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Abstract: This article presents the nonlinear investigation of the thermal and mechanical buckling of
orthotropic annular/circular single-layer/bilayer nanoplate with the Pasternak and Winkler elastic
foundations based on the nonlocal strain gradient theory. The stability equations of the graphene plate
are derived using higher-order shear deformation theory (HSDT) and first-order shear deformation
theory (FSDT) considering nonlinear von Karman strains. Furthermore, this paper analyses the
nonlinear thermal and mechanical buckling of the orthotropic bilayer annular/circular nanoplate.
HSDT provides an appropriate distribution for shear stress in the thickness direction, removes the
limitation of the FSDT, and provides proper precision without using a shear correction coefficient. To
solve the stability equations, the differential quadratic method (DQM) is employed. Additionally, for
validation, the results are checked with available papers. The effects of strain gradient coefficient,
nonlocal parameter, boundary conditions, elastic foundations, and geometric dimensions are studied
on the results of the nondimensional buckling loads. Finally, an equation is proposed in which the
thermal buckling results can be obtained from mechanical results (or vice versa).

Keywords: nonlinear; thermal/mechanical buckling; nonlocal strain gradient theory; annular/circular
nanoplate; single-layer/bilayer; HSDT; DQM

1. Introduction

Nanoplates including graphene sheets can be named as one category of eminent
materials for the next generation of nanodevices. Graphene sheets can be utilized in the
manufacture of many nanