide,
silicon carbide, and various polymers, ceramics, and metals, are employed per specific
device specifications.

The emergence of micro/nanodevices has led to notable advancements in biomedical
applications. The diminutive dimensions of these entities facilitate engagements with
biological systems at the cellular and molecular scale, thereby facilitating the develop-
ment of accurate diagnostics, therapeutics, and research instruments. An illustration of
the efficacy of nanoscale drug delivery systems lies in their ability to selectively target
afflicted cells with minimal impact on surrounding healthy tissues. In diagnostics, they can
swiftly identify disease biomarkers even at highly diluted levels, thereby facilitating timely
identification and intervention [64]. Moreover, micro/nanodevices have been employed



Micromachines 2023, 14, 1786 9 of 93

in tissue engineering and regenerative medicine to manipulate cellular behavior and fa-
cilitate tissue proliferation. Despite the considerable potential, several challenges need to
be addressed. A notable obstacle lies in the manufacturing process, which necessitates the
meticulous and consistent production of these devices at a miniature scale. One additional
obstacle pertains to incorporating these devices into broader systems, necessitating the
resolution of concerns related to connectivity, compatibility, and power management. There
are other apprehensions regarding nanoscale materials’ potential health and environmental
ramifications, as they exhibit distinct behaviors compared to their macroscale counterparts.
Finally, the challenges pertaining to the stability, performance in varying conditions, and
durability of micro/nanodevices are of utmost importance and require attention as we
further exploit their capabilities. BINMs might be classified as magnetic biomimetic, metal
and metal oxide biomimetic, and organic, ceramic, and hybrid biomimetic [65]. Figure 3
lists the types of BINMs and their unique characteristics that have made them potential
candidates for multiple biomedical applications.
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3.1. Magnetic BINMs

Magnetic BINMs nanoscale particles are intentionally designed and manipulated to
replicate and imitate natural biological processes and structures. These particles leverage
their inherent magnetic properties to serve a multitude of applications. The design of these
NPs is influenced by biological systems, including cells, proteins, and viruses, to fabricate
functional materials with distinctive characteristics. The bio-inspired nature of these NPs
entails emulating specific attributes observed in biological systems. For instance, certain
magnetic NPs are engineered to replicate the morphology and organization of specific
cells, enabling them to engage with biological tissues selectively [66]. Individuals can
imitate the actions of biomolecules, such as enzymes or receptors, to carry out specific
tasks related to drug delivery or sensing. The manipulation of magnetic NPs by applying
external magnetic fields enables precise control over their movement and facilitates targeted
interactions within biological systems. The characteristic mentioned above is utilized in
various biomedical contexts, including but not limited to drug administration, medical
imaging, and the application of magnetic hyperthermia in cancer treatment. In general,
magnetic NPs inspired by biological systems integrate the principles of nanotechnology
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and biomimicry to generate novel materials that hold promise for fields such as medicine,
biotechnology, environmental remediation, and other domains.

Numerous magnetic BINMs have been successfully produced thanks to the applica-
tion of biomimetic synthesis techniques, from the hard magnetic alloys FePt and CoPt to
ferrimagnetic Fe3O4 found in magnetotactic bacteria (MTB) [67]. Because they use bio-
logical structures that can be altered through chemical or genetic engineering for certain
functionalities and scalable production, biomimetic approaches have special advantages.
Most previous publications on magnetic NP synthesis concentrated on physical and chem-
ical techniques. However, more recent developments in magnetic BINMs have enabled
the lab to replicate MTB-like chains of magnetic NPs, showcasing promising biomimetic
techniques for biomedical applications [68]. They come in a variety of forms. One method
uses magnetosome-associated MTB proteins to biomineralize Fe3O4 and produce polymer-
coated and non-polymer-coated magnetite NPs. Chemotherapy, magnetic hyperthermia,
enzyme immobilization, and photothermia are only a few of the uses for these NPs [69–71].
Purified and functionalized engineered structures derived from bacterial magnetosomes
can be used as contrast agents in magnetic resonance imaging, magnetic particle imag-
ing, and magnetic hyperthermia [72]. Hydroxyapatite (HAP)-coated magnetite NPs are
a different class of magnetic BINMs created by mixing a liquid HAP precursor with a
solution containing magnetite cores. These constructions help deliver genetic material,
magnetic scaffold creation for bone tissue repair, and magnetic hyperthermia [73,74]. The
design of biocatalysts for targeted enzyme prodrug therapy is made possible by combining
magnetic NPs with active ingredients in a biomimetic matrix, such as SiO2 [75]. Meth-
ods for developing magnetic BINMs can be divided into two categories: those that use
magnetic NPs that have already been obtained or are available commercially and those
that make magnetic NPs from scratch. The latter group has a better chance of producing
atomically precise structures that resemble their natural analogs. These techniques include
recombinant MamC-based anaerobic biosynthesis [76], PEGylated human ferritin NP-based
magnetite biomineralization [77], and encapsulation or biotinylation of isolated bacterial
magnetosomes [72]. Despite a long research history, magnetic BINMs are not as commonly
used in biomimetics as other materials. Nevertheless, recent developments in biomimetic
synthesis and the distinctive characteristics of magnetic BNMs imply they have enormous
potential for various biomedical applications.

3.2. Metal and Metal Oxide BINMs

Metal and metal oxide BINMs represent a captivating category of NPs that emu-
late natural structures and functionalities. Nanomaterials possess distinct characteristics
that render them exceptionally well suited for various biomedical applications. Metal
NPs, such as gold and silver, are frequently employed in biomedical research owing to
their remarkable optical characteristics, substantial surface area, and adjustable surface
chemistry. These technologies find utility in cancer treatment, precise administration of
pharmaceuticals, and medical imaging. Gold NPs can undergo functionalization through
the attachment of antibodies, enabling them to selectively target cancer cells and facilitate
the direct administration of therapeutic agents to the tumor site [78]. Silver NPs possess
antimicrobial properties, making them highly advantageous for wound dressings and
antibacterial therapies [79]. Metal oxides, including iron oxide NPs, exhibit magnetic char-
acteristics that make them well suited for various applications, such as magnetic targeting,
hyperthermia-based cancer treatment, and the development of contrast agents for magnetic
resonance imaging (MRI) [80]. External magnetic fields enable the precise localization of
iron oxide NPs within the body, facilitating targeted drug delivery and localized therapeutic
interventions. BINMs present a highly promising avenue for advancing various disciplines,
including medicine, diagnostics, and therapeutics. The valuable attributes of NPs, such
as their biocompatibility, functionality, and capacity to interact with biological systems,
render them instrumental in addressing a wide range of health challenges and enhancing
patient outcomes. Nevertheless, additional investigation is required to comprehensively
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comprehend their conduct within intricate biological settings and guarantee their reliability
and effectiveness in clinical contexts.

By choosing particular micro- or nanoenvironments during synthesis, biomimetic
synthesis techniques have been utilized to regulate the physical and chemical properties of
metal and metal oxide nanomaterials. Several platforms have been used for biomimetic
production of metal oxides, including ferritin, viral capsids, and bacterial cells. These
platforms provide exact conditions for NP formation and produce narrow distributions in
shape and size. These methods’ consideration of the environment and the possibility for
expansion make them attractive. Due to its benefits, plant-based biomimetic synthesis of
metal NPs has attracted interest recently, and researchers are investigating the mechanisms
of nanomaterial synthesis and metal ion biological reduction in plants. Metallic BINMs have
uses in the detection and eradication of contaminants. To develop sensors for biological
substances and conduct research on nanotoxicology, biomimetic techniques can be used to
make gold, silver, and bimetallic Ag-Au NPs [81]. For targeted drug delivery, biomimetic
mineralization methods utilizing cubic nanostructures built on lipid membranes known
as “cubosomes” are being investigated [82]. For the biomimetic synthesis of materials,
metal-organic frameworks (MOFs) are another topic of study. They are useful for drug
delivery, catalysis, and stabilizing biomacromolecules because they may be constructed
with biomimetic active centers and restricted pockets [83].

3.3. Organic, Ceramic, and Hybrid BINMs

Organic, ceramic, and hybrid BINMs constitute a distinct category of NPs that exhibit
various applications within biomedicine. Nanomaterials derive inspiration from natural
structures and processes, showing distinctive properties that render them well suited for
diverse biomedical applications. Organic BINMs are synthesized using naturally occurring
molecules such as proteins, lipids, and carbohydrates. Biocompatibility is a characteristic
exhibited by these entities, rendering them suitable for integration with biological systems.
Moreover, they can be modified through engineering processes to acquire precise func-
tionalities, such as targeted administration of pharmaceutical agents and facilitation of
tissue regeneration. One illustrative instance involves the utilization of liposomes, which
are lipid vesicles at the nanoscale level, to encapsulate drugs and facilitate their targeted
delivery to precise locations within the human body [84]. This approach serves to mitigate
adverse effects and enhance the efficacy of therapeutic interventions. Ceramic nanoma-
terials with bio-inspired characteristics, such as hydroxyapatite and silica NPs, exhibit a
mineral composition resembling bones and teeth [85]. They are extensively utilized in bone
tissue engineering, wherein they facilitate bone regeneration and augment the assimilation
of implants into native bone tissue. Moreover, ceramic NPs exhibit considerable potential
in drug delivery [86] and imaging [87] due to their inherent stability and biocompatibility.
Hybrid BINMs amalgamate distinct material characteristics to attain heightened function-
alities. Nanomaterials possess the capability to incorporate both organic and inorganic
constituents, as well as to integrate magnetic attributes with organic coatings. An illustra-
tion can be found in the advancement of hybrid magnetic NPs designed for targeted drug
delivery and hyperthermia-based cancer therapy [88]. A magnetic component facilitates
convenient manipulation and precise localization within the human body. At the same
time, implementing an organic coating ensures compatibility with biological systems and
controlled release of therapeutic agents. In biomedicine, organic, ceramic, and hybrid
BINMs exhibit significant promise. The valuable attributes of NPs, including their versa-
tility, biocompatibility, and capacity for customization, render them highly advantageous
in drug delivery, imaging, tissue engineering, and various other biomedical technologies.
Nevertheless, it is imperative to thoroughly assess the safety and effectiveness of these
novel nanomaterials before their extensive application in clinical settings.

Extensive research efforts have investigated BINMs comprising organic and ceramic
constituents, demonstrating considerable potential in diverse biomedical domains. Proteins
and peptides serve as templates for regulating the synthesis and self-assembly of organic
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BINMs, facilitating the development of multifunctional materials possessing distinct struc-
tures and functionalities. Peptoids, a biomimetic polymer category, are widely recognized
as versatile constituents for constructing hierarchical BINMs [89]. Research in the ceramic
biomaterial and nanomaterial domain is primarily centered around developing scaffolds
that emulate the structural and functional characteristics of natural tissues, particularly
bone. Ceramic structures with a high degree of porosity, similar in structure to cancellous
bone, have been successfully manufactured to facilitate the ingrowth of cells and the forma-
tion of new tissue. Biomimetic ceramic scaffolds are infused with therapeutic molecules to
enhance their biological efficacy. Hybrid BINMs are being investigated for their potential
applications in tissue engineering in orthopedics and dentistry. There is ongoing research
and development in drug delivery carriers, specifically on membrane-camouflaged NPs.

4. Advantages of Bio-Inspired Nanomaterials in Micro/Nanodevices

The utilization of BINMs has emerged as a novel approach to advancing micro/nanodevices.
Nanomaterials that draw inspiration from biological systems present a unique strategy for
addressing the difficulties associated with device miniaturization while simultaneously
improving performance, versatility, and biocompatibility. The utilization of BINMs in
micro/nanodevices encompasses a wide range of disciplines, such as electronics, optics,
environmental science, and biomedicine. The electronics field is investigating the potential
of bio-inspired materials, such as protein-based nanowires and biogenic semiconductors,
to develop novel electronic devices with distinctive electronic characteristics. BINMs have
significantly transformed micro/nanodevices within the biomedical field. For example,
nanomaterials have been utilized by drug delivery systems to augment the precision of
drug administration and regulate the release of therapeutic agents, leading to notable
advancements in treatment efficacy. BINMs exhibited enhanced sensitivity and specificity
in detecting biomarkers, thus facilitating the potential for early disease diagnosis and
disease monitoring. They possess numerous advantageous characteristics when integrated
into micro/nanodevices, such as improved performance, biocompatibility, self-assembly
capabilities, sustainability, and versatility (Figure 4).Micromachines 2023, 14, x FOR PEER REVIEW 13 of 106 
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4.1. Enhanced Performance

The utilization of BINMs has the potential to greatly enhance the performance of mi-
cro/nanodevices by capitalizing on their distinct properties. The observed enhancement in
performance can be attributed to the remarkable characteristics that nature has developed
over an extensive period of time. One potential application of nanomaterials is their ability
to replicate the adhesive properties observed in gecko feet [90]. This unique characteristic
has garnered significant attention due to its exceptional adhesive strength. Consequently,
nanomaterials with gecko-inspired adhesion can potentially revolutionize the development
of micro-robots and wearable devices, enabling them to adhere to diverse surfaces [91].
Likewise, the utilization of nanomaterials inspired by shark skin, which possesses charac-
teristics that reduce drag, holds potential for enhancing the energy efficiency of microfluidic
devices [92].

4.2. Biocompatibility

One notable advantage of numerous nanomaterials inspired by biological systems is
their biocompatibility. Nanomaterials that draw inspiration from or are derived from bio-
logical entities possess an inherent compatibility with biological systems. The compatibility
between these materials and living tissues or cells mitigates potential adverse reactions.
In drug delivery, biocompatible nanomaterials enable the transportation of therapeutic
agents within the human body while mitigating the risk of eliciting detrimental immune
responses [93]. Likewise, in biosensing, NPs can be utilized for extended monitoring
periods without inducing any adverse tissue irritation or rejection [94].

4.3. Self-Assembly

Self-assembly is a captivating characteristic observed in numerous biological systems,
wherein complex structures are formed spontaneously [95]. BINMs frequently inherit this
intriguing property. A range of factors, including pH, temperature, and ionic strength, can
control the process of self-assembly [96]. This ability to direct self-assembly can be utilized
to construct complex structures with minimal external intervention. This streamlined
manufacturing process offers the potential to create intricate designs for devices that would
present significant challenges or even be unattainable through conventional fabrication
methods [97].

4.4. Sustainability

The design and synthesis of BINMs frequently incorporate the principles of green
chemistry and biomimicry, contributing to the promotion of sustainability [98]. This
methodology has the potential to facilitate the advancement of fabrication processes and
devices that are environmentally sustainable. Numerous BINMs can be synthesized using
gentle conditions, devoid of toxic solvents or by-products. Moreover, certain nanomate-
rials can undergo biodegradation, thereby mitigating their environmental impact upon
completing their functional lifespan.

4.5. Versatility

The extensive array of biological systems that serve as sources of inspiration for
the design of nanomaterials provides a wide spectrum of potential applications. The
potential of BINMs is vast, as demonstrated by their ability to replicate the light-harvesting
capabilities of photosynthetic organisms to enhance solar cells [99] or imitate the structural
color found in butterfly wings to improve optical devices [100]. These capabilities hold
significant promise in developing materials with customized properties that can effectively
fulfill the distinct demands of diverse applications, thereby expanding the possibilities for
advanced micro/nanodevices.
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5. Bio-Inspired Nanomaterials in Micro/Nanodevices

The utilization of BINMs in micro/nanodevices represents the integration of intricate
designs found in the natural world with the capabilities of modern nanotechnology. This
convergence establishes a mutually beneficial relationship with potential remarkable ad-
vancements in various domains. These materials draw inspiration from the distinctive
characteristics displayed by biological organisms. By leveraging these properties, they
enable the development and production of micro/nanodevices that offer improved per-
formance, biocompatibility, self-assembly capabilities, sustainability, and versatility. The
effective integration of these materials in various devices is evident in multiple instances,
such as using self-cleaning solar panels, dry adhesives for micro-robots, photonic sensors,
drug delivery systems, and other notable applications [101–104]. The advent of BINMs
in micro/nanodevices signifies a significant advancement in technology, medicine, and
environmental sustainability, showcasing the extensive possibilities of biomimicry on the
nanoscale. The applications of BINMs in micro/nanodevices other than biomedicine have
been summarized in Figure 5, while Table 1 summarizes the subsections under this section
and lists the applications of BINMs in various types of micro/nanodevices belonging to
diverse nanotechnology domains.
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5.1. Chemical Reaction Systems

The utilization of BINMs is of significant importance in chemical synthesis and reac-
tions, as it draws inspiration from nature’s intricate designs to enhance various aspects such
as efficiency, selectivity, and sustainability. Chemical processes are frequently improved by
emulating the hierarchical structure and multifunctionality observed in biological systems,
such as enzyme-catalyzed reactions. For example, the development of bio-inspired catalysts,
which draw inspiration from the highly efficient and specific catalytic mechanisms observed
in biological systems, facilitates the execution of reactions with enhanced selectivity and
reduced environmental impact [105,106]. This approach effectively minimizes both waste
generation and energy consumption. The phenomenon of self-assembly, which is widely
observed in nature, is also utilized as a reliable technique in producing nanomaterials. This
technique enables the creation of intricate structures using mild conditions. In addition, the
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utilization of BINMs that replicate the biomineralization mechanism observed in corals has
enabled the synthesis of nanocrystalline materials under ambient conditions [107]. This
advancement holds significant potential for their application in various chemical reactions.
In general, the utilization of BINMs in the context of chemical synthesis and reactions is
a compelling demonstration of the efficacy of leveraging natural principles to propel the
field of synthetic chemistry forward [108,109].

The synthesis of ammonia through the electrocatalytic reduction of nitrate/nitrite can
be conducted using bio-inspired metalloenzymes [110]. Drawing inspiration from the natu-
ral NO3

− reductase, utilizing bio-inspired metalloenzymes presents a promising alternative
to metal nanomaterials. This substitution can significantly enhance the electrocatalytic
performance of NO3

−/NO2
− reduction to NH3 (NRA) and improve NH3 selectivity in

a neutral environment. Ford and his colleagues conducted a research study to create an
iron catalyst influenced by the active sites found in NO3

− reductase enzymes. This catalyst
was intended to treat industrial wastewater in challenging environmental conditions [111].
The catalyst possesses a secondary coordination sphere that assists in oxyanion deoxygena-
tion. The reduction of oxyanions forms a Fe(III)-oxo species, which subsequently acts as
a catalyst, facilitating regeneration while concurrently releasing water in the presence of
protons and electrons. Using the bio-inspired iron catalyst in NRA has offered a sustainable
approach for effectively utilizing the nitrogen resource. Through electrostatic interactions,
a biomimetic nickel bis-diphosphine complex fixed on altered carbon nanotubes (CNTs)
contained the amino acid arginine in the outer coordination sphere [112]. With a catalytic
selectivity for H2 oxidation at all pH levels, the functionalized redox nanomaterial demon-
strates reversible electrocatalytic activity for the H2/2H+ interconversion from pH 0 to 9.
The high activity of the complex over a broad pH range enables us to integrate this BINM
either in a proton exchange membrane fuel cell (PEMFC) employing Pt/C at the cathode
or in an enzymatic fuel cell in conjunction with a multicopper oxidase at the cathode.
Comparing the Ni-based PEMFC to a full-Pt traditional PEMFC, its maximum output is
just six times lower at 14 mW cm2. A new efficiency record for a hydrogen biofuel cell
using base metal catalysts is set by the Pt-free enzyme-based fuel cell, which produces
2 mW cm2.

5.2. Energy Harvesting and Storage

Using BINMs in the energy sector has sparked the development of ground-breaking
strategies for effective energy generation, storage, and conservation. These materials make
creating more effective and sustainable energy systems easier by taking their design cues
from nature’s perfectly regulated energy processes. For instance, the distinctive light-
harvesting systems seen in photosynthetic organisms have been imitated to increase the
effectiveness of photovoltaic cells, allowing them to more efficiently gather and transform
sunlight into electricity [113–115]. BINMs have also influenced the creation of durable
and light-weight materials for wind turbine blades, improving both the performance and
longevity of these devices [116,117]. Furthermore, progress has been made in designing
BINMs for energy storage devices, including batteries and supercapacitors. For instance,
bee-hive-inspired honeycomb shapes have been employed to make electrodes with a high
surface-to-volume ratio, increasing their energy storage ability [118–120]. The cooling
systems found in some animals have influenced the design of materials for effective heat
dissipation in energy devices.

5.3. Environmental Protection and Sustainability

Using nature’s design principles to address urgent environmental concerns, BINMs
have opened new vistas for environmental preservation and sustainability. For example,
the distinctive capacity of lotus leaves to self-clean has sparked the creation of coatings
based on nanomaterials that lessen the need for harsh cleaning agents, thereby reducing
water pollution. Similar to photocatalytic materials, which help break down pollutants
when exposed to sunlight, photocatalytic materials are inspired by photosynthesis in
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plants and offer a promising alternative for air purification and wastewater treatment.
Indirectly reducing the carbon footprint, BINMs have a considerable impact on the energy
sector, helping to create better energy storage devices and increasing solar cell efficiency.
Additionally, sustainable BINMs that are recyclable or biodegradable have been created
using the concepts of biomimicry, supporting a circular economy.

5.4. Development of Sensors

BINMs are transforming sensor technology by boosting sensitivity, specificity, and
dependability. For instance, photonic sensors that can sense minute changes in light,
temperature, and pressure have been developed using structures that mirror the delicate
architecture of butterfly wings [121]. Developing tactile sensors based on nanomaterials
is highly sensitive to various stresses [122]. Similarly, acoustic sensors for detecting light
sounds or vibrations have been created using the structure of spider silk, which is well
recognized for its sensitivity to air movements [123]. The invention of microphones that
simulate the highly directed hearing of the parasitic Ormiaochracea fly was made possible
by the development of acoustic sensors, inspired by spider silk’s sensitivity to air move-
ments. Chemical sensors that can detect trace amounts of explosives, narcotics, or other
compounds, similar to dogs’ noses, have been developed. These sensors are based on the
exceptional sense of smell that animals possess. Identical to the infrared-sensing organs of
the pit viper, thermal sensors, modeled after the heat-sensing abilities of some snakes, have
led to devices that can detect temperature changes without being impacted by ambient
temperature. The biocompatibility and high surface-area-to-volume ratio of several of
these materials make them excellent for detecting biomolecules at very low concentrations,
which has important implications for biosensors. Utilizing the special qualities of BINMs,
sensors can be developed that outperform conventional designs in terms of performance,
flexibility, and versatility, with uses in various fields, including security, healthcare, and
environmental monitoring.

5.5. Agricultural Sustainability

BINMs can potentially bring about significant transformations in the agriculture and
food sectors, presenting viable solutions to key challenges these industries face. The
applications of these technologies encompass precision agriculture, wherein bio-inspired
nanosensors are employed to monitor soil conditions and crop health, drawing inspiration
from the moisture detection mechanism found in plant roots [102,124,125]. This enables
the optimization of resource utilization. In pest and disease management, NPs that draw
inspiration from naturally occurring plant or microbial compounds, such as those that
imitate the pyrethrins found in chrysanthemums, can selectively target particular pests or
pathogens [126]. Within the realm of the food industry, nanomaterials play a significant
role in the development of intelligent packaging [127]. One notable application involves
utilizing nanosensors capable of detecting ethylene levels, a naturally occurring compound
that indicates fruit ripening [128]. By employing such nanosensors, monitoring changes in
food quality and minimizing wastage are possible. In addition, biosensors enhance food
safety by emulating the immune response, enabling the prompt identification of foodborne
pathogens such as E. coli or Salmonella [129]. The enhancement of nutrient delivery is
achieved by employing nano-encapsulation techniques that draw inspiration from inherent
cellular mechanisms, thereby augmenting the assimilation of nutrients or probiotics. The
field of waste management stands to gain advantages from utilizing BINMs, specifically
those that imitate the natural catalysts found in the gut of termites. These nanomaterials
can expedite the decomposition process of agricultural waste, resulting in the production
of valuable resources such as biofuel or compost [7,130]. Furthermore, implementing water
purification techniques inspired by the physiological processes observed in xylem tissues
of plant species such as pine trees plays a crucial role in enhancing the safety of water used
for irrigation purposes [131]. Using BINM applications offers a collective approach toward
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achieving enhanced global food security and environmental sustainability, resulting in
more sustainable, efficient, and effective solutions.

Table 1. A thorough summary of the subsections under this section and a list of the applications of
BINMs in various types of micro/nanodevices belonging to diverse nanotechnology domains.

Sector Devices Bio-Inspiration Mechanism Applications Refs.

Synthesis Catalytic converter
Enzymes/natural catalyst

Peptide sequence
Luffa sponge

Electrocatalysis

Water splitting
Oxygen reduction

CO2 reduction
Metal nanoparticle (MNP)

fabrication

[132–134]

Photovoltaic device
Fog harvester

Photosynthesis
Butterfly wings

Electrochemical
Photocatalysis

Water splitting
Fog harvesting [135–137]

Energy Microbial biofuel cells Photosynthesis
Hydrogenases in microorganisms

Electrochemical
Photocatalysis

Hydrogen production
Energy production [138–141]

Electrodes Bee honeycomb
Proton conduction as an

electrode
Electrochemical

Conversion of fuel energies into
electricity

Long-term energy conversion,
transfer, and storage

[142–145]

Solar cells

Photosynthesis
Peptide nanomaterials

Virus
Cobweb

Photovoltaic Electricity generation [146–150]

Battery and
supercapacitors

Benzoquinone (BQ) in photosystem
Adenine in DNA
Human tissues

Nanocluster arrays on a lotus leaf
M13 virus protein shells

Tobacco mosaic virus
DNA

Electrochemical

Supercapacitor
Li-ion battery electrode

Li-sulfide batteries
Rechargeable batteries

[136,151–
158]

Environment

Hybrid photocatalysts
Adsorbent

Magnetic polymer
nanocomposites

Ultrafiltration
membrane

Enzymes
Peptides

Biomolecules

Photocatalysis
Adsorption
Magnetism

Ultrafiltration

Environmental detoxification
Metal removal
Dye removal

Saline water separation
Oil separation

[108,109,130,
159–162]

Electrochemical
biosensor

RNA
Nicking enzymes Electrochemical sensing Mercury identification

Detection of Salmonella enteritidis [163,164]

Hybrid membranes Aggregated amyloid protein fibrils Filtration Heavy metal removal [165,166]

Biosorbent Bacteria Adsorption Elimination of Cd [167]

High-performance
nanofilter

Tau protein
Moringaoleifera pods Nanofiltration Air purification [168,169]

Sensors Potentiometric e-tongue Tongue Field-effect-transistor-
based Detecting the bitterness [170,171]

Organoid-based
biosensor Taste bud Electrophysiological

signals Taste sensation [172]

Enzyme biosensor Horseradish peroxidase Electrochemical Detection of H2O2 [173]

Olfactory biosensor Cardiomyocytes Electrochemical Odor detection [174,175]

Potentiometric
sweetness sensor Sweetness sensor GL1 Potentiometry Detecting the sweetness [176]

Chemiresistive sensor Sensor organ Electrochemical Detection of N2 [177]

Photonic sensor Morpho butterfly scales Optoelectrochemical Detection of H2, CO, and CO2 [178]

Photonic nose Turkey skin
M-13 bacteriophage Colorimetric Detection of molecules [179–181]

Acoustic sensors Spider slit organ
Lotus leaf Electrical Voice recognition [182]

OrmiaOchracea fly Electro-mechanical Direction finding sensor [183]

Infrared sensor Snake skin Photomechanical IR sensing systems [184]

Hydrodynamic sensors Fish and some amphibians Electro-mechanical Hydrodynamic artificial velocity
sensor [185]

Humidity sensors Spider silk

Electrochemical
Biological structures

Electrical conductivity
Transduction
mechanisms

Humidity and strain detection [186]

Motion sensors Snake movement Electro-mechanical Robot [187]
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Table 1. Cont.

Sector Devices Bio-Inspiration Mechanism Applications Refs.

Magnetic sensors Pigeons’ magnetoreception ability

Electromagnetic
Magnetoreception

Signal transduction
Miniaturization and

integration

Wastewater treatment [188]

Protective
Clothing
and Gear

Smart fabric

Lotus leaf
Algae eyespot-stigmata design

Touch-me-not (Mimosa sps.)
pulvinus
Pine cone

Chameleon skin
Fish scale

Mammalian tissue
Spider silk

Firefly glow
Shark skin

Mammal skin
Spider silk
Chameleon

Cactus spines

Microfabrication
Mechanochromic

Photonic elastomer
Biomimetic structures
Sensing and actuating

system
Self-regulation

Energy harvesting and
storage

Anti-dust cloth
Water-repellent fabrics

Light- and touch-sensitive apparel
Smart breathing fabrics

Camouflage apparel
Self-healing fabric

Anti-tear fabric design
E-circuited luminescent fabrics

Antibacterial clothing
Thermo- and pressure-sensitive

fabric
Self-adapting textiles

Self-hydrated clothing

[189–196]

Multipurpose
Adaptive
Materials

Self-healing materials

Wound healing
Bone remodeling

Plant healing and regeneration
Blood clotting and vascular repair

Microbial biofilms
Skin healing

Molecular mobility
Triggered response
Microcapsulation
Dynamic covalent

bonding
Autonomic healing

Field-effect transistors
Pressure sensors

Strain sensors
Chemical sensors

Triboelectric nanogenerators
Soft actuators
Smart coating

[197–200]

Shape-memory
materials

Creatures reducing impact damage
Muscle contractions
Insect wing folding
Plant movements

Tendons and ligaments
Caterpillar and snake movements

Soft tissues

Two-way shape
memory effect

Phase transitions
Molecular

reconfiguration
Energy storage and

release
Microstructure design

Biomedical devices
Aerospace engineering

Robotics
Textiles

[201–205]

Responsive surfaces

Lotus leaf
Gecko adhesion
Butterfly wing

Shark skin
Mussel adhesion
Pinecone closing

Venus flytrap

Hierarchical structures
Stimulus-responsive

materials
Self-assembly

Wetting and capillary
forces

Surface gradients
Biomolecular
interactions

Self-cleaning coatings
Anti-fouling surfaces

Stimuli-responsive materials
Environmental monitoring

[206–211]

Multifunctional
composites

Bone structure
Plant fiber

Nacre
Spider silk

Biomineralization processes

Synergy of materials
Hierarchical structure
Synergistic interfaces
Functionalization and

integration

Aerospace and automotive
industries

Energy harvesting and storage
Protective coatings

Robotics

[212–215]

5.6. Protective Clothing and Gear

The utilization of BINMs exhibits significant promise in augmenting the safety, perfor-
mance, and comfort attributes of protective clothing and gear. For example, the distinct
denticles found on the skin of sharks, which can impede the growth of bacteria, serve
as a source of inspiration for developing materials used in protective clothing. These
materials exhibit similar properties by effectively resisting microbial presence, thereby
mitigating the risks of infection in environments where individuals are highly exposed to
such hazards. The remarkable mechanical properties of spider silk have been replicated
in nanoscale architectures, resulting in materials that possess a unique combination of
strength, flexibility, and low weight. These materials have applications in various pro-
tective gear, such as bulletproof vests and helmets, where their exceptional properties
are highly advantageous. The phenomenon of structural coloration observed in peacock
feathers, wherein color changes occur in response to environmental stimuli, provides a
valuable model for developing materials capable of indicating hazardous conditions via
color alterations. The water retention abilities exhibited by cactus spines serve as a source
of inspiration for developing survival suits that can extract moisture from the atmosphere
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in arid environments. Moreover, the phenomenon known as the self-cleaning “lotus effect,”
observed in the leaves of lotus plants, has prompted the advancement of self-cleaning
materials that are particularly suitable for use in protective garments within environments
characterized by dirt or contamination.

5.7. Multipurpose Adaptive Materials

The utilization of BINMs shows great potential in multipurpose adaptive materials
(MAMs) for their ability to modify their properties according to environmental variations.
Researchers have developed self-healing materials that exhibit automatic repair mecha-
nisms, drawing inspiration from the regenerative capabilities observed in starfish and
salamanders. These materials mimic the natural healing processes found in living organ-
isms. Shape-memory materials have been engineered to imitate the adaptive response
of the Venus flytrap to external stimuli. These materials have found applications in var-
ious fields, including smart textiles and precise administration of pharmaceuticals. The
remarkable hydrophobic characteristics exhibited by lotus leaves have served as a source of
inspiration for developing responsive surfaces that can repel water and dirt. These surfaces
have practical utility in various domains, such as self-cleaning windows and anti-fouling
coatings for maritime vessels. Scientists have utilized the heat-resistant adaptations of the
Saharan silver ant as inspiration to create energy-efficient materials that can passively cool,
thereby decreasing the need for energy-consuming air conditioning systems. Furthermore,
the hierarchical arrangement of nacre, also known as the mother of pearl, has served as
a source of inspiration for the development of multifunctional composites that possess
a combination of strength and toughness. These composites have proven valuable in
applications such as protective coatings and producing durable construction materials.

6. Synthesis of Bio-Inspired Biomedical Nanomaterials

Living things have developed the ideal arrangements of their structures, parts, and
functions, giving rise to special qualities like the great strength of bones, the hardness of
enamel, and the capacity of shark skin to lessen fluid drag. In recent decades, an attempt
has been made to comprehend the connection between these elements in high-performance
natural materials. Some processes, such as the layered structure of nacre for improved
mechanical characteristics, the nanostructure of lotus leaves for hydrophobic properties,
and the proteins in the feet of Mytilusedulis for adhesion, have been postulated. High-
performance artificial materials have been created using these concepts in industries like
energy, architecture, aircraft, and biomedicine. New synthesis techniques have also been
put forth to better replicate the hierarchical components or structures of natural materials.
Natural bioprocesses, including biomineralization, cell metabolism, and photosynthesis,
that are essential to developing and operating natural biological systems have also received
attention. These biological processes have advantages over artificial synthetic ones since
they frequently occur in calm environments. A new study area called “bioprocess-inspired
fabrication,” which merges biology, life science, and material science, aims to create novel
synthesis methods inspired by biological processes in nature. High-performance biomateri-
als are being developed using bio-inspired techniques for tissue regeneration, medication
delivery, biosensing, and monitoring applications. To build biomimetic scaffolds for bone
tissue engineering or to use mussel-inspired bioadhesives for skin wound healing, these
methodologies imitate natural structures, such as the hierarchical structure of bone. The
synthesis of BINMs might be divided into three categories (Figure 6): synthesis inspired by
natural structure/components, synthesis inspired by biomolecules, and synthesis inspired
by bioprocesses [21].
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6.1. Inspired by Natural Structures

The structural characteristics of a material are closely associated with its physical and
chemical properties. Numerous natural substances exhibit intricate and well-organized
patterns across various levels, such as the “brick and mortar” arrangement observed in
nacre, the collagen fibers in a bone that are mineralized directionally, and the nanostructures
resembling branches found on the surface of a lotus leaf. The exceptional performance
of these distinct structures can be attributed to their specialized functions. At present,
replicating the composition and arrangement found in natural materials is a prominent
approach in biomedical materials to improve their mechanical strength, adhesion, and
antibacterial characteristics.

6.1.1. Inspired by Interior Ordered Structure

Numerous natural materials exhibit remarkable mechanical properties, including
strength, toughness, and lightness, despite comprising constituent components of lower
inherent strength. The primary reason for this phenomenon can be attributed to the multi-
scale hierarchical structures and diverse failure mechanisms observed in various materials.
In tissue engineering, biomedical materials must have exceptional biocompatibility and
sufficient mechanical properties. Within this framework, we shall present several notewor-
thy internal ordered structures observed in the natural world. These structures encompass
the “brick and mortar” layered structure, the Bouligand structure, and the directional
arrangement structures evident in enamel and bone. These structures are prototypes for
developing biomedical materials that exhibit enhanced mechanical strength. Nanomateri-
als, with potential for biomedical applications, can be synthesized by the inspiration of the
layered structure or multi-directional ordered structure of nature.

The distinctive layered structure of nacre, resembling bricks, has served as a significant
source of inspiration in advancing biomaterials with exceptional performance capabilities.
The fantastic mechanical qualities of this structure, renowned for its great strength and
toughness, have motivated researchers to explore the intricacies of reproducing similar
layered nanostructures in order to attain exceptional mechanical characteristics in synthetic
biomaterials. The development of nacre-like films by Yoo et al. is a notable achievement in
this field [216]. The aforementioned nanocomposite films, composed of structured boron
nitride nanosheets (BNNSs) and gelatin, were developed by leveraging the electrostatic
attractions between the charged groups of gelatin and BNNSs. To improve self-assembly
and the connection at the interface of these components, BNNSs were enhanced with hy-
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perbranched polyglycerol. The alignment of the BNNSs on a 2D plane could be adjusted by
increasing the BNNS quantity or through a specific functionalization technique, resulting in
a shift from a chaotic orientation to a structured brick-and-mortar arrangement. By varying
the BNNS and gelatin mixture in the composite and adjusting the BNNS arrangement, one
can modulate the nanocomposite’s mechanical attributes, such as its strength and rigidity.
This adjustment produces a substance with mechanical qualities mirroring human cortical
bone. Preliminary in vitro tests showed that this BNNS/gelatin blend could promote at-
tachment, sustenance, and growth of adipose-derived stem cells, marking its potential in
the biomedical sector. The combined mechanical and biological results hint at the material’s
potential applications in medical fields, especially tissue restoration. Similarly, Zhang et al.
took inspiration from nacre to address the longstanding issue of inadequate strength in
conventional guided bone regeneration (GBR) membranes. By organizing graphene oxide
nanosheets in a nacre-like fashion, they successfully amplified the mechanical strength
of the GBR membrane [217]. Nevertheless, a constraint arose regarding the dimensions
and structure of these planar membranes. The researchers were unable to manage sub-
stantial bone deficiencies effectively. One potential approach that has been suggested is
the conversion of these membranes into cylindrical scaffolds with three-dimensional struc-
tures [218,219]. This particular strategy shows potential for future developments in bone
restoration. The application of bi-directional freezing technology achieved the synthesis of
a silicate-based bioceramic composite. This innovative approach resulted in the formation
of an ordered lamellar microstructure, which bears resemblance to naturally occurring
layered structures. The material exhibits increased strength and facilitates a regulated
discharge of bioactive ions, hence expanding its possible uses [220]. Moving beyond nacre,
the Bouligand structure, commonly found in entities like fish scales and crab shells, has
also captured the attention of biomaterial developers. Li et al.’s development of a chitosan
film derived from crab shells beautifully replicates this dense Bouligand structure, offering
increased tensile strength and inherent antibacterial properties [221]. Furthermore, Han
et al. innovatively transformed fish scales, using in situ mineralization of calcium silicate,
into scaffolds for tendon repair, highlighting the diverse potential of these natural struc-
tures [222]. These investigations highlight the possibility of combining natural structural
influences with contemporary technologies. They demonstrate the progress in synthesizing
biomaterials inspired by biological systems and indicate the numerous avenues for further
investigation. The incorporation of natural structures alongside bioactive molecules holds
the potential to facilitate the development of a novel cohort of multifunctional biomateri-
als that are customized for distinct biological purposes. As we progress, a collaborative
endeavor to extract and incorporate knowledge from these studies might establish the
trajectory for future investigations in the field of multifunctional biomaterials.

Multi-directional ordered-structural arrangements can be seen in addition to layered
structures in various natural materials, including tooth enamel, bone, muscle, and tendon.
Natural materials have outstanding strength, toughness, and impact resistance thanks
to these structures, which span the nanoscale to the macroscale. Bones, teeth, tendons,
and ligaments are frequently replaced or repaired using biomedical materials that mimic
these components. With a 96 wt% inorganic component, tooth enamel is a highly min-
eralized structure renowned for its extreme durability. It has been utilized as a bionic
template to create materials for dental restoration. Notably, a sort of ceramic that resem-
bles enamel was made by directing the growth of TiO2 nanorods on a tin oxide substrate
that had been doped [223]. Using layers of HA and ZrO2, Zhao et al. developed a mul-
tiscale assembly process to produce bulk dental enamel [224]. Artificial tooth enamel
(ATE) was developed, and it demonstrated exceptional levels of toughness, strength, and
hardness, making it a suitable material for dental restoration. Type I collagen and hy-
droxyapatite nanocrystals combine to form mineralized collagen fibers in bone, another
highly inorganic tissue. The basic network of the bone is made up of these fibers, which
are grouped periodically. In the realm of biomaterials, materials that resemble bone are a
popular issue. Through protein-induced intrafibrillar mineralization of cell-laden collagen,
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Thrivikraman et al. created a scaffold that resembles bone, offering a model system for
studying bone physiology and disease [225]. Furthermore, utilizing a multiscale cascade
regulation technique, Zhao et al. designed a collagen/HA artificial lamellar bone (ALB)
that is centimeter-sized and has mechanical characteristics close to real bone [226]. The
successful development of a centimeter-sized artificial lamellar bone has been achieved
for the first time by implementing a meticulously coordinated strategy known as “multi-
scale cascade regulation.” This approach utilizes molecular self-assembly, electrospinning,
and pressure-induced fusion methodologies implemented across multiple scales ranging
from the molecular to the macroscopic (Figure 7). The artificial lamellar bone, predomi-
nantly composed of mineralized collagen fibrils organized hierarchically, successfully repli-
cates the chemical composition, multiscale structural arrangement, and rotated plywood-
like structure observed in natural lamellae. Notably, this achievement is accomplished
without the incorporation of any synthetic polymer. Consequently, it presents a distinc-
tive amalgamation of possessing a low weight and exhibiting a high degree of stiffness
(Ey ≈ 15.2 GPa), strength (σf ≈ 118.4 MPa), and toughness (KJC ≈ 9.3 MPa m1/2). Im-
plementing a multiscale cascade regulation strategy effectively addresses the limitations
associated with individual techniques, enabling the development of advanced composite
materials. This approach facilitates the precise control of hierarchical structural organiza-
tions at multiple scales, enhancing mechanical properties.The fabricated artificial lamellar
bone (ALB) brilliantly mirrors the structural intricacies found in natural lamellar bone. It
emulates the intricate hierarchical organization of mineralized collagen (MC) microfibrils,
ranging from the nanoscale to the macroscale (Figure 8A). At the smallest scale, mineralized
collagen microfibrils, each approximately 8 nm in diameter, form progressively through
a biomimetic mineralization process. This process starts with nucleating amorphous cal-
cium phosphate (ACP) precursors on the pre-constructed collagen microfibrils. The ACP
transitions to crystalline apatite, simultaneously elevating the order of MC microfibrils.
Transmission electron microscopy (TEM) images and fast Fourier transform (FFT) patterns
give credence to the in situ co-assembly of nHAp and collagen microfibrils. Furthermore,
the SAED patterns display diffraction rings characteristic of nHAp, mapped to the (002) and
(211) crystallographic planes (Figure 8B). The electrospun MC fibrils, mimicking the sponta-
neous assembly seen in nature, have a consistent diameter of about a hundred nanometers,
setting the stage for organization at more intricate levels (Figure 8C). Distributed uniformly
within the electrospun MC fibrils, these MC microfibrils orientate along the fibril’s length,
directed by the strong electric field and shear force during electrospinning. The SAED
pattern further emphasizes the polycrystalline nature of HAp, showcasing a (002) preferred
orientation parallel to the collagen fibrils (Figure 8C insert). These electrospun MC fibrils
accumulate in layers, either in aligned or random formations, resembling the pervasive
structures in natural bones. Layer upon layer of aligned MC fibrils, adjusting by 30◦ each
time, replicate a lamellar unit, eventually compacting into a bulk bone that retains the
initial orientations and structures post pressure fusion (Figure 8E,F). Supplementing this,
the focused ion beam (FIB) produced thin foils, which, when observed through scanning
transmission electron microscopy (STEM), confirmed the maintained orientation of MC
microfibrils and fibrils (Figure 8D). Lastly, the resulting ALB strikingly resembles the
natural cortical bone, with its fracture surface showcasing a tightly packed lamellar-like
microstructure (Figure 8F).
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Figure 7. Schematic representation of the “multiscale cascade regulation” approach employed in the
fabrication of artificial lamellar bone (ALB). (A) The process of calcium phosphate mineralization
mediated by collagen. (B) The mineralized collagen (MC) microfibril precipitate obtained through
centrifugation. (C) The electrospinning sols prepared by incorporating MC microfibril into a solution
of collagen and HFIP. (D) Fabrication of MC fibrils through electrospinning. (E) An aligned array of
MC (microcrystalline) fibrils obtained using a roller collector. (F) Bulk aluminum boride (ALB) forms
through pressure-driven fusion at ambient temperature. Reprinted with permission from Ref. [226],
Copyright 2023, Authors. CC-BY.
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microscopy (TEM) images reveal MC microfibrils, with the inset showing the electron diffraction
pattern identified as HA. High-magnification TEM images at the bottom visualize the interplanar
spacings of the HA crystalline lattice planes ((211), (002), and (100)). (C) TEM images display
uniform MC fibril distribution. The accompanying selected area electron diffraction (SAED) pattern
presents HA crystals’ concentric rings, indicating a dominant alignment along the (002) plane. High-
magnification TEM and fast Fourier transform (FFT) analysis evidence crystalline and amorphous
calcium phosphate coexistence. (D) Scanning transmission electron microscopy (STEM) images
of thin foils from a single sublayer, obtained through the focused ion beam (FIB) technique, show
parallel (upper) and perpendicular (lower) fiber orientations. (E) Scanning electron microscopy
(SEM) images reveal the ALB’s fracture surfaces displaying a rotating layer pattern akin to plywood.
(F) The synthetic ALB sample demonstrates morphological similarities to natural cortical bone, as
seen in the various shapes and sizes, with the fracture surface exhibiting a lamellar structure, as
shown on the right. Reprinted with permission from Ref. [226], Copyright 2023, Authors. CC-BY.

6.1.2. Inspired by Surface Structure

In conjunction with their inherent internal composition, the distinctive surface archi-
tectures of natural substances frequently play a substantial role in endowing them with
exceptional characteristics, including enhanced wetting behavior, adhesive properties, and
tactile perception capabilities. The external structures exhibit novel approaches in the
development of functional biomedical materials. The superhydrophobic and adhesive
surface structures could inspire synthetic nanomaterial routes.

Numerous natural creatures, including lotus leaves, red rose petals, mosquito complex
eyes, butterfly wings, and water strider legs, exhibit superhydrophobicity, a unique wetting
feature with a contact angle higher than 150 degrees. It has been demonstrated to possess
antimicrobial qualities. The nanoarray surface structure of cicada wings, which kills bacteria
in three minutes, was used by Ivanova et al. [227]. Using a reactive-ion etching process, the
scientists also created black silicon with nano-protrusions modeled after dragonfly wings.
This bio-inspired surface structure demonstrated strong antibacterial efficacy against Gram-
positive and Gram-negative bacteria. To reduce the contact area and minimize biofouling,
the lotus leaf’s superhydrophobic feature, which results from hierarchical architectures
of microsized protrusions and nanosized wax tubules, induces self-cleaning [228]. With
over 98% bactericidal effectiveness against Escherichia coli, a team led by Jiang successfully
developed a hydrophobic surface inspired by lotus leaves [229]. Li and colleagues used
straightforward dip-coating techniques to design functional gauzes by coating regular
gauze with a PDA hydrophobic layer and depositing Ag NPs to obtain a shape resembling
a lotus leaf. In vivo experiments revealed that this has effective anti-adhesion properties,
reducing wound adhesion and harming skin less when removed [230].

Through billions of years of evolution, several creatures, including the gecko, tree
frog, and octopus, have acquired incredible sticky skills. Due to their hierarchical mi-
crostructures, which allow their toe pads to adhere to various surfaces, geckos have an
exceptional capacity to attach to surfaces [231]. The suction cups with protuberances on an
octopus’ tentacles give them their adhesive properties, and tree frogs’ toe pads are made of
closely packed nanopillars and tightly arranged epithelial cells. To provide good adhesion
to dry and wet surfaces, Huang et al. developed a wound patch inspired by octopi’s
adhesive structure [232]. The team has developed a biocompatible wound patch with a tar-
geted design and selective stickiness by combining template replication and mask-guided
lithography. Figure 9 depicts a biomimetic, skin-adhesive patch with customizable wound
coverage. The distinctive GelMA-VEGF dressing, tailored to a specific wound shape, is
created on the Ecoflex patch’s surface by incorporating a UV mask. For adhesion to healthy
skin, these patches use an Ecoflex film with microstructures that resemble the suction-cup
effect, and for contact with the wound, they use a biocompatible gelatin methacryloyl
(GelMA) hydrogel. Using a flexible ultraviolet mask, the GelMA hydrogel is customized to
the geometry of each unique wound location, combining adhesion and non-adhesion prop-
erties into a single patch. Vascular endothelial growth factor is also included in the patch
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to hasten recovery. As the authors demonstrate, these characteristics enable the patches
to adhere to different skin types and improve the healing of a rat skin wound model. The
limitations of conventional patches are thus anticipated to be solved by this adaptable
patch, making it an attractive option for wound healing and associated biomedical uses.
A gravity-driven self-assembly technique allowed monodispersed steel microspheres to
settle into the microcolumns. A wiper blade ensured each microsphere was properly placed
and secured. The microspheres were designed to have a radius slightly bigger than the
cavity’s, enabling the creation of a negative mold with a convex bottom (Figure 10a). The
yet-to-be-cured Ecoflex liquid precursor was poured over the mold’s surface, filling the
microcolumns that had convex bottoms. The micro-suction-cup array was finally produced
after vacuum degassing, heat curing, and removal from the mold (Figure 10b–d). It is
important to highlight that by altering the size of the negative mold, different-sized Ecoflex
patches could be produced, showcasing the method’s adaptability. When a vacuum is
generated within the cavity, molecules at the boundary will restrict external liquids from
entering, aiding in preserving the vacuum. This phenomenon becomes more pronounced
on textured surfaces like pig skin. The research group tested four commonly used clinical
liquids (water, ethanol, glycerin, and gelatin) for interface wetting. The outcomes revealed
that the Ecoflex patch displayed exceptional adhesion on damp surfaces, holding up to a 0.2
kg weight in a tangential manner when stuck vertically to moist pig skin (Figure 10e). The
standard adhesion and peel strength data further supported this observation (Figure 10f,g).
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lustrative representation of the production procedure of the biomimetic patch. (b,c) Visual (b) and
scanning electron microscopy (c) images showcasing the suction cups (measuring 800 µm in diameter).
(d) Micro-CT scans of the suction cups (800 µm diameter) viewed from above and from the front. All
accompanying scale bars represent 1000 µm. (e) An image capturing the adhesive patch adhered
to pig skin, effectively bearing a weight of 0.2 kg. (f,g) Graphs indicating the resistance to peeling
(f) and the vertical detachment and (g) forces of suction cups of three varied sizes when tested on
both dry and damp surfaces. Reprinted with permission from Ref. [232], Copyright 2021, Authors.

GelMA hydrogels with unique shapes were produced using mask lithography on
Ecoflex patches, as depicted in Figure 11a. In particular, a UV mask was fabricated initially
using 3D printing technology to conform to the distinct contours of individual wounds. The
purpose of this mask was to partially impede the transmission of UV light while allowing
other portions to pass through. Following that, a solution of GelMA was administered onto
the surface of the Ecoflex patch and subsequently concealed with the mask. Consequently,
when subjected to ultraviolet (UV) light, solely the pregel solution located in the specific
regions exposed to UV radiation would undergo polymerization, forming a solid hydrogel.

In contrast, the portions of the solution that were not exposed to UV light would
remain in a liquid state and could subsequently be removed by wiping. The methodology
resulted in developing customized hydrogel dressings to fit the diverse contours of UV
masks, as depicted in Figure 11b. In addition, GelMA hydrogels of different concentrations
were prepared, and their efficacy in generating distinct geometries was assessed. The
results demonstrated that GelMA hydrogels with varying pregel concentrations (10, 15,
and 20 wt%) exhibited high efficacy and reliability in achieving distinct geometries.

The hierarchical topologies of tree frog toe pads and the octopus suction-cup structure
inspired Kim et al.’s development of a skin patch, which demonstrated increased peeling
resistance and enhanced adhesion [233]. These biomimetic methods influence how sticky
biomaterials are created for dry and moist environments. The preparation of materials with
unique performances for various healthcare needs has been made easier by biomimicry. For
example, high-strength NPs inspired by nacre are used for orthopedic implant materials,
and hydrophobic surfaces inspired by lotus leaves are used for antibacterial purposes.
Biomimetic structures have been created in artificial materials using a variety of production
processes, including freeze casting, plasma etching, and self-assembly. To fully realize



Micromachines 2023, 14, 1786 27 of 93

the potential of biomimetic nanomaterials in the biomedical field, additional research is
required to address issues like scale-up fabrication, accurately reproducing the structures
or properties of natural materials, and understanding the connection between bio-inspired
structures and biological properties.
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Figure 11. Creating GelMA dressings with customizable shapes. (a) Diagrams illustrating the process
of creating GelMA dressings with adjustable shapes. (b) (i) Various shapes of UV masks produced
through 3D printing. (ii) Creating GelMA hydrogels with shapes tailored to fit the UV masks.
(iii) The GelMA hydrogel can accurately cover each pig skin wound area, and the contrasting
properties of adhesion and anti-adhesion are incorporated within the same patch film. Blue dye was
included in the GelMA solution for enhanced imaging. The scale bar indicates 1000 µm. Reprinted
with permission from Ref. [232], Copyright 2021, Authors.

6.2. Inspired by Natural Biomolecule

Biomolecules serve as the essential building blocks of living organisms, fulfilling
crucial functions in various physiological processes, including metabolism, transmission
of genetic information, and immune responses, among other vital activities. Given the
progress made in medical standards and the increasing demand for treatments, there is
an urgent requirement to develop safe and efficient biomaterials. These biomaterials are
crucial for various applications, such as targeted drug delivery and regenerative medicine.
The utilization of biomimicry principles in the replication of biomolecules presents a viable
method for the development and production of biomaterials with exceptional performance
characteristics. This methodology enables the transformation of chemical compounds
into artificial materials that imitate the composition and behavior of naturally occurring
biomolecules, thereby meeting the rigorous requirements of biomedical uses. This section
provides an overview of various biomedical nanomaterials that draw inspiration from
biomolecules, encompassing their synthesis techniques and applications in biomedicine.

6.2.1. Protein-Inspired Nanomaterials

Proteins are essential to all living things and are involved in many biological processes,
structure, and function preservation. Scientists have attempted to mimic the sticky sur-
face structure of natural creatures to overcome the difficulty of obtaining strong adhesion
in wet interfaces. For instance, mussels use the amino acid 3,4-dihydroxyphenylalanine
(DOPA) to secrete their adhesive protein to cling to submerged surfaces. DOPA’s catechol
group promotes robust adherence in a wet environment. In response, Gan et al. created
polydopamine (PDA), which has a molecular structure comparable to DOPA and is rich
in catechol groups, to create antibacterial and sticky hydrogels for wound healing. This
method increased the bacterial hydrogel’s ability to adhere to surfaces, strengthening the
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sterilizing effect [234]. The hydrogels also showed a strong affinity with cells and tissues,
which sped up the healing process. Barnacle cement proteins can also create potent hy-
drophobic and cation interactions that strengthen cohesion. Ni et al. created modified
polyphosphazene/polyvinyl alcohol tissue adhesive hydrogels using this model. These
demonstrated a potent adhesive force to tissue surfaces in aqueous conditions while avoid-
ing the oxidation frequently associated with catechol-based hydrogels [235]. Additionally,
the hydrogels favorably affected hemostasis and skin wound recovery, indicating a possible
application in treating urgent wounds.

Bone and tooth proteins are essential to the biomineralization process. Notably, the
tooth protein amelogenin directs the synthesis of HA, which is necessary for tooth enamel.
Based on these findings, Chang et al. created a bioactive peptide to restore tooth enamel
through biomimetic mineralization using low-complexity protein segments (LCPSs) found
in the “fused in sarcoma” protein [236]. The LCPSs allowed amorphous calcium phosphate
to convert more slowly into hydroxyapatite, producing a more integrated mineral structure
and stronger enamel layers. This study offers a useful strategy for tooth enamel remineral-
ization. Enzymes, primarily proteins, also catalyze biochemical events in the body and are
crucial for detecting and managing diseases. The development of sophisticated artificial
enzymes holds great promise for biomedicine. For instance, by incorporating MoO3 into
a metal-organic framework, Yang et al. created a bio-inspired spiky peroxidase-mimic
enzyme to catch and kill germs. It has the potential for use in tissue engineering [237].
Additionally, Zhang et al. created a method to quickly gelate injectable hydrogels to fill
tissue defects [238]. Glucose oxidase and ferrous glycine (Fe[Gly]2), an enzyme complex in-
spired by biological systems, were used in this procedure. The ensuing reactions produced
carbon free radicals, which facilitated quick polymerization. These hydrogels demonstrated
adequate mechanical stability and an excellent capability for cartilage regeneration, making
them viable fillers for cartilage repair.

6.2.2. Peptide-Inspired Nanomaterials

Short sequences of amino acids known as peptides are essential for controlling hor-
mone release and metabolism. The design and manufacturing of peptide-inspired nanoma-
terials, which have several uses in the biomedical industry, have advanced significantly
in recent years. Due to their specificities, peptide-inspired nanomaterials can be used
as targeting agents. For instance, Yang et al. created the biomimetic peptide R4F with
Apolipoprotein A-I as inspiration to target the SR-B1 receptors on M1 macrophages in
rheumatoid arthritis cases [239]. This peptide was subsequently altered to coat an anti-
inflammatory medication on a neutrophil membrane-wrapped F127 polymer, drastically
reducing M1 macrophage polarization and increasing M2 macrophage polarization, sug-
gesting successful rheumatoid arthritis treatment. Nanomaterials inspired by peptides are
also widely used in cancer treatment. They enable the precise delivery of nanomedicines or
photosensitizers to tumor locations. Under particular light wavelengths, these photosensi-
tizers produce heat or reactive oxygen, which causes the death of tumor cells. This tactic
works well and has fewer negative consequences.

In the antibacterial field, peptide-inspired nanomaterials are also promising. For
instance, to combat methicillin-resistant Staphylococcus aureus (MRSA), Xie et al. prepared
an antibacterial peptoid polymer based on host-defense peptides [240]. After prolonged
use, this polymer showed outstanding anti-infection performance without producing drug
resistance and reduced the growth of MRSA biofilms. In addition, tissue restoration has
been performed with nanomaterials inspired by peptides. Self-assembled antimicrobial-
antioxidative peptides enhancing infected wound healing in vivo have been the subject of
certain studies. Another study described the usage of a bone-healing scaffold as a method
for repairing bone defects in the presence of infection. This scaffold was made by altering an
antibacterial peptide and an osteogenic growth peptide on a polyetheretherketone surface.
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6.2.3. Lipid-Inspired Nanomaterials

Lipids, organic substances found in the body in structures like vesicles and cell mem-
branes, are essential for energy storage and chemical communication among cells, tissues,
and organs. As a result, the biomedical industry makes substantial use of lipid-inspired
nanomaterials. Cell membranes, mostly made of lipids and proteins based on fatty acids,
can isolate cells from their environment and regulate the flow of nutrients and waste
products. They can transport NPs or medicines directly. For instance, Ying et al. im-
proved tumor targeting effectiveness by encapsulating nanocamptothecin into macrophage
membranes [241]. These macrophage-mimicking nanocamptothecin particles accumulated
more at tumor sites than uncoated NPs in a mouse model of breast cancer. Additionally,
nanocarriers coated with erythrocyte membranes were employed for in vivo biological
imaging and medication delivery since they could resist macrophage clearance. Similarly,
functional NPs were encapsulated in platelet membranes, reducing macrophage-like cell
absorption and demonstrating preferential adherence to human blood vessel injury.

Vesicles, composed of lipid bilayers, store, digest, or transport materials. Recently, hy-
brid bio-inspired nanovesicles were developed for lung tissue transport and immunomod-
ulatory activity by fusing lung-targeting liposomes and macrophage-derived nanovesicles.
Extracellular vesicle-based collaborative anti-infective therapy was the subject of a straight-
forward biomimetic technique by Qiao et al. [242]. Pd-Pt nanosheets and ginger-derived
extracellular vesicles gave EVs-Pd-Pt NPs good biocompatibility and sustained blood circu-
lation, producing a potent antibacterial effect. Extracellular vesicles (EVs) have also been
employed to encourage the differentiation of stem cells into several adult somatic cell types.
In a recent method, EVs stimulate fibroblasts to transdifferentiate into cells that resemble
induced cardiomyocytes. Direct conversion of embryonic fibroblasts toward mature in-
duced cardiomyocytes may be accelerated using EVs generated from embryonic stem cells
during cardiomyocyte differentiation. The electrical and typical cardiac calcium transient
properties of these generated cardiomyocytes were similar to those of cardiomyocytes.

6.2.4. Other Biomolecule-Inspired Nanomaterials

Biomolecules outside proteins and lipids, such as viruses and saccharides, influence
biomedical nanomaterial design. Complexes of saccharides and proteins are essential
for biological processes like immunological control and drug transport. Taking this as
a foundation, Duan et al. created a branched glycosyl polymer-pyropheophorbide-a
conjugate that may be used as a drug delivery system [243]. Anticoagulants like heparin, a
highly sulfated glycosaminoglycan produced by mast cells, are frequently utilized. Sodium
alginate was used as a biological macromolecule model by Ma et al. to build a heparin-like
anticoagulant biomolecule to reproduce its function. This biomolecule demonstrated good
anticoagulant efficacy and biocompatibility in vitro and in vivo [244]. To develop a new
design methodology for anticoagulant surfaces, Wang et al. explored the endothelialization
of a novel heparin-like polymer [245]. Viruses, contagious organisms that multiply inside
live cells, can be bionic models for artificial materials. Chen et al. developed a reversible
and activatable near-infrared II nanoprobe by imitating a virus. This might help with
future viral encephalitis interventions by tracking the progression of viral infection in real
time [246]. In a different investigation, Li et al. created a nanodrug inspired by a virus that
might avoid lysosomal hydrolysis while being delivered, potentially providing a unique
method for treating tumors [247].

Nanomaterials with biomolecular inspiration have demonstrated promise in tumor
therapy, medication transport, and tissue engineering. They increase the effectiveness
of treatment, lessen adverse effects, and are frequently artificially produced, ensuring a
plentiful supply of raw ingredients with strict quality control. Making multifunctional
BINMs with intricate architectures resembling natural proteins is still difficult. These NPs
also need to have their long-term safety, immunogenicity, and in vivo stability investigated.
Emerging technologies like artificial intelligence may help the development of these nano-
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materials in the future by providing fresh perspectives for individualized and targeted
design [248].

6.3. Bioprocess-Inspired Nanomaterials

The bioprocess can efficiently and accurately construct hierarchical structures or
synthesize essential substances in a natural environment while operating under mild con-
ditions. The remarkable bioprocesses offer environmentally sustainable methods for the
production of synthetic materials. The acquisition of knowledge regarding natural biopro-
cesses has facilitated the development and utilization of advanced synthesis technologies
in creating high-performance biomaterials.

6.3.1. Inspired by Biomineralization Process

The production of organic–inorganic composites in structures like bone and teeth,
known as biomineralization, inspires the creation of biomedical materials [1,249–251].
Researchers have used this procedure to produce materials for cancer therapy, medication
creation, and hard tissue repair. By simulating the mineralization process, Li et al. created
a dental replacement with enamel’s mechanical qualities [252]. Tang et al. suggested a
method for restoring enamel using a solution of calcium phosphate ion oligomers [253].
Zhou et al. produced extremely rigid DNA-HA bulk composites for dental applications
using an engineering mineralization method [254]. Enhancing bone healing materials
has also relied heavily on the biomineralization process. Bioactive nanominerals can
be added to bone-repairing scaffolds using methods inspired by biomineralization to
promote osteogenic activity. To better understand the process of bone formation, Ping et al.
produced strontium carbonate crystals inside collagen fibers [255]. New cancer treatment
approaches are also inspired by biomineralization. Zhao et al. suggested exploiting the
buildup of calcium salts, which causes cell calcification and cancer cell death, as a drug-free
tumor treatment method [256]. A macromolecular medication that causes cancer cells
to calcify extracellularly was created through other studies. Last, a biomineralization-
inspired technique was applied to safeguard tumor-targeted delivery carriers, highlighting
its applicability in numerous biomedical research fields.

6.3.2. Inspired by Photosynthesis

Advanced artificial photosynthetic systems for biomedical materials have been devel-
oped due to photosynthesis, a crucial bioprocess found in plants, algae, and cyanobacteria.
Microalgae, particularly cyanobacteria, have recently been used as effective oxygen sources
to combat tumor hypoxia. For instance, Huo et al. produced oxygen using a hybrid of
cyanobacteria and photosensitizers, which, when exposed to laser irradiation, transformed
into singlet oxygen and killed cancer cells [257]. In addition to supplying oxygen for wound
healing, microalgae also promote angiogenesis and collagen synthesis [258]. Artificial pho-
tosynthesis systems, like the one created by Chen et al. using spinach nano-thylakoid units
(NTUs), show promise for degenerative disorders like osteoarthritis. The development
of CM-NTUs, which combine NTUs with the chondrocyte membrane (CM), improved
intracellular ATP and NADPH levels, enhancing cell metabolism and delaying the onset of
osteoarthritis [259]. Nanomaterials with inspiration from biomineralization processes are
widely used in biomedical disciplines and can safeguard the environment and promote the
sustainable development of biomaterials. The inhomogeneous conveyance of mineralized
media, slow reaction speeds, and difficulty in creating substantial, structurally sound
structures continue to be problems. Like photosynthesis-inspired solutions that offer novel
disease treatments, they are still in the early phases. They must fully address issues with
light penetration into tissue, immunological responses, and biological safety.

6.4. Challenges for Bio-Inspired Synthesis

To improve performance in biomedical applications, bio-inspired design efficiently
transfers special features and functionalities from natural materials to synthetic materi-
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als. Natural materials’ hierarchical systems and individual components can be studied to
provide solutions to various biomedical problems. The idea of manufacturing inspired
by biological processes has evolved, enabling the creation of biomedical materials under
benign circumstances. Designing biomaterials for various medical applications is made
possible by certain biomimetic techniques. For instance, biomimetic nanovesicles are used
for medicine administration, whereas bio-inspired layered nanostructures improve the
mechanical qualities of bone implants. Biomedical nanomaterials inspired by biomin-
eralization and photosynthesis also show great potential for treating cancer and tissue
engineering.

Although notable advancements have been achieved in bio-inspired biomedical nano-
materials, unresolved obstacles still necessitate attention to facilitate their effective imple-
mentation. These materials frequently require optimal performance in fluidic environments
characterized by dynamic flow, such as bodily fluids, where their properties may undergo
compromise relative to their performance in dry or stabilized conditions. The occurrence
of mechanical failure in moist environments is a prevalent concern. One of the primary
obstacles encountered in the field is expanding the production of BINMs. This is due to the
increasing complexity associated with achieving precise arrangement of structures and com-
ponents at the nanoscale, which consequently restricts the size and yield of these materials.
There is currently a deficiency in cost-effective and efficient techniques for producing goods
on a large scale. Furthermore, it is imperative to conduct extensive research and analysis
on the biological characteristics of BINMs. This is crucial because numerous materials
with potential applications have not undergone thorough in vitro and in vivo assessments,
which poses a significant obstacle to their successful implementation in clinical settings.

To enhance the efficacy of the development process for multifunctional biomedical
nanomaterials, it is imperative to incorporate advanced methodologies such as integrating
multiple bio-inspired strategies and utilizing computational simulations. Moreover, it is im-
portant to note that the study of biomedical materials encompasses various interdisciplinary
domains, including material science, biology, and medicine. Consequently, the comprehen-
sive assessment of BINMs necessitates the collaborative efforts of researchers specializing
in materials, biologists, and medical professionals. Collaboration is pivotal in facilitating
the effective translation of materials from the laboratory setting to clinical applications.

7. Design Principles of Bio-inspired Nanomaterials’ Interfaces

Recent interest in research on bio-inspired interfaces has increased as a result of its
expanding significance in the field of biomedical science. Enhancing medicine effectiveness
while reducing adverse effects is one of the main goals in this sector. This includes increas-
ing the effectiveness of distribution systems and giving targeting abilities more specificity.
Another important factor is biomedical imaging, which provides essential information
about molecular distributions in vitro and in vivo. The use of NPs in biomedical applica-
tions has been extensively explored due to their adaptability and accessibility [260]. When
designing a delivery method, it is critical to consider the NPs’ trajectory through the body
and any potential roadblocks on the way to the illness site. NP-based delivery techniques
typically include injection or oral consumption to penetrate the circulatory system.

Consequently, ensuring that the NPs reach the intended organs without being elim-
inated by the body is a crucial component of effective delivery. The reticuloendothelial
system (RES), which comprises the liver and spleen, eliminates NPs from the circulatory
system. When NPs are administered intravenously, they are frequently labeled as alien
substances and go through hepatic Kupffer cell sequestration [261]. An additional issue
emerges when NPs interact with various biomolecules, including plasma proteins, upon
entering a complex biological milieu like blood, interstitial fluid, or the extracellular matrix,
creating a protein corona. This corona development activates the mononuclear phagocyte
system (MPS) for quick ejection as proteins build up on the NP surfaces [262]. To overcome
these obstacles, NPs must have the proper mechanisms that will allow them to safely pass
through the body and arrive at their target without being prematurely removed. One
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common technique to prevent RES clearance and early ejection is to cover NPs with the
membranes of circulating blood cells [263]. Providing enough time in the circulatory system
is crucial for the designed NPs to reach their target site. The capacity of NPs for selective
targeting, or the capacity to interact just with the area of interest while disregarding other
sites (cells, tissues, etc.), is another key aspect of NPs. NPs must also be securely cleared
from the body when the task is completed without having any negative effects. They are
essential for creating NPs since they ultimately dictate how the particles will behave when
ingested by the body. Given its complexity as a biological environment, the human body
can vary significantly from person to person. Designing NPs that can overcome these obsta-
cles while keeping their intended functionality becomes even more difficult and complex.
Figure 12 illustrates three distinct categories that can be drawn from the design guidelines
for NP interfaces inspired by biological systems. First, membrane-coated NPs are produced
using components like mammalian cells, cancer cells, bacteria, or viruses. The second
category includes ligands that modify surfaces. This includes altering the NPs’ surface
using polyethylene glycol (PEG), zwitterions, positively or negatively charged ligands, or
viral capsids. The third category of design concepts for these bio-inspired interfaces is the
alteration of the geometric aspects of the NPs, such as their size or shape.Micromachines 2023, 14, x FOR PEER REVIEW 36 of 106 
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Researchers are interested in bio-inspired NPs because of the wide range of biomedical
science applications they could have, including targeted drug administration, in vivo
therapies, bioimaging, and cancer treatment. However, the human body’s capacity for
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recognizing and getting rid of foreign compounds is one of the main obstacles to overcome.
For example, the mononuclear phagocyte system (MPS) is quickly expelled from the body in
response to opsonin interactions. The targeting abilities of ligand-functionalized NPs might
also be lost due to excessive protein corona formation, which can also significantly affect
the surface chemistry of NPs, negating or changing their desirable features. Without further
surface alterations, NPs rely solely on the improved permeability retention effect, which
is typically ineffective [264]. Numerous methods have been developed to address these
problems by changing the way NPs function or their geometrical characteristics. These
techniques are divided into various groups in the following sections based on the type of
alterations. Applications of membrane-coated and surface-functionalized NPs span a broad
spectrum of fields (Figure 13). One of these is bioimaging, which uses NPs to improve
visual data at the cellular or molecular level. NPs can be used in targeted delivery to deliver
medications to illness locations directly, boosting therapy effectiveness and lowering side
effects. In multimodal theranostics, a discipline that integrates diagnostics and therapies,
NPs are also employed to diagnose and treat diseases simultaneously. Finally, these NPs
are used as drug carriers, acting as a means of controlled and precise drug delivery.
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7.1. Biomimetic Functionalization of BINPs

Biomimetic substances can replicate or imitate the attributes, composition, chemi-
cal properties, and functionalities of their biological counterparts [265]. Both red and
white blood cells can traverse the circulatory system without premature elimination by
the mononuclear phagocyte system (MPS). Platelets can resist phagocytic activity and
are equipped with surface receptors that enable them to selectively target specific sites,
thereby aiding in tissue repair following an injury. Cancer and stem cells have also been
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investigated in this field of study (Figure 14). The emergence of membrane-coated nanopar-
ticles (MCNPs) has resulted from the need to prolong circulation time upon entry into
the bloodstream, enable precise drug delivery within the body, or function as contrast
agents for bioimaging applications [266]. Moreover, scholarly investigations have been
undertaken on materials derived from pathogens, including bacteria [267] and viruses [268],
which exhibit distinctive capacities in the delivery of payloads. Consequently, it is crucial
to comprehend the unique characteristics of different biological entities and exploit their
therapeutic capabilities. This section examines the utilization of the intrinsic characteristics
of biological materials by scientists to develop NPs for biomedical purposes while also
addressing the potential obstacles they may face during this process.Micromachines 2023, 14, x FOR PEER REVIEW 39 of 106 
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below: CCR2 is an acronym for C-C chemokine receptor 2, CXCR1 represents C-X-C chemokine
receptor 1, and CXCR2 denotes C-X-C chemokine receptor 2. C8bp is an abbreviation for C8 binding
protein, VCAM-1 signifies vascular cell adhesion molecule-1, and ICAM-1 refers to intercellular
adhesion molecule-1. TGF-β corresponds to transforming growth factor beta, TF-antigen refers to
Thomsen–Friedenreich antigen, EpCAM stands for epithelial cell adhesion molecule, and PAMPs
is the abbreviation for pathogen-associated molecular patterns. Reprinted with permission from
Ref. [260]. Copyright 2022, Authors (CC-BY).

7.1.1. Erythrocyte Membrane

Red blood cells (RBCs) are the predominant cellular constituents within the human
body. They possess notable attributes such as biocompatibility, prolonged circulation
duration, and biodegradability, rendering them highly suitable for utilization as carriers
of NPs. The CD47 proteins, which serve as markers of self, are found on the surfaces
of red blood cells (RBCs) and play a role in preventing their phagocytosis by immune
cells. As a result, the presence of these proteins leads to an extended circulation time
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for RBCs [269]. This characteristic has been employed to enhance drug delivery systems,
wherein NPs are enveloped with red blood cell membranes (RBCMs), forming RBCM-
NPs. The successful generation of RBCM-NPs has been achieved by encapsulating poly
(lactic-co-glycolic acid) (PLGA) NPs within RBCMs. Applying this coating facilitates a 64%
reduction in macrophage uptake of the NPs and prolongs their elimination half-life [270].
RBCM-NPs have demonstrated efficacy in selectively targeting particular conditions, such
as atherosclerotic plaques, and in cancer therapy.

Nevertheless, the effectiveness of RBCMs is dependent on the enhanced permeability
and retention (EPR) effect, given its inherent absence of natural tumor-targeting capabilities.
To augment the targeting efficacy, ligands are introduced into red blood cell membranes
(RBCMs) through chemical synthesis or lipid insertion techniques [271]. These supplemen-
tary components have substantially improved their capacity to target cancer cells selec-
tively. Furthermore, RBCM-NPs have demonstrated bioimaging practicality, particularly in
in vivo tumor imaging. Ongoing investigations and advancements in dual-functionalized
RBCM-NPs show encouraging outcomes in enhancing bioimaging capabilities.

7.1.2. Leukocyte Membrane

Leukocytes, also known as white blood cells (WBCs), are important immune cells
that protect the body from diseases and infections. WBC membrane-coated NPs able to
self-recognize, penetrate biological barriers, and bind to receptors at disease locations
have been developed due to their varied capabilities. For instance, WBC membrane-
coated nanoporous silica particles that maintain WBC characteristics, such as avoiding
the immune system and crossing the endothelium barrier, have been produced. Various
WBCs, including neutrophils, macrophages, monocytes, and T cells, have been employed
as NP carriers. By simulating the interaction of the cell with inflammatory tissues, neu-
trophil membrane-coated NPs, for example, can target and lower bacterial load at infection
sites [272]. Due to their capacity to target inflammation and tumor endothelium specifically,
macrophages have been incorporated into macrophage membrane-coated nanoparticles
(MMCNPs) to slow the progression of atherosclerosis [273]. They also show promise in
treating cancer and bioimaging, although they have drawbacks, such as the ability to target
particular cancers [236,237] exclusively. The power of monocytes to infiltrate has been
taken advantage of in a lipid NP-based drug-delivery platform, which enables monocytes
to transport and deliver lipid NPs to sick areas [274]. Monocytes are normally recruited
when physiological changes occur in the body. T cells have been employed to coat NPs’
membranes, increasing their circulation duration and enhancing cancer targeting. T cells
have a higher concentration of targeting proteins than other WBCs. For instance, coated
NPs with azide-modified T-cell membranes exhibit strong fluorescence intensity and an
improved photothermal response. However, the lack of tumor-specific indicators displayed
by solid tumor cells limits their ability to treat solid tumors [275].

7.1.3. Thrombocyte Membrane

Blood components called platelets are in charge of starting blood clots when an artery
is damaged. Their membranes’ distinctive qualities make them advantageous for coating
NPs, as they can support active and passive drug targeting. Platelet membranes include
CD47 “marker-of-self” proteins, similar to those found in red blood cell membranes, which
resist immune clearance, extending the circulation of platelet membrane-coated nanopar-
ticles (PMCNPs) for passive drug targeting [276,277]. Additionally, platelet membranes
include particular surface receptors such as glycoprotein Ib that can connect to exposed
collagen in injured vascular tissues to stimulate tissue repair or directly bind to pathogenic
bacteria to enable active drug targeting [278,279]. They have become quite popular in the
creation of nanotherapeutics as a result. Platelet-like proteoliposomes that strongly interact
with circulating monocytes have been created to enhance post-infarction therapy. Because
PM-NPs naturally include platelet surface proteins that can interact with anti-platelet
antibodies, they can be used as an antibody decoy in treating immune thrombocytope-
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nia [280]. Additionally, they are utilized in tumor imaging, drug delivery, and the detection
of cancer cells. In a mouse model of human lung cancer, for instance, a study revealed that
docetaxel-loaded PLGA NPs coated with platelet membranes preserved the maximum drug
concentration in tumors, successfully reducing tumor growth. Additionally, PM-NPs have
been used in developing phototheranostic nanoprobes to target various tumors and deliver
additional anti-cancer medications actively. The immune system can remove PM-NPs from
patients with autoimmune disorders when platelet autoantibodies combine with them to
form immune complexes [281].

7.1.4. Cancer Cell Membrane

Because they have surface receptors that permit adhesive contact, resulting in metastatic
deposits, cancer cell adhesion molecules (CCAMs) play a significant role in cancer metas-
tasis. Additionally, CD47 surface proteins are expressed by cancer cells, allowing them
to avoid the immune system. Using these characteristics, researchers have coated NPs
with cancer cell membranes (CCMs). CCM-coated NPs (CCM-NPs) can avoid immune
detection and target malignant locations or tumors that are similar to them. They can be
customized to satisfy the particular requirements of cancer therapy [282]. According to
studies, compared to uncoated NPs and red blood cell membrane-coated NPs (RBCM-NPs),
CCM-NPs have much higher cellular absorption and a strong affinity for source cancer
cells [283]. CCM-NPs can achieve self-recognition, internalization by the source cancer
cell lines, and highly selective targeting to the homologous tumor in vivo by adjusting
the source of the cell membrane coating [284]. In tumor imaging, CCM-NPs have been
widely employed and frequently functionalized with extra features [285,286]. For instance,
recent research produced unique iridium compounds functionalized with black-titanium
NPs coated with CCMs. These NPs have the potential to accumulate in malignant cells,
accumulate in mitochondria, develop effective photothermal capability when exposed to
NIR-II radiation, and form reactive oxygen species when exposed to ultrasonic radiation.
This enables precise imaging of the tumor site and results in the elimination of tumor cells
in mice models [287].

7.1.5. Stem Cell Membrane

Mesenchymal stem cells (MSCs), extensively researched in biomedical research, are
renowned for their simplicity in separation and capacity to target tumors. MSCs have been
effectively used in medication delivery systems based on NPs. According to research, the
loading of NPs into MSCs preserved cell viability and differentiation. A human glioma
model also shows great selectivity for MSC membrane-coated NPs (MSCM-NPs) [288].
Numerous cancer-related research studies have used MSCM-NPs. Due to various chemical
recognition moieties on the MSC membrane, an MSC membrane-coated gelatin nanogel, for
instance, displayed excellent stability and tumor selectivity both in vitro and in vivo [289].
In an orthotopic breast cancer model, PLGA NPs covered with an MSC membrane demon-
strated strong anti-tumor effectiveness [290]. Taking advantage of MSCs’ capacity for tumor
homing, MSCM-NPs have been widely applied in bioimaging. A biocompatible MSCM-NP
with multimodal imaging abilities for near-infrared fluorescence, magnetic resonance, and
computed tomography has recently been developed [291].

7.1.6. Bacterial Membrane

Despite being frequently harmful, some aspects of bacteria can be utilized in ther-
apeutic settings. Immunogenic antigens and adjuvants in bacterial membranes activate
innate immunity and support adaptive immunological responses. These can be carefully
coated onto NPs to simulate how the immune system reacts to antigens naturally when
germs are present. Bacterial outer membrane vesicles (OMVs) are typically coated on
NPs to create bacterial membrane-coated NPs (BM-NPs) [292]. BM-NPs are a relatively
recent development in cell membrane-coated NP research, yet they have a number of
special benefits. They showed bacterial-specific targeting; for example, S. aureus-infected
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macrophages and organs were selectively targeted by PLGA NPs coated with S. aureus
OMVs, a feature not seen in other membrane-coated NPs. Given the rapid rise of bacterial
drug resistance, BM-NPs may be used to create antibacterial vaccines as an alternative to
antibiotics [293]. For instance, BM-NPs were created utilizing OMVs from CRKP, which
improved the survival probability of immunized mouse models when exposed to a lethal
dose of CRKP. Because some bacteria naturally target tumors, BM-NPs can be used for
cancer treatment or tumor imaging. BM-NPs have been used to create a cancer vaccine
that, when paired with radiotherapy, demonstrated increased tumor growth inhibition and
made anti-cancer immunological memory.

However, research on using bacterial membranes as NP coating agents is ongoing.
The impact of OMV size on host cell entrance and the cytotoxicity of BM-NPs for realistic
biomedical applications are among the difficulties. To minimize the inflammatory response
of BM-NPs, lipopolysaccharide neutralizing peptides have been suggested as a partial
answer; nonetheless, these issues must be uniformly resolved before BM-NP-based vaccines
and treatments can go further.

7.1.7. Virus-Derived Strategies

Viruses are frequently used in biomedical applications because they can protect and
transfer nucleic acids into host cells while eluding the immune system. Adenoviruses and
retroviruses have been utilized as viral gene vectors to introduce particular genes into host
cells. Due to their pathogenicity, probable toxicity, mutagenesis, and constraints on size and
cargo capacity, these vectors do have drawbacks. Alternatives include virosomes and virus-
like particles (VLPs). While virosomes are liposome-like particles with integrated surface
glycoproteins but lack capsid proteins, VLPs mimic the capsid architecture or envelope
proteins of genuine viruses. Both can enclose a variety of payloads, yet neither contains
viral genetic material. They hold potential for drug delivery, imaging, immunotherapy,
and theranostics because they retain important virus traits, including cellular entrance,
immune evasion, and precise targeting [294]. Viral proteins can be applied to NPs to give
them additional functionality. For instance, magnetic NPs were enclosed in a hepatitis
B core VLP, which improved cellular uptake and demonstrated potential for magnetic
resonance imaging [295]. As an alternative, metallic NPs were joined to a specific adenoviral
platform, producing an NP-labelled vector that could infect cells and target tumors. Surface
alterations of NPs to resemble virus surfaces are a common component of other virus-
derived techniques [296].

7.2. Surface Modification to Functionalize NPs

A crucial step in customizing NPs for particular biomedical applications is surface
modification. The characteristics of NPs can be significantly altered using this rather simple
procedure. For instance, coating NP surfaces with PEG might prevent the mononuclear
phagocyte system (MPS) from clearing them away. It is possible to vary the surface electrical
charges of NP surfaces by precisely adjusting the attachment of functional groups, which
can affect how quickly cells absorb substances. Some strategies even try to mimic viruses
to give NPs virus-like characteristics. This section lists the common ligands used in surface
modifications and their benefits and drawbacks.

7.2.1. PEGylation

PEGylation, which involves bonding polyethylene glycol (PEG) molecules to NPs,
was initially published in 1977 and is a widely used method to extend the period that NPs
circulate in the bloodstream [297]. PEGylation creates an “anti-fouling” surface for the
NPs by forming a hydrophilic brush coating. This layer inhibits aggregation, opsonization,
and phagocytosis, preventing the NPs from being quickly eliminated from the body by
the mononuclear phagocyte system (MPS). PEGylation has been crucial in developing
therapeutic NP uses, from cellular pathways to sonodynamic therapy and tumor targeting
for cancer. Additionally, PEGylated NPs have improved stability and biocompatibility in
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intricate biological contexts. mRNA-based COVID-19 vaccines have benefited greatly from
PEG-decorated NPs [298].

PEGylation does have certain downsides, though. Unwanted immunological events,
such as hypersensitivity reactions and the production of anti-PEG antibodies, have been
documented, especially following the administration of numerous doses of PEGylated
NPs [299]. Uncertainty surrounds the precise mechanisms causing these reactions. Despite
these drawbacks, PEGylation’s advantages—such as decreased immunogenicity, antigenic-
ity, and toxicity—ensure its relevance in nanomedicine research.

7.2.2. Zwitterions

Researchers are looking toward substitutes like biodegradable poly(glutamic acid),
non-biodegradable poly(glycerol), and zwitterionic compounds due to worries regarding
PEG’s drawbacks. These zwitterionic materials, which permit charge neutrality and super
hydrophilicity by having equal amounts of cationic and anionic moieties, are of great
interest. Similar to PEG, they can prolong the half-life of NPs in blood circulation without
provoking an immunological reaction. Due to the robust hydration layer that zwitterionic
materials create through electrostatic contact, they also resist nonspecific protein adsorp-
tion. This characteristic may, however, disrupt target cell communication and lessen the
effectiveness of cellular absorption. This difficulty could be overcome by adding a variety
of unique functional groups, enabling improved NP stability and biocompatibility, and
offering a configurable interface for varied purposes [300]. Zwitterions have been used
in some cutting-edge applications, including the development of ratiometric pH sensors
based on quantum dots, the creation of reduction-responsive materials to boost intercellular
drug-release rates in tumor cells, and the development of pH-sensitive materials to envelop
NPs for effective tumor targeting. Additionally, zwitterionic materials can be functionalized
to respond to additional stimuli, including temperature or light. For instance, multifunc-
tional NPs coated with zwitterion have demonstrated great capabilities for imaging-guided
cancer therapy [301].

7.2.3. Surface Electrical Charge

The absorption and subsequent behavior of NPs are greatly influenced by their surface
charge [302]. Positively charged NPs are naturally drawn to cell membranes because they
normally have a negative charge, but negatively charged NPs may be less readily taken
up by cells. NPs can draw different proteins to them in a complex biological context,
creating a “protein corona” on their surface. The qualities and functioning of the NPs
could be altered by this process, possibly leading to them losing their intended role or
acquiring undesirable traits. The protein corona may alter the surface charges or physical
characteristics of NPs, which may enhance the likelihood of non-specific internalization.
Surface functional group adsorption or environmental exposure are two ways to change
the surface charge of NPs. As a result, when designing NPs, it should be decided whether
to use or prevent protein adsorption.

7.2.4. Virus Mimicking

It has been demonstrated that surface alterations of NPs to imitate virus features can
improve therapeutic effectiveness and efficiency of distribution. The surface topology of
the virus highly influences viral interactions with host cells in question, such as enveloped
viruses. Researchers have encouraged interactions between NPs and target cells, thereby
improving delivery efficiency by mimicking these topological features, such as adding
smaller silica NPs to larger ones to increase surface roughness [303]. Additionally, scientists
are imitating viral design, particularly the viral capsid, which is essential for cellular
entry and targeting. Viral capsids can be made with synthetic building pieces that give
specialized targeting functions, unlike natural virus vectors like virus-like particles (VLPs)
or virosomes. One illustration is a multifunctional viral mimic created from self-assembled
amphiphilic dendritic lipopeptides that showed the ability to infect solid tumors and tumor
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cells like a virus and suppress tumor growth in both in vitro and in vivo experiments [304].
The ability of NPs to deconstruct and distribute their cargos—a benefit for intracellular
interactions—can be achieved by integrating stimuli-responsive receptors to connect with
specified places through viral capsid mimicry [305]. These virus-mimicking methods
eliminate the necessity for viral components such as VLPs and virosomes that might cause
infections. This field of study has the potential to aid in creating multifunctional artificial
“viruses” that could get beyond the drawbacks of the NP drug delivery systems that are
now in use [306].

7.2.5. Surface Modification by Bioactive Molecules

Specific biological functionalities can be bestowed on NP surfaces by adding bioac-
tive chemicals [307]. With these alterations, bioactive compounds can selectively target
particular cells or tissues, enabling targeted medication delivery. This guarantees effective
delivery of medicinal substances to the intended site. NPs can also be made less hazardous
through surface alterations, making them safer for biomedical applications. A further
benefit is the improved biocompatibility, which enables NPs to operate in a biological
context without inducing an unfavorable immune response. Surface modification can
be achieved using a variety of methods. Physical adsorption is one technique in which
bioactive chemicals are non-covalently attached to the surface of the NPs [308]. Covalent
bonding is an alternative strategy that uses chemical reactions to permanently link the
bioactive chemicals to the surface of the NPs. The encapsulation method traps the bioactive
chemical inside the NP framework [309]. For these goals, several bioactive compounds are
frequently used. Targeting certain cell receptors or enhancing the solubility and stability
of NPs are possible with peptides [310] and proteins [311]. Chitosan [312] and hyaluronic
acid [313] are natural polysaccharides that can facilitate targeted drug administration and
improve biocompatibility. Antibodies can target particular cells or pathogens because of
their high specificity, whilst some tiny compounds can increase the solubility of NPs or be
used for targeting.

The utilization of bioactive compounds offers a number of benefits. Targeting ligands
on the surface of NPs, for instance, can increase receptor-mediated endocytosis and increase
the effectiveness of cellular uptake. Because some bioactive compounds can react to certain
stimuli, such as pH changes [314], temperature changes [315], or the presence of specific
enzymes [316], controlled medication release is possible. Additionally, NPs can reduce
off-target and negative effects frequently associated with many therapeutic medicines
by concentrating on particular tissues or cells. There are, however, issues to take into
account [317]. Under physiological circumstances, the NP and the bioactive chemical bond
must stay stable. It can be challenging to scale up from laboratory synthesis to larger-scale
production without losing the effectiveness of bioactive molecule attachment. Furthermore,
therapeutic NP change may be subject to regulatory review and rigorous testing. Using
bioactive compounds to modify NPs holds great promise, particularly for biomedicine. NPs
can work more precisely and effectively by utilizing these molecules, making them suitable
for a range of tasks from imaging to medicine delivery. Although there are obstacles
to overcome, current research in this field promises to produce ground-breaking and
revolutionary answers.

7.3. Functionalization through Geometric Change

Even without any further surface alterations, the geometry of NPs, particularly their
size and shape, significantly impacts their characteristics and interactions with cells. The
size of the NPs taken up by cells directly affects how cytotoxic they are. Additionally, how
NPs interact with cells is influenced by their form. For example, rod-shaped NPs interact
with cells more effectively than spherical NPs because they have more accessible binding
sites [318]. Designing more efficient NPs requires an understanding of the connection
between the geometry of NPs and their functionality.
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7.3.1. Size

The potential for endocytosis, a process that enables NPs to be internalized by cells,
and the interactions of NPs with cell membranes are strongly influenced by their size.
Increasing the number of ligands on NP surfaces to facilitate endocytosis is advantageous,
but doing so requires bigger NP sizes. The size must fall within a specific range, though,
as NPs less than 30 nm might not be able to drive the membrane-wrapping process as
well as those larger than 60 nm. Regardless of the NP core and surface charge, in vitro
studies indicate that the ideal range for cell uptake is between 10 and 60 nm [319]. There
has been some variation in the effect of NP size on cellular internalization among studies.
According to some studies, cellular internalization of functionalized Au NPs is inversely
correlated with size [320], whereas, according to others, internalization of Au NPs larger
than 50 nm is more common [321]. These differences could result from variances in the
gold NPs’ production processes or decorating ligands.

7.3.2. Shape

Beyond only size, NPs’ form greatly impacts how well they interact with cells and
deliver drugs. Spheres, rods, triangles, stars, and wires are examples of frequently pro-
duced NP shapes [322]. Due to their greater aspect ratio (AR), or length-to-width ratio,
compared to spherical NPs, rod-shaped NPs have demonstrated increased effectiveness in
cellular uptake [323]. This discovery has sparked additional in vivo research. For instance,
after intravenous administration, NPs with bigger ARs were seen to collect in the spleen,
while those with lower ARs were probably stuck in the liver of mice [324]. In a different
study, mice given rod-shaped MSNs orally showed higher content in all organs than mice
given spherical MSNs. This may be explained by the prolonged half-life of rod-shaped
MSNs in blood circulation and their capacity to resist macrophage engulfment in RES
(reticuloendothelial system) organs, including the liver and spleen [325]. The form of NPs
also influences the cellular uptake mechanism. A comparison of gold NPs with star, rod,
and triangle forms revealed a substantial relationship between the endocytosis pathway
and NP shape, which calls for more research [326]. The decreased internalization rate seen
for rod-shaped NPs relative to spherical NPs must be considered, even though larger AR
NPs have been connected to higher cellular absorption efficiency [327]. Therefore, the
benefits of modifying NP shape must be carefully assessed in the context of particular
biomedical applications.

7.4. Challenges to Achieve Successful Designed Interfaces

Manufacturing challenges persist, and there is a lack of uniformity in the methods
used to fuse cell membrane vesicles with NP cores. Extrusion is a technique that can create
uniform particles, but it has complexity and manufacturing scale difficulties. Since cell
membrane coating integrity affects internalization, current approaches frequently produce
a mixture of fully, partially, and uncoated NPs. The classification of the therapeutic effects
of various MCNPs will require further research to determine how to differentiate fully
coated NPs. Future MCNP manufacturing efforts should improve procedures and create
a successful, all-encompassing process for cell membrane extraction and fusing with NP
cores. Moving toward industrial-level output requires automation. In the future, process
development should take precedence over discovery more often.

NPs can be functionalized in a variety of ways employing surface modification tech-
niques, sometimes with the addition of ligands or molecules for decoration. Despite its
advantages, there are a few difficulties. Due to their effect on cellular absorption efficiency,
the density and orientation of ligands on the NP surface must be considered. The complete
evaluation of NPs with various surface changes also lacks defined approaches. The geo-
metric features of NPs must also be considered because they can affect cellular absorption
and possibly prevent planned functionalization. The next part will go into more detail
regarding how NPs’ geometric characteristics affect them.
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8. Biomedical Applications of Bio-inspired Nanomaterials in Micro/Nanodevices

When the many uses of bio-inspired nanomaterials in micro/nanodevices are exam-
ined, a wide range of biological uses is found. From improving drug delivery methods to
coming up with new ways to treat patients, these new materials are paving the way for big
changes in healthcare. Drug delivery involves complicated systems, nanotheranostics for
combined therapy and diagnostics, gene therapy for genetic disorders, and the creativity
of self-propelled active nanovehicles and biohybrid micro/nanomotors that can move
through complex biological environments. Bio-inspired nanobiosensors that can identify
molecules in a complex way add to these achievements. Also, bio-inspired organ-on-a-chip
technology gives us new ways to test drugs, and cancer-on-a-chip models change how we
study cancer. Bio-inspired wound healing dressing mats and antimicrobial surfaces, such
as those made from structure-oriented peptides, metal/metal oxide NPs, and chitosan,
show how bio-inspired nanomaterials have a wide range of uses in medicinal applications.
Bacteriophage-based antimicrobial surfaces use the power of nature to fight bacterial dis-
eases. This all-around look at bio-inspired nanomaterials shows their importance and opens
up a new era of opportunities for biomedical progress in micro/nanodevices. Figure 15
summarizes the biomedical applications of BINMs in micro/nanodevices.
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8.1. Drug Delivery and Therapeutic Applications
8.1.1. Drug Delivery Systems

In the field of medicine, BINMs have made major advancements, particularly in the
creation of sophisticated drug delivery systems. These nanomaterials can potentially ad-
dress major difficulties in targeted medication delivery because they were created and
constructed to resemble biological structures and processes. Micro- and nanodevices made
from BINMs are at the core of these breakthroughs. In several ways, these devices can
improve drug delivery. They can increase the specificity of drug delivery, ensuring that
the medications reach the cells or tissues that require them most. This can reduce the
risk of negative effects while significantly increasing the drug’s effectiveness. Liposomes,
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for instance, nano-sized vesicles modeled after biological membranes, are frequently uti-
lized as drug delivery systems. They can encapsulate both hydrophilic and hydrophobic
medications, guard against deterioration, and release them gradually at the intended spot.
Dendrimers, another category of BINMs, are spherical, highly-branching NPs. They are
good candidates for targeted drug administration due to their well-defined structure, con-
trollable size, and surface functional groups. Recently, scientists have started investigating
the use of BINMs for targeted drug delivery that imitates the structure of cells, bacteria,
and viruses. For instance, NPs with red blood cell (RBC) membrane coatings have shown
promise in drug delivery while dodging the body’s immunological response. But creating
these biologically inspired micro- and nanodevices is difficult. Addressing concerns with
stability, biocompatibility, scalability, and reproducibility is necessary. Extensive testing
and clinical trials are also necessary to determine the safety and effectiveness of these
technologies for human usage.

Liposomes are widely recognized as a promising and versatile means of drug delivery.
Liposomes present several advantages in comparison to traditional drug delivery sys-
tems. These advantages include targeted delivery to specific sites, controlled and sustained
release of drugs, protection against degradation and clearance, enhanced therapeutic out-
comes, and reduced toxic side effects. These beneficial characteristics have contributed to
the effective authorization and medical utilization of numerous liposomal pharmaceutical
products within recent decades [328]. Liposomes can be divided into several categories
depending on their lamellarity and compartment structure. These categories include mul-
tivesicular liposomes (MVLs), unilamellar vesicles (ULVs), oligolamellar vesicles (OLVs),
and multilamellar vesicles (MLVs). OLVs and MLVs both have an onion-like structure;
however, MLVs have more than five lipid bilayers, while OLVs only have two to five
concentric lipid bilayers. On the other hand, MVLs have several non-concentric aqueous
chambers that are each surrounded by a single bilayer lipid membrane, giving them the
appearance of a honeycomb. Small unilamellar vesicles (SUVs, 30–100 nm), large unil-
amellar vesicles (LUVs, >100 nm), and giant unilamellar vesicles (GUVs, >1000 nm) are
subcategories of ULVs based on particle size. According to several research studies, ULVs
come in various sizes, including SUVs that are less than 200 nm and LUVs that are between
200 and 500 nm in size. Numerous techniques are applied for the preparation of liposomes.
The manufacturing methods that are frequently utilized encompass thin-film hydration,
ethanol injection, and double-emulsion techniques. The conventional procedures in these
processes encompass several steps. Firstly, multilamellar vesicles (MLVs) or unilamellar
vesicles (ULVs) are prepared, depending on the chosen method. Secondly, the size of the
vesicles may be reduced if deemed necessary. Thirdly, the drug solution(s) are prepared
and loaded into the liposomes. In the case of passive drug loading, this step is combined
with step one. Fourthly, buffer exchange and concentration are performed if required.
Fifthly, sterile filtration or aseptic processing is carried out. Lastly, if deemed necessary,
lyophilization is conducted, followed by packaging. Figure 16 shows graphic represen-
tations of several polymersome- and liposome-related topics. In Panel A, the structural
differences between polymersomes and liposomes are shown in the cross-section. The
main physicochemical characteristics of nanocarriers are depicted in Panel B. The enhanced
permeability and retention (EPR) effect, shown in Panel C, is a passive buildup of nanocar-
riers through fenestrated endothelial cells in tumor tissues. Due to their leaky vasculature
and compromised lymphatic outflow, tumor tissues are more conducive to nanocarrier
accumulation [329]. The liposome-inspired drug delivery system is very promising in
multidimensional biomedical applications, including pulmonary nanotherapeutics [330],
tumor-targeted therapy [331], anti-biofilm agents [332], and multiple diseases [333].



Micromachines 2023, 14, 1786 43 of 93
Micromachines 2023, 14, x FOR PEER REVIEW 49 of 106 
 

 

.  

Figure 16. Graphical representations of several polymersome and liposome-related topics. (A) the 
structural differences between polymersomes and liposomes are shown in cross-section. (B) The 
main physicochemical characteristics of nanocarriers are depicted. (C) The enhanced permeability 
and retention (EPR) effect. It is a passive buildup of nanocarriers through fenestrated endothelial 
cells in tumor tissues. Due to their leaky vasculature and compromised lymphatic outflow, tumor 
tissues are more conducive to nanocarrier accumulation. Reprinted with permission from Ref. [329], 
Copyright 2023, Elsevier. 

Dendrimers have emerged as crucial nanostructured carriers in nanomedicine for 
treating numerous diseases [334]. Thanks to their structural diversity, they can deliver 
medications and genes in various ways (Figure 17). For example, dendrimers with a hy-
drophobic center and a hydrophilic periphery can act like unimolecular micelles and suc-
cessfully saturate hydrophobic medicines. The use of cationic dendrimers as non-viral 
gene carriers is widespread. Drugs and functional moieties can be attached to dendrimer 
surface groups to increase stability and solubility. Enhancing dendrimer compatibility 
and binding properties involves conjugating them with polymers like PEG or polysaccha-
rides. Utilizing ligands like hyaluronic acid or mannose has improved tumor penetration 
and targeted distribution to specific cell types, such as macrophages. Compared to free 
medicines, dendrimer–drug conjugates have fewer systemic side effects and more local-
ized efficacy. Dendrimer conjugation can lengthen the half-life of pharmaceuticals, im-
proving medicinal efficacy and reducing administration frequency. Dendrimers increase 
the solubility of drugs, increasing their potency. When compared to timolol maleate, a 
study on a dendrimer–drug combination known as DenTimol demonstrated encouraging 
outcomes for the treatment of glaucoma. Various cleavable or stimuli-responsive linkages 
ensure that medications released from dendrimer–drug conjugates reach the intended 
area. For this aim, disulfide/thioketal linkers and pH-responsive linkers are frequently 
employed. Dendrimer–drug conjugates have promise as efficient drug delivery systems 
with controlled release mechanisms for better therapeutic results. Figure 18 illustrates the 

Figure 16. Graphical representations of several polymersome and liposome-related topics. (A) the
structural differences between polymersomes and liposomes are shown in cross-section. (B) The
main physicochemical characteristics of nanocarriers are depicted. (C) The enhanced permeability
and retention (EPR) effect. It is a passive buildup of nanocarriers through fenestrated endothelial
cells in tumor tissues. Due to their leaky vasculature and compromised lymphatic outflow, tumor
tissues are more conducive to nanocarrier accumulation. Reprinted with permission from Ref. [329],
Copyright 2023, Elsevier.

Dendrimers have emerged as crucial nanostructured carriers in nanomedicine for
treating numerous diseases [334]. Thanks to their structural diversity, they can deliver
medications and genes in various ways (Figure 17). For example, dendrimers with a
hydrophobic center and a hydrophilic periphery can act like unimolecular micelles and
successfully saturate hydrophobic medicines. The use of cationic dendrimers as non-viral
gene carriers is widespread. Drugs and functional moieties can be attached to dendrimer
surface groups to increase stability and solubility. Enhancing dendrimer compatibility
and binding properties involves conjugating them with polymers like PEG or polysaccha-
rides. Utilizing ligands like hyaluronic acid or mannose has improved tumor penetration
and targeted distribution to specific cell types, such as macrophages. Compared to free
medicines, dendrimer–drug conjugates have fewer systemic side effects and more localized
efficacy. Dendrimer conjugation can lengthen the half-life of pharmaceuticals, improving
medicinal efficacy and reducing administration frequency. Dendrimers increase the solu-
bility of drugs, increasing their potency. When compared to timolol maleate, a study on a
dendrimer–drug combination known as DenTimol demonstrated encouraging outcomes
for the treatment of glaucoma. Various cleavable or stimuli-responsive linkages ensure
that medications released from dendrimer–drug conjugates reach the intended area. For
this aim, disulfide/thioketal linkers and pH-responsive linkers are frequently employed.
Dendrimer–drug conjugates have promise as efficient drug delivery systems with con-
trolled release mechanisms for better therapeutic results. Figure 18 illustrates the strategies
for dendrimers in drug and gene delivery. Over free medicines, dendrimer–drug conjugates
have several benefits, such as fewer systemic side effects and increased efficacy at the target
site. They can lengthen a drug’s half-life and make it more soluble, enhancing patient
compliance and therapeutic results. For instance, PAMAM dendrimers have been utilized
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successfully to deliver antiglaucoma medications, exhibiting better effects on decreasing in-
traocular pressure. Examining drug release from such conjugates is crucial since regulatory
agencies’ classification of dendrimer–drug conjugates might be complicated. Drug release
from dendrimers in tumor cells has been facilitated by cleavable linkers like disulfide
and thioketal, increasing the effectiveness of cancer therapy. By serving as “unimolecu-
lar micelles” or “dendritic boxes,” dendrimers also provide drug encapsulation through
their hydrophobic cavities, enhancing the solubility of hydrophobic medicines in water.
PAMAM dendrimers have also been extensively used as gene transfection vectors because
of their great biocompatibility and capability for nucleic acid loading. They can improve
endosomal escape and cellular uptake, increasing transfection effectiveness. Dendrimers
can overcome intracellular gene delivery hurdles when decorated with functional moieties
like peptides. This results in successful gene delivery and tumor growth inhibition. Overall,
dendrimer-based medication and gene delivery systems provide considerable promise for
treating various disorders using nanomedicine [335–337].
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Polymeric micelles (PMs) are nanostructures created through amphiphilic block
copolymers (ABCs) self-assembled in an aqueous medium. These micelles possess a
distinctive core-shell architecture. In conventional micelles, the hydrophobic segment of
the polymer is oriented toward the interior, forming the core, whereas the hydrophilic
segment is positioned on the outer surface. Reverse micelles exhibit an orientation that is
opposite to that of regular micelles. Mixed micelles are generated by adding solubilizers to
the existing surfactant micelle structure. The drug is expelled into the micelle core by the
hydrophobic component of the copolymers, thereby enabling the solubilization of phar-
maceuticals with low solubility. The intermolecular hydrophobic interactions between the
drug and copolymers are important in modulating the drug release rate and enhancing its
solubility. Numerous hydrophobic copolymers have undergone testing to solubilize drugs
with low solubility efficiently. Polymeric micelles frequently contain a hydrophobic core
enclosed by hydrophilic copolymers [338]. The hydrophilic portion of the polymer faces
outward in normal micelles, while the lipophilic portion faces the core. The orientation of
reverse micelles is the opposite. Solubilizers are included in the surfactant micelle to create
mixed micelles. Pharmaceuticals that are difficult to dissolve are ejected into the micelle
core by the copolymer’s hydrophobic component. Copolymers’ hydrophobic interactions
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with the medication are essential for reducing drug release and increasing solubility. It
has been tested that different hydrophobic copolymers can successfully solubilize poorly
soluble medicines. Drug leakage from polymeric micelles must be reduced during dis-
tribution, and drug release must be regulated to provide optimal therapeutic targeting.
Either stable confinement of the drug payload within micellar cores or triggered release
in response to internal or external stimuli are necessary for targeted drug delivery. While
slowly released medications from capsules allow for pharmacological and toxicological
effects, prolonged drug release from polymeric micelles in circulation assures congruent
pharmacokinetics with the micelles. Stimuli-sensitive polymeric micelles use internal trig-
gers, such as changes in pH, redox potential, temperature, enzyme profiles, and oxygen
levels, to take advantage of disease-induced changes in target tissues. Outside stimuli,
including heat, ultrasound, near-infrared light, or magnetic fields can also trigger drug
release. These methods improve the adaptive drug carriers’ ability for precise drug delivery,
especially in sick tissues like malignant ones. Micelles are distinguished by their core-shell
structure. The corona shell shields the drug from the mononuclear phagocyte system, al-
lowing for longer blood circulation and less toxicity. They make it possible for hydrophobic
medicines to become stable and water-soluble, facilitating effective medication delivery.
The ideal micelles for dispensing hydrophobic medications feature a hydrophilic corona to
protect and stabilize the medication. Medicines with a high water solubility can have their
intravenous administration of hydrophobic medicines made possible by polymeric micelles.
Although polymeric micellar systems have several drawbacks, different methods have
been created to overcome these obstacles. With the right approaches to drug loading issues,
scale-up options, and thorough research into their behavior in biological systems, poly-
meric micelles can successfully find their place in the market for various biomedical uses.
Polymeric micelles present promising opportunities in biomedical applications [339,340].Micromachines 2023, 14, x FOR PEER REVIEW 51 of 106 
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dendrimers. Reprinted with permission from Ref. [334], Copyright 2022, Authors (CC BY 4.0).
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8.1.2. Nanotheranostic

For many illnesses, including AIDS, cancer, and microbial disorders, theranostic
methods have been suggested. The medication is customized using this personalized
treatment approach based on unique molecular profiles or the discovery of biomarkers.
Nanotechnology advancements can now combine diagnostic and therapeutic approaches
on a single platform. Nanomedicines increase the bioavailability of drugs, shield them
from deterioration, and enable precise medication distribution within the body. Compared
to conventional medicines, nanostages used in nanotheranostics provide simultaneous
illness detection and treatment while improving medication penetration. This new field has
the potential to significantly help the pharmaceutical and healthcare sectors by facilitating
the creation of molecular sensors, imaging agents, and creative therapeutic agent carriers.
Immunoassays and colorimetric tests, as well as gene therapy and targeted drug delivery,
are nanotheranostic diagnostic and therapeutic tools that have the potential to transform
the diagnosis and treatment of a wide range of illnesses, including cancer, AIDS, cardio-
vascular disease, infections, and burn wounds [341]. BINMs have significantly enhanced
cancer diagnostics and treatments, largely due to their small size, ease of modification, high
drug-loading capacity (thanks to their large surface-to-volume ratio), and efficient penetra-
tion and retention within targeted tissues. Furthermore, their superior biocompatibility,
biodegradability, and multifaceted applications in bioimaging, bio-sensing, diagnostics,
and therapeutics have escalated their potential in numerous biomedical fields [342]. Due
to their potential to serve as alternative, biocompatible drug delivery systems in cancer
theranostics, bio-inspired NPs that mimic natural body components have recently attracted
a lot of attention. Unlike non-native drug delivery technologies, these NPs have the innate
potential to change systemic bio-distribution, which is their main advantage. This review
thoroughly explains numerous BINMs used in cancer theranostics, including liposomes,
lipid NPs, bio-synthesized metal NPs, virus NPs, protein NPs, and others (Figure 19).
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8.1.3. Gene Therapy

In several medical specialties, gene therapies are becoming more and more cutting-
edge treatments. Gene therapy first proposed some 45 years ago as a viable treatment
for hereditary monogenic illnesses, is currently being used to treat acquired conditions
like cancer immunotherapy. The idea was that a single treatment could offer substantial,
possibly curative advantages. For instance, gene-based therapies given to cells with a long
lifespan may permit the continued production of crucial proteins. Hematopoietic stem
cells (HSCs) that have undergone genetic engineering could provide long-lasting cell re-
placement, eliminating the requirement for ongoing enzyme administration or transfusion
therapy. With initial clinical trials in the early 1990s producing poor findings, including
little clinical benefit, unforeseen toxicities, and, in some cases, patient fatalities, converting
gene therapy concepts into patient care has had difficulties. This caused a shift in attention
to the fundamental science underlying gene therapy strategies. With a better understanding
of viral vectors and target cells, a new wave of clinical trials in the late 1990s and early
2000s showed promise, but development was hampered by severe toxicities associated
with high gene transfer efficiency. The discipline of gene therapy has made enormous
strides over the past ten years, with improvements in safety, gene transfer effectiveness,
and delivery spurring major clinical advancements. The FDA has approved several gene
therapies, and other agencies worldwide have labeled others as “breakthrough therapies.”
The science of gene therapy is about to undergo another revolutionary change because of
recent advancements in targeted genome editing [343].

The utilization of BINMs has played a crucial role in advancing the field of mi-
cro/nanodevices for gene therapy. These nanomaterials are derived from biological systems
and can imitate the structures and functions of biological molecules. As a result, they ex-
hibit enhanced biocompatibility and functionality. Nanomaterials, including lipid-based
NPs, protein-based NPs, and DNA/RNA-based nanostructures, function as carriers for
gene delivery, offering improved stability, specificity, and efficiency. One illustration of this
concept involves the utilization of lipid-based NPs to encapsulate nucleic acids, thereby
enabling their efficient transport into cells.

Additionally, DNA nanostructures can be purposefully engineered to serve as carri-
ers for therapeutic genes, allowing for direct delivery. Significantly, BINMs possess the
capability to undergo modification or functionalization to augment their targetability and
mitigate potential toxicity. By capitalizing on these benefits, micro/nanodevices employing
BINMs have demonstrated gene therapy potential. Gene therapy aims to address diseases
at the fundamental genetic level by mending, activating, or eliminating specific genes. The
ongoing investigation and advancement in this particular domain are anticipated to result
in the emergence of gene therapy approaches that are both more efficient and secure.

There is a growing interest in the supramolecular self-assembly of dendrons and den-
drimers as a powerful and challenging method for generating advanced nanostructures that
exhibit exceptional properties. Xu et al. proposed a novel approach involving supramolec-
ular hybridization to fabricate a dendritic system inspired by biological systems [344]. This
system demonstrated remarkable versatility and can be utilized as an efficient nanoplat-
form for various delivery applications (Figure 20). Multifunctional supramolecular hybrid
dendrimers (SHDs) were formed by integrating dual-functionalized low-generation pep-
tide dendrons (PDs) onto inorganic NPs, facilitated by an intelligent design. The structural
composition of these superhydrophobic surfaces (SHDs) exhibited a highly organized
nanoarchitecture, accompanied by a substantial presence of arginine peptides, and demon-
strated the ability to emit fluorescence signals. As predicted, the utilization of a bio-inspired
supramolecular hybrid strategy dramatically enhances the gene transfection efficacy of
self-assembled hydrogel NPs (SHDs) by approximately 50,000 times when compared to
standalone polymeric NPs (PDs) at equivalent ratios of polymer to DNA. The bio-inspired
self-assembled hydrogel NPs (SHDs) demonstrate several advantageous characteristics
in gene delivery. Firstly, they possess low cytotoxicity and are resistant to serum, which
enhances their safety and efficacy. Secondly, these SHDs have inherent fluorescence, moni-
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toring various intracellular processes, including cellular uptake, escape from endosomes,
and gene release. Lastly, they can serve as a valuable reference for tracking the expression
of desired proteins, providing an alternative method for assessing gene delivery efficiency.
Significantly, it is important to note that in vivo animal trials have shown that self-healing
hydrogels (SHDs) exhibit considerable effectiveness in gene transfection, specifically in
muscle tissue and HepG2 tumor xenografts. These trials have also demonstrated the ability
of SHDs to perform real-time bioimaging. The anticipated outcome of these supramolec-
ular hybrid dendritic (SHD) structures is the stimulation of research inquiries to utilize
bio-inspired dendritic systems for biomedical purposes, encompassing laboratory-based
and live organism studies.
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With the progress of molecular biology, pharmacogenomics, and proteomics, there
is an opportunity to customize the development of bio-inspired nanosystems to cater to
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individual patients’ specific requirements. Bio-inspired nanomaterials provide numer-
ous advantages, such as the ability to customize their surface, achieve targeted delivery,
possess specific geometric properties, ensure biosafety, and facilitate proper disposition.
Furthermore, the materials and procedures employed in fabricating these systems exhibit
biocompatibility and environmental sustainability, as they necessitate limited processing
compared to synthetic materials. Nevertheless, it is essential to acknowledge the potential
apprehensions regarding residual solvents or reagents utilized during the synthesis process,
which may harm biological systems. However, certain bio-inspired nanosystems exhibit
enhanced pharmacological efficacy. There is expected to be a preference for gene carriers
based on smart materials that are biocompatible, biodegradable, and safe in the future.
These systems can detect the surrounding environment of the host following adminis-
tration, enabling them to regulate the release of gene molecules that have been loaded
within them at a particular target organ with accuracy and pre-determined control. This
functionality serves to reduce the occurrence of undesired side effects. Therefore, utilizing
bio-inspired gene delivery systems presents a distinct opportunity to develop anticipatory
and individualized delivery systems for currently available medications, thereby holding
great potential in shaping the future of the biomedical field [345,346].

8.1.4. Self-Propelling Active Nanovehicles

Chemical navigation is a crucial aspect of survival for a wide range of organisms,
from bacteria to unicellular and multicellular organisms. The replication of these behaviors
through artificial constructs is an emerging field of study, resulting in the development of
active nanomaterials capable of converting external energy into mechanical work to achieve
directed motion [347]. These nanomaterials can react to various stimuli, including chemical
gradients, temperature changes, magnetic fields, and adhesion forces. Nevertheless, the
development of self-propelling nano-constructs encounters various obstacles arising from
physical limitations. For instance, water, which exhibits a high viscosity at the NP level,
poses a significant challenge. Additionally, the randomizing effect of Brownian thermally
driven fluctuations further complicates the control of the NPs’ directionality. Two strate-
gies can be employed to address these limitations. The first strategy involves inducing
non-reciprocal movements by altering the body shape. The second strategy consists in
taking advantage of gradients that modify the local environment of the nanomaterials.
Illustrations of these strategies being implemented encompass the utilization of artificial
bacterial flagella, which can be effectively manipulated by applying rotating magnetic fields
to generate propulsion. The deployment of “spermbots” has been observed, wherein these
microscale robots can facilitate the transportation of sperm cells toward the oocyte. Certain
NPs can generate gradients autonomously, resulting in self-phoresis or self-propelled move-
ment. Various innovative applications have been documented, including the utilization of
silicon nanowires that exhibit a responsive behavior to externally manipulated electrical
fields, as well as the development of “microbullets” capable of vaporizing biocompatible
fuel and effectively penetrating and altering the structure of tissues. The utilization of
bio-inspired methodologies in the design of NPs exhibits considerable promise for their
application in drug delivery, targeted therapy, and various other domains within the
biomedical field [348–350].

8.1.5. Biohybrid Micro/Nanomotors

Throughout history, human ingenuity has frequently drawn inspiration from diverse
natural biological systems, exemplified by the development of radar technology, which
was influenced by bats’ utilization of ultrasonic waves. The advancement of autonomous
artificial micro/nanomotors has been motivated by the existence of biological biomotors
such as kinesins, dyneins, and sperm cells. Micro/nanomotors are devices capable of
converting various types of energy into mechanical motion, enabling them to execute tasks
that passive devices cannot accomplish [351]. Richard Feynman initially introduced the
notion of these diminutive devices which has subsequently emerged as a prominent subject
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of scholarly investigation. Micro/nanomotors possess a diverse array of applications,
particularly within biomedicine. These applications encompass drug delivery, biosensors,
biological imaging, assisted fertilization, and microsurgery. Nevertheless, notable obstacles
must be surmounted, with particular emphasis on the biocompatibility of said motors. To
operate optimally, these entities must adapt effectively to the internal microenvironment
of the organism, encompassing factors such as temperature, pH, and the immune system.
Presently, the utilization of artificial motors is constrained by their inadequate biocompati-
bility, resulting in their susceptibility to immune system recognition upon introduction into
the human body. To enhance biocompatibility, scholars are currently investigating the uti-
lization of biocompatible and biodegradable substances such as polyethylene glycol (PEG)
and magnesium. An emerging area of study pertains to biohybrid micro/nanomotors,
wherein synthetic materials are integrated with biological constituents. Biohybrid motors
exhibit enhanced biocompatibility, improved energy conversion efficiency, and the capacity
to react to environmental stimuli intelligently. The cell is the building block of an organism
and has receptors on its membrane that enable it to sense environmental inputs and modify
its functions. Some cells have complex time-irreversible strokes and low-Reynolds-number
autonomous motion processes. Researchers have used this autonomous mobility as motiva-
tion to build micro/nanomotors based on intact cells. High biocompatibility, adaptability
to diverse internal conditions, and the ability to mix artificial micro/nanostructures with
different cell properties like chemotaxis, magnetotaxis, and anaerobism to create multi-
functional motors are all benefits of these biohybrid motors. A cell must be simple to
grow and capable of large-scale, rapid multiplication to be a good candidate for biohybrid
micro/nanomotors. There are several types of micro/nanomotors based on intact cells
(sperm cells, bacteria, algae, blood cells, plant pollen, platelets, macrophages, etc.) and
different biological components such as enzymes (catalase, urease, glucose oxidase, lipase,
etc.) and cellular membrane (RBC, platelet, WBC, tumor cell, cancer cell, etc.) coating,
operating in biomedical applications.

Sperm cells, also known as spermatozoa, are the male gametes that possess the ability
to exhibit autonomous motility as a result of their flagellar structure. They possess the
dual functionality of functioning as both a propulsion mechanism and a means of trans-
porting goods, enabling autonomous movement and precise distribution capabilities. The
micro-bio-robot design involved using sperm cells confined within a microtube, which
demonstrated self-directed movement that was externally regulated through the implemen-
tation of a magnetic layer. Sperm cells possess considerable potential as vehicles for drug
delivery, particularly in gynecologic ailments such as cervical cancer [352]. A micromotor
propelled by sperm cells has been developed to facilitate the targeted release of drugs,
demonstrating encouraging attributes for cancer treatment. Bacteria are abundant and
come in various shapes, making them suitable candidates for biohybrid micro/nanomotors.
Several bacteria, such as Magnetococcusmarinus, Escherichia coli, and others, have been uti-
lized to fabricate biohybrid motors for biomedical applications. Magnetotactic bacteria
can achieve self-propulsion using external magnetic fields, making them attractive for
drug delivery and tumor targeting. Escherichia coli are frequently used due to their swim-
ming ability, and they have been incorporated into micromotors for drug delivery and
anti-tumor efficacy. Challenges include addressing safety concerns regarding pathogenic
bacteria and ensuring the activity and fitness of bacteria on certain surfaces. Despite these
challenges, bacterial biohybrid micro/nanomotors hold promise for advancing the field of
micro/nanomotors.

Algae exhibit remarkable biological features despite lacking roots, stalks, and leaves.
Spirulinaplatensis (Sp) is a suitable bio-template for biohybrid magnetic micromotors due
to its naturally intact three-dimensional helical structure. Researchers used Sp to construct
porous hollow micromotors to deliver medicinal and imaging chemicals in vivo. Sp-based
biohybrid magnetic robots feature intrinsic fluorescence, MR signals, and low cytotoxicity,
making them intriguing for blocking abnormal cell function, particularly malignant tu-
mors, while retaining normal cell function. Sp-based magnet-powered microswimmers use
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ultrasonics to stimulate neural stem-like cell development. Ultrasound intensity can influ-
ence brain stem cell development, enabling minimally invasive neurodegenerative disease
treatments. Algae, particularly Sp, have distinctive structures and intriguing biological fea-
tures, making them promising in modern biotechnology. For biohybrid micro/nanomotors,
different algae must be studied.

8.2. Bio-Inspired Nanobiosensors

Sensors are pivotal in many products, systems, and manufacturing processes, offering
valuable feedback, monitoring capabilities, safety enhancements, and other advantageous
features. When conventional sensor technology reaches a state of limited progress, ex-
ploring insights from non-engineering disciplines, such as biology, can foster innovative
advancements. The field of biomimetic sensor technology is currently in its nascent stage,
and it takes inspiration from the intricate sensory systems found in nature. These highly
refined systems enable organisms to perform tasks such as navigation, spatial orientation,
and prey detection with excellent efficiency. Engineers can construct various types of
sensors by comprehending the fundamental principles of sensory physiology in biological
systems. Biomimetic sensor designs can replicate biological systems directly or employ
analogous principles. Both methodologies have demonstrated efficacy and yielded notable
progress in sensor technology [353]. Biomimetic sensor designs offer distinct advantages in
comparison to conventional sensor designs.

Retrieving archived sensor design information is a prevalent methodology in de-
veloping novel products that detect commonly encountered parameters. Nevertheless,
employing unconventional approaches or drawing inspiration from diverse fields of study
may be imperative in the context of atypical parameters. The field of sensor design has been
influenced by nature, as it presents a wide range of sophisticated sensing and communica-
tion techniques observed in diverse organisms such as bacteria, plants, insects, mammals,
and reptiles. The design of biomimetic sensors entails replicating various aspects of bio-
logical systems, including functional design, morphological design, principles, strategies,
behaviors, and manufacturing techniques. The motivation behind these biomimetic devices
is derived from rigorous methodologies, careful examination of natural phenomena, and
the application of databases that document biological functionalities. Emulating the func-
tionality, principles, morphology, or strategies observed in biological systems represents
a form of biomimicry, which can be likened to the reverse-engineering process. In an
alternative perspective, abstracting biological systems through analogical reasoning can be
seen as an approach that aligns biology with engineering design principles. This approach
involves seeking solutions to biological challenges by drawing inspiration from and imitat-
ing existing designs. Exploring natural phenomena to derive design inspiration or gain
insights into the mechanisms by which biological systems process sensory information has
resulted in notable advancements. The biological sensors found in nature have evolved
over an extensive time spanning billions of years. These sensors provide enduring and
efficient solutions that are well adapted to specific ecological niches. Frequently, these
sensors demonstrate characteristics such as minimal energy consumption, heightened
sensitivity, and redundancy. The redundancy concept serves as a valuable lesson derived
from nature, as numerous biological systems exhibit multiple instances of redundancy to
augment reliability and mitigate errors.

Chirality, also known as mirror dissymmetry, is an inherent characteristic observed
in geometric entities, and it holds significant importance in biomolecules such as proteins
and DNA. Circular dichroism spectroscopy is a technique used to evaluate the impact of a
substance on biological, chemical, and physical characteristics. This method quantifies the
disparity in the absorption of left and right circularly polarized light. Chirality is regarded
as a principle inspired by biology in engineering. Chiral nanomaterials exhibit potential for
various applications, such as sensing and catalysis, owing to their distinctive selectivity
and specificity.



Micromachines 2023, 14, 1786 52 of 93

Nevertheless, there remains a lack of comprehensive understanding regarding the
mechanisms that govern the transfer of chirality during the synthesis of inorganic nano-
materials possessing inherent chirality. Examining biological instances of chirality transfer
can provide valuable insights for developing chiral inorganic nanomaterials across diverse
applications. Chirality is a prevalent characteristic observed in biological entities, signifi-
cantly influencing their geometries, properties, and behavior. Chiral objects, characterized
by the absence of mirror symmetry, are widely observed in the natural world, and they
have the potential to confer survival benefits to organisms. The phenomenon of chirality
significantly influences the preferential incorporation of amino acids during the process
of protein synthesis, thereby exerting a profound impact on the growth and behavior of
both plants and animals. Organisms can utilize chiral structures to perceive polarized light
and augment contrast within their surroundings. Inorganic materials also observe chirality
due to molecular interactions and biological templates. Gaining insight into the processes
by which chirality is transferred across various length scales is of utmost importance to
effectively replicate and harness chiral nanostructures to design nanomaterials. The phe-
nomenon of hierarchical chirality transfer, which occurs across multiple scales ranging from
the molecular to the macroscopic level, has been documented in diverse biological systems.
This observation has sparked interest and served as a source of inspiration for developing
biomimetic materials and nanotechnologies [354]. Near-infrared (NIR) wavelengths are
commonly favored in biomedical applications owing to their superior tissue penetration
capabilities. The utilization of CdTe helices has been observed to effectively manipulate
light within the near-infrared (NIR) wavelengths, rendering them valuable for various
biomedicine and optical computing applications. Chiral molybdenum oxide NPs have the
potential to be utilized in photothermal therapy, wherein they can selectively heat tumor
tissue when exposed to circularly polarized light while minimizing damage to healthy
tissue [355]. The bactericidal effects of gold nanobipyramids conjugated with D-Glu are
enhanced, disrupting bacterial cell walls and facilitating the healing process in infected
wounds when exposed to near-infrared (NIR) radiation [356]. The inherent structural chi-
rality exhibited by gold nanomaterials can influence the immune system. Diverse immune
responses are observed with left-handed and right-handed Au NPs, owing to their distinct
interactions with specific receptors and subsequent activation of inflammasomes. The
utilization of left-handed NPs as adjuvants in the influenza vaccine has been investigated,
revealing a notable increase in antibody production and immune-related cell proliferation
compared to right-handed NPs. These discoveries underscore the significance of nanoscale
chirality within biological systems, alongside the molecular-scale chirality exhibited by
L/D optical centers.

8.3. Bio-Inspired Organ-on-Chip (OOC)

Creating new medications is time-consuming and expensive, especially in the pre-
clinical stage. Pre-clinical research has a history of using unethical animal experiments that
do not always precisely anticipate how people will react to medications. Although they
provide an alternative, two-dimensional cell culture models cannot match the intricacy
of real tissues and organs. Three-dimensional cell culture models have been created to
overcome these restrictions; however, they still lack some physiological elements. The
development of organ-on-chip (OOC) systems, which are little devices that replicate the
microenvironment of organs and tissues, has recently been made possible by microtech-
nology. OOCs can build human-based tissue-like structures, operate with minuscule drug
concentrations for high-throughput screening, and add biosensors for real-time monitor-
ing of cell survival and functionality, among other benefits. To replicate the response of
different tissues to drug exposure methodically, several OOCs can be coupled. OOCs are
a potential strategy for drug discovery because they combine the benefits of 2D and 3D
cell culture models while offering a platform for drug testing and screening that is more
physiologically appropriate [357].
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8.3.1. Organ-on-Chip (OOC) Technology

The primary objective of OOC technology is to develop in vitro models that closely
mimic the physiological conditions of human organs. This is achieved by integrating cell
cultures within microfluidic channels and structures. These systems provide the benefits
of a microenvironment that closely resembles physiological conditions and utilize human
cell lines that have been extensively studied and characterized. Out-of-cell culture systems
possess the inherent capability of parallelization and enhanced throughput, rendering them
highly advantageous in drug screening. Nevertheless, constructing organic optoelectronic
devices necessitates utilizing advanced manufacturing techniques and selecting meticu-
lously chosen materials. Cell cultures are immobilized on substrates and structures in OOC
devices. These chip systems’ cells can be divided into three major categories: primary, im-
mortalized, and stem cells. Primary cells are taken straight from tissues or organs without
being altered. They closely mirror their in vivo counterparts’ appearance and metabolism.
Primary cells must be obtained, kept alive, and only cultivated temporarily.

Additionally, standardization might be challenging due to differences in cell popula-
tions and traits between extractions. Immortalized cells are standardized, easily accessible,
and well-characterized cells. They can be made from clinical malignancies or by modifying
original cells chemically or virologically so that continuous cell division lasts for a long
time. However, relative to their initial in vivo state, the cells’ phenotype may change during
immortalization. Because of their physiological properties and regulated differentiation
potential, stem cells hold great promise. Induced pluripotent stem cells, produced by
reprogramming adult tissues to produce pluripotent stem cells, are becoming increasingly
popular due to ethical considerations and the restricted availability of embryonic stem
cells. These cells can be differentiated into multiple cell types, facilitating research like
personalized drug testing and autologous tissue engineering. In 2012, induced pluripotent
stem cells’ discovery was given the Nobel Prize.

8.3.2. Organ Systems on Chips

Due to demographic shifts and the rising demand for new pharmaceuticals in phar-
maceutical research, society is exposed to an increasing number of novel chemicals in
today’s modern, globalized world. Reliable testing methods are required to ensure these
substances are safe and effective. Animals were used mostly in the early toxicological,
pharmacological, and environmental testing stages. The 3R approach (reduction, refine-
ment, and replacement of animal experiments) has prompted a move toward alternative
techniques. The development of alternative techniques has been encouraged by regulatory
bodies like the European Parliament and the Council of the European Union, which has
led to the EU’s prohibition on cosmetics containing chemicals that have undergone animal
testing. According to industrial firms, alternative approaches offer the potential to advance
fundamental research, medicine development, toxicity testing, and environmental studies.
Excellent throughput screening, parallelization, excellent data quality, predictability in
clinical trials, and cost savings are among the alternatives they are looking for to eliminate
the usage of animals. Common in vitro systems, however, cannot fully satisfy all of these
demands, which has increased demand for enhanced in vitro models and cutting-edge
OOC technologies.

8.3.3. Two-Dimensional Cell Culture to OOC

Early in vitro cell culture models were two-dimensional (2D), but it soon became
clear how important three dimensions were. Cell morphology and metabolism were
improved by 3D cell culture employing extracellular matrix (ECM) components [358].
Predictability was improved by creating cell–cell interfaces by integrating various cell types
onto the semiconductor. Microsystems, inspired by developments in the semiconductor
industry, permitted controlled trials with smaller drug doses. They made it possible to
imitate in vivo circumstances by precisely controlling the biological milieu and inducing
physiological pressures or gradients. Surface alterations made possible by microtechnology
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also encourage cell self-organization. These developments boosted predictability and
complexity without raising variability. For widespread usage in pre-clinical studies, OOC
systems must accomplish simplicity, dependability, reproducibility, and ease of use.

8.3.4. Single OOC (SOOC)

Researchers have pursued the development of integrated body systems on a chip
through a systematic approach, wherein the initial focus has been on creating individual
organ chips that can subsequently be interconnected. The development of these SOOCs
was facilitated through the utilization of microchip technology and the progress made in
the semiconductor industry. The lung-on-chip was among the initial organ chips docu-
mented in Science magazine in 2010, garnering considerable interest [359]. Subsequently,
many biomimetic organ systems on chips have been successfully developed. There are
several SOOC systems, including liver-on-chip [360], kidney-on-chip [361,362], lung-on-
chip [362], gut-on-chip [363], heart-on-chip [363], muscle-on-chip [364], blood–brain barrier-
on-chip [365], splenon-on-chip [366], bone marrow-on-chip [367], etc.

8.3.5. Multi-OOC (MOOC)

The utilization of MOOCs represents an interim measure in investigating inter-organ
interactions until a fully functional human organ system is realized on a chip. The integra-
tion of multiple organ chips enables the examination of intercellular communication and
the assessment of different stages of drug metabolism. Two primary approaches exist to
construct multi-organ chips: the linkage of pre-existing single-organ chips and the inte-
gration of multiple organs into a singular chip device. The latter methodology has been
proposed by the TechnischeUniversität Berlin and TissUse GmbH, commencing with a
biotechnological device that integrates two distinct compartments, namely the liver and
skin [368]. The utilization of a chip system, comparable in size to a conventional microscope
slide, facilitated enhanced spatial efficiency and ensured appropriate ratios of physiological
fluid to tissue. Researchers have made progress in the step-by-step integration of supple-
mentary organs, such as the small intestine, liver, renal secretion, and skin biopsies, thereby
advancing the development of a comprehensive human-on-chip system [369,370].

8.3.6. Human-on-Chip (HOC)

The primary objective of OOC technology is to develop a human-on-chip (HOC) model
that replicates the functionalities of several vital organs within a singular microfluidic
platform. Numerous governmental initiatives, including those sponsored by the American
Defense Advanced Research Projects Agency (DARPA) and the National Institutes of
Health (NIH), provide financial backing for research endeavors in this particular domain.
There exist two primary approaches in designing an HOC system: the first involves the
interconnection of individual single-organ chips, while the second entails the integration
of distinct organ compartments onto a single chip. It is imperative to surmount the
obstacles encountered in engineering and implementation to attain precise emulation of
physiological conditions and dependable predictions of drug effects [371]. One of the
primary challenges in this context involves selecting appropriate cell types and mediums
while also considering immune responses and the inherent variability in blood composition.
Streamlining the culture conditions and chip construction is advisable to enhance the results’
clarity. Additionally, implementing a modular plug-and-play system could facilitate the
interconnection of compatible chips in subsequent endeavors [372]. The active participation
of the pharmaceutical industry and regulatory agencies is imperative to achieve successful
development and validation of organ systems on chips.

8.3.7. Patient-on-Chip (POC)

Stem cells are a type of cellular entity characterized by their undifferentiated state and
their capacity to differentiate into diverse specialized cell lineages. There are two primary
classifications of stem cells: embryonic stem cells, which are obtained from embryos, and
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adult stem cells, which are sourced from adult tissues. The utilization of embryonic stem
cells in research is hindered by ethical considerations, thus leading to the prevalent use of
human-induced pluripotent stem cells (HiPSCs) as a viable substitute. HiPSCs are derived
through reprogramming mature cells, acquiring characteristics akin to embryonic stem
cells. This reprogramming enables HiPSCs to undergo differentiation into diverse cell
lineages upon exposure to specific molecular cues. HiPSCs present a multitude of benefits
in the realm of scientific investigation and medical interventions. One potential application
of these technologies is the generation of patient-specific tissues for tissue engineering pur-
poses and facilitating patient-specific drug testing. These advancements have the potential
to enhance the field of personalized medicine. Incorporation of patient-derived HiPSCs into
OOC systems presents a promising approach that synergistically harnesses the advantages
of microfluidic technology and genetically compatible human cells. This methodology
enables the replication of pathological conditions and genetic variations, enhancing the
applicability and precision of drug testing and research endeavors. In addition, utilizing
HiPSC technology holds promise in facilitating the advancement of a comprehensive HOC
platform. Utilizing HiPSCs derived from a single donor to generate diverse organ tissues
can potentially mitigate the occurrence of immune reactions. Furthermore, examining
patient-specific variables, including genetic factors, age, gender, and ethnicity, can be read-
ily conducted, thereby facilitating the development of more individualized therapeutic
strategies in subsequent endeavors [373]. In general, HiPSCs exhibit considerable potential
in facilitating the progression of scientific inquiry and pharmaceutical innovation, culminat-
ing in enhanced medical interventions that are more efficacious and tailored to individual
patients [374–376].

8.3.8. Applications of OOC

Using OOCs exhibits significant potential as in vitro testing platforms for diverse
applications. They possess utility in toxicity assessment for cosmetics and chemicals, ren-
dering them indispensable in novel and generic drug advancement alongside specialized
domains such as radiation examination. A substantial transformation in pre-clinical test
practices toward enhanced efficiency and accuracy can only be achieved through collabora-
tive endeavors. Once successfully designed and validated, OOC systems will substantially
impact pharmaceutical research and development. These methods can lessen the need for
animal testing and produce more trustworthy outcomes for biowaiver studies for generic
formulations and medication development. This enhancement will result in more accurate
clinical study forecasts and fewer late-stage failures. Additionally, OOC systems will create
new possibilities for pharmacological R&D. They will make it possible to simulate sick
creatures, giving researchers a controlled environment to investigate the causes of disease
and potential cures. Additionally, custom chips can be produced to customize drug testing
for specific patients, resulting in more efficient and individualized therapy. Organ systems
on chips can potentially advance pharmaceutical research and significantly transform
pre-clinical testing procedures.

OOC presents exciting possibilities for modeling diseases and developing new med-
ications. Researchers have created disease chips to simulate specific disease states and
analyze treatment reactions in a controlled setting. A lung-on-chip system was developed
by Huh et al. to simulate pulmonary edema, a potentially fatal condition brought on by
inflammation and fluid buildup in the lungs [377]. The chip enabled the testing of possible
therapeutic substances, including angiopoietin-1 and GSK2193874, and faithfully replicated
the effects of interleukin-2 (IL-2) therapy. Nesmith et al. created a bronchial smooth muscle
tissue chip to research allergic asthma [378]. The IL-13 and acetylcholine exposure success-
fully caused the chip to mimic the hypercontraction observed in asthmatic patients. The
RhoA inhibitor HA-1077 was put to the test by the researchers, and it showed promise as
a possible therapeutic candidate for the treatment of allergic asthma. Tumor spheroids,
hydrogels, and ECM proteins have all been used to create in vitro cancer models. Microflu-
idic systems are being investigated to model tumor formation, tumor–tissue interactions,
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and metastasis to increase physiological relevance. Researchers can lessen their reliance
on animal models by using OOCs to test prospective medications and properly analyze
cancer causes. These disease-specific OOCs have demonstrated encouraging outcomes
when simulating illness states and assessing medication responses. They have the potential
to transform pre-clinical testing, lessen the need for animal testing, and enhance therapy
approaches for a range of disorders.

8.4. Cancer-on-Chip (COC)

The utilization of specialized multichannel systems in cancer-on-chip (COC) models
has emerged as a potent approach for studying the tumor microenvironment (TME) and its
involvement in metastasis. The utilization of microfluidic channels enables the replication
of tumors’ biochemistry, geometry, and fluidic transport characteristics by these models,
thereby facilitating the examination of intricate interactions associated with metastasis [379].
The functional COC platforms exhibit superior accuracy and capabilities to traditional mod-
els, enabling them to provide significant insights into the TME and cell interactions during
metastasis. Invasion, intravasation, extravasation, and angiogenesis are all components of
the intricate process known as metastasis (Figure 21). Micrometastases are formed when
tumor cells extravasate to colonize other organs after invading the extracellular matrix or
vascular endothelium and entering circulation. The endothelial blood vessel wall must
be broken during the key phases of intravasation and extravasation. For early diagnosis,
prognosis prediction, and treatment planning, microfluidic technology holds promise for
isolating and counting circulating tumor cells (CTCs). Microfluidic-based COC models
are crucial to examine the complex interactions between tumor cells and the TME during
invasion, intravasation, and re-growth in secondary organs. These models offer insights
that conventional approaches cannot. The primary TME, circulatory microenvironment,
and secondary TME are three different tumor microenvironments that interact during
metastasis. For cancer cells to pass the endothelium and enter the bloodstream, the ex-
tracellular matrix (ECM) must be broken down. Surviving circulating tumor cells (CTCs)
multiply and create secondary cancers in distant organs by adjusting to the local microenvi-
ronment (Figure 22). The TME contains various stromal elements, including fibroblasts,
immune cells, vessels, and ECM. Microfluidic models that continuously expose tumor cell
development to biological fluids in a biologically appropriate microenvironment are used
to research cancer. Cancer invasion, intravasation, extravasation, and the evaluation of
anti-cancer medications can all be studied with the aid of these models.

COC and tumor-on-chip (TOC) are intricately interconnected and serve as mutually
reinforcing methodologies within cancer investigation. The primary objective of TOC
models is to gain insights into the behavior and characteristics of tumor cells within a pre-
cisely regulated microenvironment. These models frequently employ microfluidic channels
and compartments to replicate the biochemical and biophysical stimuli that impact the
development and advancement of tumors. TOC models have the potential to enhance their
fidelity to the TME by including non-tumor cells, such as stromal components, immune
cells, and endothelial cells, thereby increasing their complexity. The COC and TOC mod-
els employ microfluidic technology to facilitate the uninterrupted provision of essential
nutrients, oxygen, and other factors crucial for cellular proliferation and intercellular com-
munication. By establishing physiologically relevant conditions, these models offer more
precise depictions of tumor behavior than traditional in vitro cell culture systems. Further-
more, both methodologies can be employed to screen anti-cancer pharmaceuticals and
examine the effectiveness of prospective therapeutic interventions. Figure 23 depicts the
basic components of a common TOC. The utilization of a tumor-on-chip system fabricated
through 3D printing techniques facilitated the cultivation of cells for an extended duration,
thereby replicating the intricate process of nutrient and anti-cancer drug transportation
within authentic TMEs [380]. The analysis of convective and diffusive transport within the
culture chamber was conducted by employing a fluorescent tracer. The GelMA/alginate
microbeads were the most efficient in facilitating transport. The microbeads were utilized
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to cultivate Caco2 cells, and subsequent drug assays mimicking chemotherapy exhibited a
rise in cell death and a decline in cellular metabolism. Hypoxic conditions were artificially
created within the microspheres, emulating the oxygen-deprived environment typically
found in avascular tumors observed in patients. The study showcased the capacity of TOC
platforms created through 3D printing for drug testing and examining cancer biology. The
increased dimensions of the chip facilitated a higher quantity of biological material that
could be used for analysis. The transport characterization demonstrated efficient convective
and thoroughly mixed conditions, rendering it a valuable instrument for replicating tumor
scenarios and other tissue environments. Additional investigation is warranted to delve
into the potential benefits of employing 3D-printed tumor-on-chip systems, specifically
regarding their design flexibility and the feasibility of their fabrication and utilization.
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8.5. Bio-Inspired Wound Healing Dressing Mat

Bio-inspired wound healing dressing mats are a novel class of biomaterials specifically
engineered to enhance the process of wound healing by leveraging inspiration from biolog-
ical systems. These mats are designed to imitate the natural extracellular matrix, creating
an environment that promotes cell growth, angiogenesis, and tissue regeneration. These
environments provide advantageous conditions for wound healing, diminish the presence
of microorganisms, and facilitate the regulated discharge of therapeutic substances such
as growth factors and cytokines. Biomaterials derived from natural sources, such as silk
proteins (fibroin and sericin), have demonstrated significant promise in wound dressings
owing to their biocompatible nature and capacity to stimulate skin tissue regeneration.
Integrating regenerative medicine and nanotechnologies offers a potentially effective strat-
egy for tackling the complexities of wound management and promoting improving the
healing process.

The integumentary system serves a vital role in numerous physiological processes.
However, when the skin becomes compromised due to injuries, it can give rise to significant
medical complications, such as heightened morbidity and mortality rates. Non-healing
chronic wounds pose a significant challenge, particularly for individuals diagnosed with
diabetes, as they may experience limb ulcers that can lead to severe consequences. The
principal objective of wound management is to achieve expeditious healing while ensuring
both functional and aesthetically satisfactory results. The wound healing process is intricate
and encompasses various cellular interactions, secretion of factors, and interactions with
the ECM. Comprehending these processes is imperative to formulate efficacious wound
management strategies. The impact of diabetes on wound healing is detrimental, high-
lighting the need for a comprehensive comprehension of the wound environment and
pathophysiology to develop more effective strategies for promoting wound healing. Utiliz-
ing biomaterials that can release signaling molecules, such as growth factors and cytokines,
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in a controlled manner has been shown to facilitate the process of angiogenesis and tissue
regeneration. The development of effective biomaterials for tissue repair, including three-
dimensional living tissues, has been facilitated by advancements in regenerative medicine,
nanotechnologies, and bioengineering. Biomaterials derived from biological sources have
demonstrated significant potential in treating tissue injuries and enhancing wound healing,
owing to their biocompatible nature and capacity to stimulate skin tissue repair [381]. The
investigation of biomaterials possessing wound-healing properties has been undertaken
for diverse purposes in wound management. These biomaterials create advantageous
microenvironments that promote cellular proliferation, inhibit microbial colonization, and
facilitate the controlled release of therapeutic agents. The recent progress in wound healing
approaches has created novel opportunities within the realm of regenerative medicine and
tissue engineering.

As a promising biomaterial for tissue repair and regeneration, Bombyxmori’s silk
fibroin has attracted much interest [382]. Numerous research teams have investigated
the potential of silk fibroin to create cutting-edge methodologies for tissue engineering
and wound healing applications, either alone or in combination with other materials
and processed in various ways. As biomaterials for wound dressing, many forms of silk
fibroin, such as hydrogels, sponges, films, and nanofibers, have been suggested. During
various stages of wound healing, these materials maintain moist conditions, permit gas
permeability, and improve cell responsiveness. Silkworm cocoon goods include fibroin
hydrogel, electrospun fibroin, sponge, film, solution, and powder. These products have a
variety of uses in bioengineering, particularly in the treatment of wounds (Figure 24).
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8.6. Antimicrobial Surface

Using bio-inspired antimicrobial surfaces has generated considerable attention in
diverse biomedical contexts owing to their efficacy in combating microbial hazards. These
surfaces are influenced by natural defense mechanisms found in plants and microorgan-
isms. They employ light-activated compounds or other biomimetic strategies to generate
antimicrobial effects. Within medicine, these surfaces are utilized in various capacities,
such as wound dressings, medical implants, and surgical instruments. Their primary
function is to mitigate the risk of infections and expedite the healing process. In dentistry,



Micromachines 2023, 14, 1786 60 of 93

dental implants and orthodontic devices are utilized to minimize bacterial colonization
and the formation of biofilms, thereby improving oral health. In addition, implementing
bio-inspired antimicrobial coatings on medical equipment and surfaces within hospitals
enhances infection control measures and mitigates the potential for healthcare-associated
infections. The potential of these bio-inspired antimicrobial surfaces, with their adaptability
and inspiration drawn from biological systems, holds significant promise for enhancing
healthcare and improving patient outcomes. This is achieved by offering robust protection
against microbial pathogens in various biomedical environments.

A range of bio-inspired antimicrobial surfaces have been developed, each exhibiting
unique mechanisms of action. Certain surfaces are designed to mimic the micro/nanostructures
observed in natural entities such as cicada wings or lotus leaves. These surfaces possess
rough and hydrophobic topographies, which effectively hinder the adhesion and colo-
nization of bacteria. Consequently, these surfaces exhibit self-cleaning properties. Some
researchers utilize synthetic antimicrobial peptides (AMPs), short chains of amino acids
with a wide range of antimicrobial properties. These synthetic AMPs are employed to
either disrupt the cell membranes of bacteria or hinder crucial cellular processes. Cationic
polymers, which draw inspiration from the positive charge exhibited by antimicrobial
peptides (AMPs), interact with bacterial cell membranes with a negative charge. These
interactions ultimately disrupt the membrane structure, leading to the demise of the bac-
terial cells. Moreover, incorporating silver and other metal NPs into surfaces enables the
gradual release of antimicrobial ions upon interaction with bacteria. This process disrupts
bacterial metabolism and hinders DNA replication. Chitosan-based surfaces, derived from
the exoskeletons of crustaceans, offer a biopolymer barrier of natural origin that effectively
inhibits bacterial colonization. Mussel-inspired coatings, which utilize polymers functional-
ized with catechol groups, serve as effective platforms for integrating antimicrobial agents
onto diverse surfaces. In addition, photodynamic antimicrobial therapy (PDT) involves the
immobilization of light-sensitive agents on various surfaces, which, upon exposure to light,
generates reactive oxygen species that effectively eliminate bacteria. In conclusion, using
bio-inspired surfaces designed to release bacteriophages, viruses that selectively target and
infect bacteria, results in the targeted eradication of bacterial pathogens. Utilizing a wide
range of bio-inspired antimicrobial surfaces presents a potential avenue for improving
healthcare outcomes and addressing the challenges posed by microbial infections.

8.6.1. Structure-Oriented Surface

Many plants and animals have evolved distinctive surface structures throughout
millions of years of evolution, enabling them to endure external threats in difficult environ-
mental circumstances. These organic and synthetic antimicrobial nanostructures, which
are crucial to bioengineering, have piqued the curiosity of researchers. These surfaces’
superhydrophobicity and micro/nanotopographies are thought to be responsible for their
antibiofouling qualities. Taro leaves, for example, have a unique uneven structural dis-
tribution that prevents Gram-negative bacteria from adhering even in humid situations.
Staphylococcus aureus has been discovered to resist shark skin’s antibacterial proper-
ties. Studies using naturally occurring bactericidal surfaces, such as cicada wings with
nanoneedle arrays, have demonstrated the ability to kill bacteria instantly upon direct
contact in just 5 min. Dragonfly wings and gecko skin are examples of other species with
mechanobactericidal surfaces. Although animal surfaces may have a lower water contact
angle than plant surfaces, the antibacterial impact is similar, indicating that hydrophobicity
is not the only factor affecting bactericidal effectiveness [383]. Creating next-generation
bactericidal surfaces with physico-antimicrobial characteristics has drawn heavily on in-
spiration from nature. Research into naturally occurring nanostructures has sparked a
number of ground-breaking innovations. Researchers fabricate artificial nanostructures on
various substrates using bottom-up chemical synthesis and top-down multiway etching
techniques. These nanostructures, like carbon nanotubes and ZnO nanorods, have physical
and mechanical antibacterial properties that can damage bacterial cell membranes and
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prevent bacterial adherence. Hydrothermal synthesis and chemical deposition are two
surface topography coatings and changes that improve the bactericidal effects. It is possible
to replicate nanostructures seen in nature, such as those on cicada wings and pitcher plant
surfaces, by combining several processes.

One or both probable manifestations of the antibacterial activity of naturally occurring
nanostructured surfaces are the biocidal effect (total destruction of the cellular envelope) or
the antibiofouling effect (inhibition of bacterial proliferation). The internalization or inser-
tion of NPs that disrupt membrane function (nanotoxicological effects), physical puncturing,
physical tearing, and chemical destructive extraction through oxidative stress are just a few
of the factors contributing to the killing mechanism of physico-mechanical antibacterial
materials. Mechanical antibacterial materials like carbon nanotubes and graphene impact
bacterial adherence, internal cell architecture, and cell migration. These substances repeat-
edly rupture bacterial cells as part of a cumulative process. According to other studies,
bacterial cells are prevented from approaching nanocolumn arrays by the height and spac-
ing of the arrays, leading to a contacting physical puncturing mechanism. When the cells
try to migrate on the nanocolumns’ surface, they are broken apart. Some scientists suggest
that bacteria produce an extracellular polymeric substance (EPS) under external mechanical
stress rather than being directly pierced, which causes bacterial membrane damage through
strong attachment to nanocolumns. Since diverse materials and structural configurations
may have unique antibacterial effects on different microbes, the precise mechanism is still
unclear and up for debate. However, the success of physico-antimicrobial surfaces depends
on their specific structures, which are required for their antibacterial capabilities. Compared
to chemical mechanisms, the physical antibacterial mechanism is typically faster, and the
material’s structure is key to generating an efficient antibacterial effect.

8.6.2. Peptide-Based Surface

Antimicrobial peptides (AMPs) exhibit considerable potential as viable therapeutic
options for various diseases, particularly in combating multidrug-resistant bacteria. The
global emergence of antibiotic resistance has garnered significant attention, prompting the
exploration of alternative solutions, such as AMPs that possess wide-ranging antimicrobial
properties. AMPs are synthesized by diverse organisms, identifying more than 5000 distinct
AMPs to date [384]. These substances exhibit a specific mode of action by selectively
interacting with microbial membranes, resulting in the formation of pores and ultimately
leading to the demise of bacteria. Moreover, AMPs exhibit anti-inflammatory, regenerative,
and anti-cancer characteristics.

Nevertheless, despite their considerable potential, AMPs encounter certain obstacles
in their application. These challenges encompass the toxicity exhibited toward mammalian
cells, vulnerability to proteases, and the high costs associated with their production meth-
ods. To tackle these concerns, there have been suggestions for using nanotechnology-based
delivery methods to augment the stability and biological efficacy of AMPs. The devel-
opment of bio-inspired NPs has been undertaken to preserve the activity of AMPs while
mitigating any potential adverse effects. In addition, AMPs have been employed as surface
coatings on implants to mitigate the risk of implant-related infections and promote bone
regeneration. AMPs have demonstrated potential in cancer therapy due to their ability
to specifically target malignant cells and facilitate the delivery of cancer medications or
nucleic acids. AMP-based materials have demonstrated high efficacy in condensing and
delivering nucleic acids, thereby protecting against degradation.

8.6.3. Metal/Metal Oxide NP-Based Surface

The wide range of features that metal and metal oxide NPs possess, such as non-
toxicity, antibacterial activity, and anti-insecticidal activity, make them useful in the biomed-
ical industry for identifying and treating serious illnesses [385]. Different bio-inspired
metals and metal oxide NPs are essential for maintaining life processes, and deficiencies in
these substances can cause diseases. For instance, Co NPs exhibit good magnetic, optical,
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and mechanical properties, making them useful for biomedical applications like magnetic
resonance imaging (MRI) and drug delivery, while nanoceria, despite its lack of stability in
living systems, shows promising applications in battling cancer and Alzheimer’s disease.
Other NPs, such as those made of Au, Ag, Fe, MgO, Ni, Se, and ZnO, also exhibit dis-
tinctive properties that can be used in energy storage, biosensing, imaging, and therapies.
Chemoresistive nanosensors are created using nanomaterials such as nanorods, nanotubes,
and nanobelts, broadening the range of biomedical applications. Overall, diverse features
of metal and metal oxide NPs hold considerable promise for increasing biomedical research
and healthcare.

8.6.4. Chitosan-Based Surfaces

The antibacterial properties of chitosan have been thoroughly investigated for various
uses in the biomedical, cosmetic, food, and agricultural industries. Researchers have
studied its usage in self-preserving materials, which have created various goods with
antibacterial qualities, including beads, films, fibers, membranes, and hydrogels. Studies
on the antimicrobial effects of chitosan have changed over the past 20 years, moving from
studies on foodborne and soilborne pathogenic fungi to studies on bacteria, with varied
assays and methodologies revealing the underlying mechanisms and factors determining
its efficiency. Chitosan’s potential as an antibacterial agent has been further boosted by
the development of nanotechnology, which has made it possible to create materials with
nanostructures that are more effective at the atomic level [386]. Although the precise
mechanism underlying chitosan’s antibacterial activity is not entirely understood, many
independent factors have an impact. According to the major hypothesized mechanism,
Chitosan adhering to the bacterial cell wall causes cell disruption, changes in membrane
permeability, and inhibition of DNA replication, which results in cell death. Chitosan’s
polycationic structure, which interacts electrostatically with the anionic components of
microbial surfaces, is essential to the substance’s antibacterial effect. Additionally, the shape
and size of chitosan particles can affect how they interact with bacterial cell surfaces, with
larger NPs behaving differently from smaller ones. Chitosan also has antifungal properties
that limit spore germination and radial growth in fungi. Studies have demonstrated its
effectiveness against several fungi linked to food and plant rotting. Additionally, chitosan
can activate enzymes called chitinases in plant tissues, which act on various fungus species.

8.6.5. Mussel-Inspired Antimicrobial Coatings

Mussel-inspired coatings are developed from the adhesive properties of mussel foot
proteins in marine mussels [387]. The proteins in question facilitate the strong attachment of
mussels to diverse surfaces within moist and turbulent environments, such as coastal areas
in the ocean. Researchers have successfully replicated the bioadhesive chemistry found in
mussel foot proteins, resulting in coatings exhibiting strong surface adhesion and antimi-
crobial characteristics. The fundamental operational principle underlying mussel-inspired
coatings centers on integrating catechol molecules. Catechol is a prevalent chemical func-
tional group abundantly present in mussel foot proteins. This collective facilitates robust
and enduring adherence to various surfaces, encompassing metals, polymers, ceramics,
and even biological tissues. The coatings under consideration utilize catechol groups to
establish a durable attachment mechanism by forming covalent and non-covalent bonds
with the desired substrate. The antimicrobial properties of these coatings are derived
from the distinctive amalgamation of adhesive chemistry and the intrinsic characteristics
of catechol. The application of these coatings demonstrates a high level of efficacy in
inhibiting bacterial colonization and the formation of biofilms. The presence of adhesive
catechol groups results in the disruption of microbial cell membranes, causing destabiliza-
tion of the membranes and subsequent leakage of vital cellular constituents. Furthermore,
the surface roughness and hydrophobicity of the coatings also impede the attachment
and proliferation of bacteria. Mussel-inspired antimicrobial coatings significantly advance
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healthcare outcomes and biomedicine by improving biocompatibility, preventing infections,
and supporting tissue regeneration.

8.6.6. Bacteriophage-Based Antimicrobial Surface

Bacteriophages are widespread and are viruses that attack bacterial cells. When Ernest
Hankin examined the waters of the Ganges and Jamuna Rivers in India in 1896, he dis-
covered the initial signs of bacterial parasites in the environment. Hankin showed an
unidentified material in the river water that has antibacterial capabilities against Vibrio
cholerae, without specifically identifying phages. While working with Bacillus subtilis two
years later, Russian bacteriologist Nikolay Gamaleya noticed a comparable incident [388].
The immobilization of bacteriophages plays a crucial role in advancing biotechnologies, pre-
senting new prospects for detecting pathogenic microorganisms at minimal concentrations,
developing materials possessing distinctive antimicrobial characteristics, and facilitating
fundamental research on bacteriophages. Bacteriophages of indigenous origin exhibit
a notable propensity for a particular bacterial species, and in some cases, a discernible
subspecies, primarily due to the recognition of epitopes on the capsid proteins [389]. By
means of chemical or genetic modifications, the binding specificity can be modified, thereby
enabling redirection toward a diverse range of substrates and analytes beyond the scope
of bacteria. Therefore, the attachment of bacteriophages to flat and particulate surfaces
is a rapidly growing area of significant scientific fascination [390]. Table 2 thoroughly
summarizes all the subsections under this section and lists the most recent biomedical
applications of micro/nanodevices fabricated from BINMs.

Table 2. A summary of all the subsections under this section and list of the most recent biomedical
applications of micro/nanodevices fabricated from BINMs.

Sector Devices Bio-Inspiration Mechanism Applications Refs.

Drug Delivery and
Therapeutic
Applications

Liposome-based drug
delivery system Liposomes Loaded with chemotherapy

drugs Laryngeal cancer cells [391]

Liposome-based
nanoarchitectonics Liposomes Loaded Ag NP Cancer management [392]

Nano-liposome-based
transdermal hydrogel

Targeted delivery of
dexamethasone

Rheumatoid arthritis
therapy [393]

Liposome-based
nanocomposite drug

delivery system

Loaded with Ag NPs, hyaluronic
acid, lipid NPs

Cancer treatment [394]

Dendrimer-based
nanocomposites Dendrimers RNA delivery Cancer vaccination [395]

Dendrimernanosystems Dendrimer nanomicelles
Adaptive tumor-assisted drug

delivery via extracellular vesicle
hijacking

Tumor treatment [396]

Lipid-coated ruthenium
dendrimer conjugation Dendrimers Hydrophobic locking protocol Cancer treatment [397]

Dendrimer-gel-derived drug
delivery systems

Encapsulation or chemical
coupling Glaucoma medications [398]

Erlotinib-loaded dendrimer
nanocomposites

Entrapment or encapsulation of
drug

Targeted lung cancer
chemotherapy [399]

Antiglycolytic cancer
treatment Micelles Considering the unique

metabolism of cancer cells
Antiglycolytic cancer

treatment [400]

Core-(shell-cross-linking)-
corona micelles

(CSCCMs)
Shell protection strategy

Photo- and pH
dual-sensitive drug

delivery
[401]

Polymeric nanocomposite Polymeric micelles using
citraconic amide bonds Cancer treatment [402]

Hyaluronic acid-coated
polymeric micelles Through specific cellular uptake Liver fibrosis therapy [403]
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Table 2. Cont.

Sector Devices Bio-Inspiration Mechanism Applications Refs.

Membrane-coated
nanosystems

Blood cells
Cancer cells
Stem cells

Extracellular vesicles
Viral capsids

Bacteria

Targeting
Diagnosis

Drug delivery

Theranostic
applications [404]

Surface plasmon resonance
(SPR)-based sensors Cancer cells Detected via a change in SPR

angle Detection of cancer [405]

Metal–organic
framework–azidosugar

complex
Cancer cell membrane Metabolic glycan labeling (MGL) Breast cancer treatment [406]

Gene delivery system Viral vectors Nucleic acid molecule in a
protein coat

Gene therapy and
imaging [407,408]

Virus-like particles

Self-assembled capsules
composed of viral capsid or

envelope proteins that preserve
antigenicity

Vaccine, drug, and gene
delivery [409]

Virosomes

Virion-like phospholipid bilayer
vesicle containing an

incorporated glycoprotein within
an empty compartment

Vaccine, gene, and drug
delivery [410–412]

Enzyme-powered
nanomotors Natural molecular motor Self-propulsion Protein delivery and

imaging [413]

Micro/nanomotors Natural mobile
microorganisms Self-propulsion

Diagnostics,
therapeutics, and

theranostics
[414]

Sperm cells

Propulsion of its own flagellum
Directional guidance by

chemotaxis, thermotaxis, and
rheotaxis

Diagnostics,
therapeutics, and

theranostics
[415–418]

Bacteria Self-propulsion and driven by
stimuli

Diagnostics,
therapeutics, and

theranostics
[419–421]

Algae Electro-magnetic field propulsion
and driven by stimuli

Diagnostics,
therapeutics, and

theranostics
[422–424]

Biomimetic
Nanobiosensors

Biomimetic nanophotonic
biosensors Nature’s photonic crystal

Natural structural color and
stimuli-responsive

photochemical reaction

Enzyme detection,
detection of spiked

human serum
[425–427]

Structural colors in
chitin-constituted insect

shells

Hierarchical structures of
carbohydrate nanofibrils such as

chitin and cellulose

Nanobiosensor
label-free detection of

urinary venous
thromboembolism

biomarker

[428–430]

Metallic nanobiosensors Bio-inspired metallic NPs
Fluorescence signal variations
that depend on the size, color,

and surroundings

Electrochemical,
colorimetric, and

fluorescence
nanobiosensors

[431–437]

Polymer-composite-based
nanobiosensors

Nature’s biorecognition
components such as

antibody, enzyme, antigen,
protein, DNA, etc.

Detection of biological reactions
and conversion to signals

Detection of
interleukin-8 (IL-8),

TNF-α, cancer
biomarkers, and

neuron-specific enolase
(NSE)

[438–442]

Hydrogel-based
piezoelectric sensors

Biological tissues and
organisms that exhibit

piezoelectric properties

Due to the asymmetric
arrangement of atoms or

molecules in the crystal structure
of the material

Wound healing,
ultrasound simulation,

and imaging
[443–445]

Organ-on-Chip Single organ-on-chip

Different human organs
individually such as liver,
kidney, lung, gut, heart,

muscle, blood–brain
barrier, seplon, bone

marrow, etc.

Through the replication and
simulation of the physiological

functions and interactions of
human organs in a microfluidic

platform

Drug development and
testing, disease

modeling, personalized
medicine, toxicity

screening, and reducing
the reliance on animal

testing in
pharmaceutical research

[363,446–
451]

Multiple organs-on-chip
Multiple organs are

interconnected similar to
the human body

Replicating the physiological and
biochemical characteristics of

organs in a controlled and
interconnected manner

Enabling the study of
organ–organ crosstalk,
drug responses, and
disease progression

with higher accuracy
and relevance

compared to traditional
in vitro models

[369,370,
452]
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Table 2. Cont.

Sector Devices Bio-Inspiration Mechanism Applications Refs.

Human-on-chip Whole human body

Replicating the complexity and
functionality of the entire human

body in a miniature,
interconnected platform

Applicable for accurate
and predictive

pre-clinical studies,
drug testing, and
disease modeling

[371,453,
454]

Patients-on-chip

Patient-specific cells,
tissues, or induced

pluripotent stem cells
(iPSCs)

Replicating the unique
characteristics of an individual’s
biology, including their genetic
background, disease conditions,

and drug response, in a
microscale platform

Particularly valuable for
precision medicine,

where tailored therapies
are developed based on

a patient’s specific
needs and response

[455,456]

Cancer-on-Chip 3D breast COC Breast tumors

Replicating key aspects of the
breast tumor microenvironment,
such as the extracellular matrix

composition, stiffness, and
architecture

Therapeutic evaluation
of drug delivery

systems
[457–459]

Pancreatic COC Pancreatic tumors

The use of microfluidic
technology to recreate the

microenvironment of pancreatic
tumors

Platform that
recapitulates the tumor
microenvironment and

enables detailed
investigations into
pancreatic cancer

biology, drug responses,
and potential

therapeutic strategies

[456,460,
461]

Lung COC Lung tumors
Platform that replicates the key

features of lung tumors and their
microenvironment

Provides a potent tool
for studying the biology

of lung cancer and
creating tailored

treatments for this
terrible illness by

simulating the lung
tumor

microenvironment,
including mechanical
forces, oxygen levels,

and cellular interactions

[462–464]

Wound Healing
Dressing Mat

Silk-fibroin-based wound
dressings Silkworm cocoons

Creating a favorable
microenvironment for wound

healing and tissue regeneration

Wound healing, tissue
regeneration, bioactive

molecule delivery,
cosmetic uses, drug
delivery, hemostatic
dressings, and tissue
engineering scaffolds

[465–467]

Biopolymer nanocomposite
thin film Natural ECM

Creating a flexible and
biocompatible film that can

adhere to the wound, maintain a
moist environment, and release
bioactive molecules to promote

wound healing and tissue
regeneration

Wound healing and
tissue regeneration [468–470]

Bio-inspired adhesive
formulations

Gecko feet, mussel
adhesive proteins, or

insect adhesives

Mimicking the chemical and
physical properties of natural

adhesives

Medical adhesives for
wound closure and

healing
[471–473]

Bio-inspired
Antimicrobial

Surface

Structure-oriented
antimicrobial surface

Natural surface
morphology of plants,
animals, and insects

Affecting microbial adhesion,
internal cell structures, and cell

migration

Antibacterial, antiviral,
and antifungal

applications
[474–477]

Peptide-based surface
Naturally occurring

peptide molecules found
in various organisms

By specifically interacting with
the negatively charged

membranes of bacteria, fungi,
and viruses, AMPs produce their
antimicrobial actions by inducing
holes to develop and ultimately

cell death

Antimicrobial coating,
wound dressing,

detection of pathogens,
nanomedicine, and
medical implants

[478–481]

Metal/metal oxide
NP-based antimicrobial

surface
Natural metallic NPs Antimicrobial properties of

metal/metal oxide NPs

Antimicrobial coating,
wound dressing,

detection of pathogens,
nanomedicine, and
medical implants

[385,482,
483]

Chitosan-based
antimicrobial surfaces Chitosan

Interacting with bacterial cell
membranes, disrupting their
structure, and leading to cell

death

Antimicrobial coating,
wound dressing,

detection of pathogens,
nanomedicine, and
medical implants

[484–486]
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Table 2. Cont.

Sector Devices Bio-Inspiration Mechanism Applications Refs.

Mussel-inspired
antimicrobial coatings

Adhesive properties of
mussel foot proteins

The catechol groups facilitate
strong and stable interactions

with surfaces, providing
long-lasting antimicrobial

properties

Coating medical
devices, implants, and

wound dressings
[487–489]

Bacteriophage-based
antimicrobial surface

Naturally occurring
viruses that specifically

target and infect bacteria

These surfaces provide a
promising substitute for

conventional antibiotics by using
bacteriophage selectivity to

eradicate particular bacterial
infections

Wound dressings,
medical implants, and

catheters
[490–492]

9. Challenges for Bio-Inspired Nanomaterials in Biomedical Applications

The application of BINMs in biomedicine holds great promise and potential. However,
several challenges must be addressed to incorporate these materials and ensure widespread
adoption. The biomedical applications of BINMs are still facing some challenges related
to biocompatibility and safety concerns, biological complexity, synthesis scalability, tar-
geting and delivery precision, long-term stability, regulatory and ethical considerations,
interdisciplinary collaboration, cost and accessibility, standardization, and quality control
(Figure 25).Micromachines 2023, 14, x FOR PEER REVIEW 77 of 106 
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9.1. Biocompatibility and Safety

One of the foremost challenges lies in the assurance of biocompatibility and safety
of BINMs within intricate biological systems. The cytotoxicity (effects on cell activities
and survival) and biocompatibility of BINMs intended for biomedical applications must
be assessed [493]. Both in vitro and in vivo tests are included in this biocompatibility
assessment. They must pass tests for cytotoxicity, carcinogenicity, reproductive toxicity,
immunotoxicity, irritation, sensitization, hemocompatibility, systemic toxicity, and pyro-
genicity on BINMs. These assessments are essential for the security of manufacturing
employees and patients receiving BINM therapies [494]. Furthermore, a fundamental
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understanding of the connection between the BINMs’ physicochemical characteristics and
their particular biological effects is required to improve their application. For instance,
studies show that BINMs can limit cancer formation and manage the scarring process [495].
However, because of the wide variety of BINMs, the abundance of testing model systems,
the absence of standardized testing techniques, and the difficulties involved with in vivo
tests, difficulties occur when measuring bio-interactions.

9.1.1. Cytotoxicity and Genotoxicity of BINMs

The cytotoxicity of BINMs might be caused via direct necrosis, induced apoptosis,
or immunological clearance, depending on their composition, molecular structure, and
size. Cytotoxicity studies frequently evaluate metabolic impairment, cell-death marker
production, and damaged cell membranes. Several particular tests such as the LDH
test (tracks the release of LDH, which is generally present in healthy cells), Caspase-3/7
(measures the amount of caspases produced, which are responsible for apoptosis), and
MTT assay (this assay particularly measures the reduction of the tetrazolium salt utilizing
redox indicators to gauge metabolic activity changes to evaluate cell viability) are suitable
for assessing BINMs. Cell viability may be impacted by BINMs, depending on their
composition or geometry [496]. Even though some substances may not result in cell death,
they can nonetheless have sub-lethal effects on the genome and epigenome, particularly
at lower dosages. The genotoxicity of BINMs has been extensively studied, and common
procedures include the Ames test, comet test, micronuclei test, DNA laddering test, and
chromosome aberration test. Recently, chemical mutagenicity assessments have also used
next-generation sequencing [497]. The ability of BINMs to directly penetrate cells or to
catalyze intracellular OH radical generation, which can enhance ROS and DNA damage, is
crucial to comprehend [498].

9.1.2. Immunomodulation of BINMs

Both direct and indirect immunomodulation, including immunosuppression and im-
munostimulation, can be caused by BINMs [499]. Although BINMs can be used to deliver
drugs or vaccines utilizing NPs, this article focuses on the immunological reactions that
the BINMs cause. Adaptive immunity involves T cells and B cells creating antigen-specific
reactions, and innate immunity, which deals with non-specific interactions with immune
cells like macrophages, is involved in this. For instance, zinc oxide and silver BINMs have
been found to increase the production of IL-6 and IL-8 in kidney cells, indicating improved
innate and adaptive responses [500]. Size, surface chemistry, molecule structure, and chemi-
cal content of BINMs all impact their immunomodulatory activities. Particularly important
in immunomodulation is particle size. For example, NPs (193 nm) induced a stronger im-
munological response than their microparticle equivalents (1530 nm) [501]. Larger particles
may stimulate a stronger serum immunoglobulin response [499]. Identifying sensitivities
to specific BINM features is difficult due to the diversity of immunological responses from
different BINMs and the varied testing procedures. The intricacy of interpretations can also
be increased by the synergistic influence of several components on these processes [502].

9.1.3. Fibrosis Induced by BINMs

BINMs can cause fibrosis, a condition characterized by the excessive accumulation
and modification of the extracellular matrix (ECM). Since fibrosis can develop without
causing an immediate reaction and because there are no established prognostic tests, our
understanding of it is limited. Cells are examined for the expression of fibrosis-related
proteins, such as α-smooth muscle actin, transforming growth factor beta (TGF-β), and
other ECM components like fibronectin, laminin, and COL I, during in vitro tests for
fibrotic reactions. Cells are routinely grown on rigid substrates (in 2D cultures), which
might alter gene expression due to the nucleus pore opening from mechanical stresses.
This is a known problem. This implies the necessity of in vivo research [503]. Due to
their tiny size, NPs can easily enter lung alveoli. They can trigger a variety of reactions,
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including fibrosis when they come into touch with lung cells. For instance, NPs can
increase the production of TGF-β and reactive oxygen species (ROS) [504]. The relationship
between NPs and these negative reactions may be complicated because these consequences
may not cause immediate discomfort. There are several different ways that NMs cause
fibrosis. Unintended immunogenic responses, cytotoxicity, and potential long-term impacts
on human health are significant issues that necessitate comprehensive examination and
resolution. The nanomaterials produced through biosynthesis exhibited negligible toxicity
concerning hematological, biochemical, histological, and DNA damage assessments [505].

9.2. Biological Complexity

Nanomaterials must navigate a complicated biological environment with its many
cellular networks, interlaced routes, and multiscale mechanisms. These tiny structures
meet a continually changing physiological and metabolic milieu when introduced into such
systems. Therefore, understanding and forecasting nanomaterial behavior and, more sig-
nificantly, biological system response is a huge problem. Proteins in the living environment
can build a “protein corona” on NPs. Unintended adsorption can drastically change the
nanomaterial’s biodistribution, half-life, and therapeutic efficacy. The protein corona can
also elicit immunological responses, which may remove nanomaterials quickly or cause
unexpected adverse effects. Nanomaterials interact dynamically with cells, life’s building
components. Depending on size, charge, and surface properties, nanomaterials may be
endocytosed or diffused by cells. On the other hand, cellular absorption can be harmful. It
may be useful for delivering treatments directly into cells but may also cause cytotoxicity or
interfere with biological functioning. Tissues and cell clumps increase this intricacy. Some
tissues are nanomaterial-permeable, while others are impenetrable. The blood–brain barrier
blocks most chemicals, including nanomaterials, from entering the brain. Overcoming such
constraints without harming the nanomaterial’s functionality demands a delicate balance
of design and innovation.

9.3. Synthesis Scalability

The synthesis of BINMs frequently encompasses intricate procedures, elaborate molec-
ular architectures, and meticulous functionalization, necessitating a high level of complexity
and precision. Scaling up these processes to achieve mass production while preserving their
inherent properties and quality poses a substantial technical challenge. A comprehensive
approach is employed to address the intricate biological complexities related to using
BINMs in biomedical applications. The process entails comprehensive biocompatibility
evaluations, including in vitro and in vivo investigations to assess potential cytotoxicity,
immunogenicity, and long-term consequences. Furthermore, customized surface modi-
fications and functionalizations are implemented to augment the biocompatibility and
targeting specificity of nanomaterials, thereby minimizing any detrimental interactions
with biological systems. Again, there has been significant progress in developing sophis-
ticated computational models capable of simulating and predicting the interactions of
nanomaterials within intricate biological environments. This advancement has greatly
facilitated the process of designing and optimizing the performance of these nanomate-
rials. Implementing these collaborative approaches plays a significant role in effectively
navigating the complex biological environment and facilitating the secure and efficient
incorporation of BINMs across various biomedical contexts.

9.4. Targeting Delivery

BINMs have expanded biomedical applications, including medication delivery and
diagnostics. These NPs can selectively reach desired tissues or cells without disrupting
healthy ones, maximizing therapeutic efficacy and minimizing negative effects. Molecular
or cellular interaction is a major benefit of nanomaterials in medicine. Their small size
lets them negotiate the complex blood vessel network and reach even the most inacces-
sible body areas. Simply being small is not enough. Surface features, including charge,
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hydrophobicity, and functional groups determine how these NPs interact with biological
substances and cells. Complex systems like the human body have several defenses to
identify and destroy alien things. Avoiding the immune system is difficult when using
nanomaterials for therapy. Researchers can make these NPs “invisible” to immune cells
or use specific biological processes to improve their targeting by altering their surfaces.
Active targeting is another trending method. NPs are functionalized with ligands or an-
tibodies that bind to target cell receptors. NPs can bind selectively to cancer cells that
overexpress certain receptors, delivering therapeutic chemicals precisely where they’re
required without harming healthy cells. The regulated release of medicinal compounds
from NPs is crucial. A delayed or inadequate release may not be helpful, whereas an abrupt
or excessive release may be harmful. Scientists can sustain and control medication release
by modifying nanomaterial composition and structure, keeping drug concentration within
the therapeutic window. External stimuli like pH, temperature, or light can also regulate
release. Certain nanomaterials release their therapeutic payload in reaction to tumor cells’
acidic environment or inflamed tissues’ high temperatures.

9.5. Stability of BINMs

The long-term stability of BINMs within the biological environment is paramount in
ensuring sustained therapeutic efficacy. Managing factors such as degradation, aggregation,
or alteration of properties over time is necessary. Several techniques can be used to increase
the BINMs’ long-term stability for biomedical applications. These include meticulously
choosing biocompatible and stable materials, surface modification to prevent degrada-
tion, controlled release systems to control therapeutic agent release, encapsulation within
protective matrices, use of crosslinking agents to increase stability, thorough biocompati-
bility testing, in vivo research for in-the-moment insights, and computational modeling
to forecast behavior. Researchers can address stability issues and guarantee the long-term
effectiveness of BINMs in challenging biological settings by employing these techniques.

9.6. Regulatory and Ethical Considerations

The field of nanomaterials in biological applications is characterized by both techno-
logical advancements and complex regulatory and ethical considerations. As scientific
advancements approach the limits of feasibility, it becomes increasingly imperative to
exercise prudence, guaranteeing the responsible introduction of innovations, taking into
account considerations of personal well-being and broader societal ramifications. From
a regulatory standpoint, the journey from a laboratory notion to a commercially viable
product is intricate and complex. Regulatory agencies, such as the Food and Drug Admin-
istration (FDA) or the European Medicines Agency (EMA), require a thorough compilation
of supporting documentation prior to granting permission. The data presented encom-
pass more than simply the clinical effectiveness of the treatment and explore the possible
long-term adverse effects, environmental consequences, and wider societal implications as-
sociated with introducing a novel therapeutic approach. This frequently entails conducting
extended clinical trials, comprehensive toxicity assessments, and implementing rigorous
production protocols to guarantee uniformity and excellence.

The ethical considerations are similarly, if not more, complex. As the manipulation
of materials at the nanoscale and their subsequent introduction into the human body
are undertaken, inquiries emerge: Has full informed consent been acquired from the
patients? Do individuals possess an understanding of the potential long-term ramifications,
particularly in cases when these ramifications remain uncertain? How can we effectively
promote equitable access to these potentially transformative therapies? Does the potential
exist for the exacerbation of pre-existing inequality in healthcare? The issue of privacy arises,
especially when these nanomaterials interact with digital technologies. Which individuals
or entities are granted access to the data, and what measures are being implemented to
ensure their protection?
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The environment constitutes an additional dimension inside the ethical framework.
The environmental implications of the production, utilization, and disposal of NPs warrant
investigation. Do these entities undergo decomposition or persist, resulting in unantici-
pated ecological disturbances? The multifaceted nature of BINMs also gives rise to many
prospects and complexities. Integrating knowledge from other fields can contribute to
developing comprehensive solutions, underscoring the importance of proficient inter-
disciplinary communication. Every academic field is characterized by its own unique
vocabulary, methodology, and priorities. It is of utmost importance to prioritize establish-
ing effective communication and a shared vision to prevent the fragmentation of efforts,
which may result in overlooking crucial aspects. Fundamentally, the field of bio-inspired
nanomaterials for biomedical purposes exhibits significant potential. However, this pursuit
is accompanied by many factors surpassing mere scientific obstacles. Each progression
is a nuanced choreography of originality and accountability, necessitating attentiveness,
anticipation, and a dedication to the collective welfare.

9.7. Cost and Accessibility

BINMs are expensive because they require high-end facilities, specialized researchers,
and rare raw ingredients. Between basic research and commercial production are many
stages, each with its own costs. Fundamental research might take years, followed by
synthesis refining, safety studies, and rigorous clinical trials before medicinal use. These
trials are necessary to ensure nanomaterial safety and efficacy but are time- and resource-
intensive. Other economic aspects must be considered besides production costs. Medical
material safety and efficacy regulations can be lengthy and costly. Many nanomaterials are
unique, and therefore, regulatory authorities may require extra testing, increasing expenses.
Accessibility is another issue, especially for global healthcare. Developed nations may
have the facilities and resources to invest in these modern therapies, whereas emerging or
undeveloped places may not have the funds. Even if these components are obtained, a lack
of skilled staff or facilities to conduct treatments may render the technology worthless. The
issue goes beyond procurement. Specialized equipment or conditions may be needed to
store and preserve these fragile nanomaterials, straining limited resources. Distributing
these items worldwide, especially to rural areas, might be a logistical nightmare without
compromising their efficacy. While nanomaterials are expensive, their potential benefits
are great. Their capacity to target specific cells or tissues, limit side effects, and even
offer new treatments puts them at the forefront of modern medicine. This makes cost and
accessibility issues even more important. The effectiveness and accessibility of BINMs
must transcend geographical and economic boundaries to improve healthcare. Researchers,
industry leaders, and politicians must work together to achieve this balance.

9.8. Standardization and Quality Control

Establishing standardization protocols and implementing quality control measures
play a crucial role in guaranteeing uniform quality, reproducibility, and adherence to stan-
dardized testing methodologies for BINMs. These factors are of utmost importance in
facilitating the effective translation of such materials into clinical applications. Overcom-
ing these challenges necessitates the integration of scientific advancements, meticulous
experimentation, adherence to regulatory standards, and cooperative endeavors involving
researchers, medical professionals, policymakers, and industry stakeholders. The suc-
cessful resolution of these obstacles will facilitate the efficient implementation of BINMs
in various biomedical domains, encompassing diagnostics, drug administration, tissue
engineering, and regenerative medicine.

9.9. Recent Developments and Commercial Viability of BINM-based Micro/Nanodevices
9.9.1. Commercially Available Nanobiosensors

When a biosensor demonstrates superior performance during real-sample testing, it
can proceed to commercial production. The analytical capability of the sensor in practical
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scenarios will determine its market feasibility [506]. Several biosensors have achieved con-
siderable commercial success, tracking metrics such as blood glucose, cholesterol, malaria,
HIV, and uric acid [507]. Furthermore, sensors monitoring cancer and cardiac diseases have
garnered significant commercial interest [508]. The affordability of production and scalability
are essential for these devices to thrive in the market. To make them more economical, innova-
tions like paper-based and chip-based microfluidic technologies have been introduced [509].
These tools ensure accurate sample management and precise analyte detection. Due to
the low cost of paper, paper-based biosensors are attractive for both manufacturers and
consumers. A variety of clinical biosensors such as a blood profiler from abbott (iSTAT)
(https://www.pointofcare.abbott, accessed on 15 August 2023), glucose monitoring system
from allmedicus (GlucoDr) (https://www.lelong.com, accessed on 15 August 2023), blood
hemoglobin analyzer (AimStrip) (https://www.1cascade.com, accessed on 15 August 2023),
uric acid detector from ApexBio (UASure) (https://redmed.pl, accessed on 15 August 2023),
integrated printed circuit biosensor from Acreo (https://www.acreo.se, accessed on 15 August
2023), and pregnancy dipstick from alere (hCG combo) (https://www.alere.com, accessed on
15 August 2023) have been adopted commercially that offer both excellent analytical results
and speedy detections. There is also a surge in emerging technologies, including cost-effective
prototypes built on paper, elastomers, and combinations of the two [510]. Traditional diagnos-
tics, which can be slow and require bulky equipment, are inadequate for urgent or remote
medical situations. In contrast, advanced biosensors address these challenges with swift,
on-the-spot testing capabilities. Yet, the high diagnostic needs often outpace traditional meth-
ods and current commercial biosensing devices in areas hit hard by epidemics or pandemics.
Therefore, there is an immediate demand for scalable, cost-effective prototypes to handle
future disease outbreaks better.

9.9.2. Commercially Available Drug Delivery System

Drug delivery systems (DDSs) composed of tiny molecules, peptides, nucleic acids,
proteins, and cells commonly encounter obstacles in the delivery process, impeding com-
mercial product development progress. The investigation has uncovered three primary
solutions for addressing delivery challenges, which encompass the modification of the med-
ication itself, manipulating the drug’s surrounding environment, and developing a delivery
system that can effectively regulate drug interactions within its microenvironment [511].
Small-molecule-based DDSs face challenges related to biodistribution, half-life, exposure,
concentration, solubility, permeability, target development, and off-target toxicity. Commer-
cial manufacturers addressed these issues by developing an osmotically controlled release
oral-delivery system for methylphenidate HCl (Concerta) to address the drug tolerance
issue by regulating its pharmacokinetics [512]. Ritonavir, commercially known as Norvir, is
a protease inhibitor often used to treat HIV. It has been chemically modified with thiazole
to enhance its metabolic stability and solubility in aqueous environments [513]. Benazepril,
commercially known as Lotensin, is an alkyl ester prodrug that is designed to conceal
ionizable groups and enhance its lipophilicity [514]. Ezetimibe (Zetia) is a pharmacological
agent that is a selective inhibitor of cholesterol absorption. This compound was initially
identified through a process known as library screening [515]. Naloxegol, commercially
known as Movantik, is a derivative of naloxone that has been PEGylated to inhibit its
ability to pass the blood–brain barrier [516].

DDSs composed of protein and peptide molecules confront challenges like enhancing
physical stability, managing pharmacokinetic (PK) attributes like half-life and biodistri-
bution, non-invasive application, overcoming biological barriers, minimizing immune
reactions, and refining target precision. To address these challenges, commercial producers
have adopted a range of strategies. For example, Desmopressin (DDAVP) was developed
as a vasopressin analog, incorporating a non-standard amino acid to boost its stability and
half-life [517]. Leuprolide acetate’s depot suspension, Lupron Depot, offers a prolonged-
release microsphere formula of the luteinizing-hormone-releasing hormone, enhancing
its half-life [518]. Insulin human inhalation powder, known as Afrezza, is an inhaled
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insulin variant comprising microparticles mixed with fumaryl diketopiperazine, ensuring
it is apt for inhalation [519]. Semaglutide, or Rybelsus, is an orally administered GLP-1
agonist, blended with SNAC to enhance stomach absorption [520]. Pegademase bovine, or
Adagen, is a PEGylated protein treatment designed to prolong half-life while decreasing
immunogenic responses [521]. Belatacept, or Nulojix, is an innovatively designed fusion
protein that showcases amino acid modifications to heighten its selectivity for CD86 and
CD80 [522].

Antibody-based DDSs suffer from similar kinds of obstacles faced by protein- and
peptide-based DDSs. Some examples of issues resolved by commercial producers are
cited here. Certolizumab pegol, also known as Cimza, is the initial PEGylated antibody
fragment to receive approval from the FDA [523]. This modification enhances the half-life
of the antibody fragment and improves its solubility. Blinatumomab, commercially known
as Blincyto, is a lyophilized antibody formulation that incorporates trehalose to enhance
the stability of the antibody structure [524]. Trastuzumab and hyaluronidase-oysk (com-
mercially known as Herceptin Hylecta) are a novel subcutaneous depot formulation that
incorporates hyaluronidases to enable Herceptin’s controlled and prolonged release [525].
Panitumumab, commercially known as Vectibix, is the initial entirely human antibody
to receive approval from the U.S. FDA [526]. This therapeutic agent effectively mitigates
immunogenicity and inhibits the production of anti-antibodies.

Nucleic acid-based DDSs encounter various obstacles in their implementation, includ-
ing the regulation of pharmacokinetic parameters, maintenance of stability, facilitation of
efficient cell membrane penetration, attainment of access to the cytosol or nucleus after
uptake, mitigation of immunogenic responses, and prevention of unwanted gene modifica-
tions. There are various commercial solutions available to address these concerns. Patisiran,
also known as Onpattro, is a therapeutic agent that has received approval from the United
States FDA [527]. This therapy utilizes small interfering RNA (siRNA) and lipid NPs to
facilitate effective transportation to the liver and uptake by target cells. The therapy also
utilizes ionizable cationic lipids to facilitate the drug’s release from endosomes following
endocytosis. Fomivirsen, also known as Vitravene, represents the inaugural antisense
oligonucleotide to receive approval from the FDA. It incorporates a modification in the
form of a phosphorothioate backbone, which enhances its resilience against nucleases [528].
Givosiran, also known as Givlaari, is a GalNAc-siRNA compound that facilitates enhanced
cellular absorption in liver hepatocytes [529]. Nusinersen, commercially known as Spinraza,
has been granted approval for treating spinal muscular atrophy. This therapeutic interven-
tion incorporates a modification known as 2’-O-methoxyethyl phosphorothioate, which
serves the dual purpose of diminishing immunogenicity and enhancing stability [530].
CRISPR technology is utilized to modify CD34+ cells with CCR5 to combat HIV-1. The
CD34+ cells, which are subject to clinical trials with the identifier NCT03164135, undergo ex
vivo editing procedures. In order to detect any unintentional modifications, the process of
whole-genome sequencing is employed subsequent to post-editing and engraftment [531].

Nucleic acid-based DDSs encounter challenges pertaining to the unpredictability of
pharmacokinetic parameters, the need to sustain persistence and viability within the body,
the imperative to minimize immune reactions, the preservation of therapeutic properties of
cells, the assurance of precise delivery to the intended disease site, and the scalability of
manufacturing processes. In light of these challenges, a number of novel ways have been de-
vised. Preclinical alginate implants have been developed to regulate the release of chimeric
antigen receptor (CAR) T cells to the specific illness site [532]. The SIG-001 treatment uti-
lizes genetically engineered cells embedded in an antifibrotic matrix to achieve a prolonged
therapeutic effect [533]. The administration of fludarabine conditioning chemotherapy
is employed to mitigate the immunological rejection response toward infused chimeric
antigen receptor (CAR) T cells [534]. Sipuleucel-T, an innovative immunotherapy utilizing
dendritic cells that has received approval from the FDA, employs ex vivo antigen pre-
sentation to initiate and maintain a therapeutic cellular phenotype [535]. Matrix-induced
autologous chondrocyte implantation (MACI) is a novel technique that effectively retains
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chondrocytes at the intended site [536], making it the initial cell-embedded scaffold product
to receive approval from the FDA. Furthermore, Tisagenlecleucel, the first CAR T-cell
therapy to receive approval from the FDA, established the standard for manufacturing
autologous cell therapies [537].

10. Future Perspectives and Concluding Remarks

The ongoing progress in the domain of BINMs for micro/nanodevices in biomedical
applications presents significant potential for transforming the healthcare sector and other
related fields. The progression from the initial idea to the actualization of these materi-
als has demonstrated their significant capacity to improve the performance of devices,
achieve compatibility with biological systems, facilitate self-assembly processes, promote
sustainability, and provide a wide range of applications. The utilization of the bio-inspired
approach, which draws inspiration from nature’s efficiency and elegance, has not only facil-
itated the creation of innovative materials but has also provided a new lens through which
to tackle intricate problems. Looking toward the future, the field of BINMs is anticipated to
explore novel frontiers. The advancement of innovation can be propelled by incorporating
various biological inspirations and elucidating complex structure–function relationships
inherent in organisms.

Furthermore, the progress made in utilizing biomimetic materials and implementing
energy-minimizing designs will facilitate the development of micro/nanodevices that
are both highly efficient and environmentally sustainable. The potential applications
within the micro/nanodevices domain are extensive and encompass various fields beyond
biomedicine. The application of BINMs in various domains such as chemical reaction
systems, energy harvesting and storage, environmental protection, sensors, agricultural
sustainability, protective clothing, and adaptive materials demonstrates this approach’s
wide-ranging capabilities and significant influence. These applications possess the capacity
to transform industries and effectively tackle urgent global challenges fundamentally.

Although substantial advancements have been made thus far, there are still obstacles
to fully overcome to harness the capabilities of BINMs for biomedical purposes. The
successful resolution of challenges related to synthesis intricacies, attainment of accurate
interfaces, mitigation of biocompatibility issues, assurance of long-term stability, and
negotiation of regulatory and ethical considerations necessitates the collaborative endeavors
of interdisciplinary groups. Incorporating knowledge from various disciplines such as
biology, chemistry, material science, medicine, engineering, and other related fields will play
a crucial role in determining the trajectory of BINMs in the future. BINMs signify a novel
biomedical application era characterized by inventive designs, improved functionality, and
diverse possibilities. The remarkable trajectory from inspiration to realization underscores
the significance of biomimicry in propelling scientific progress. As scholars persist in
investigating and enhancing these materials’ design principles, synthesis techniques, and
applications, the range of potential outcomes will broaden, leading to a forthcoming era
in which BINMs assume a crucial position in influencing our approach to healthcare,
technology, and the global landscape.
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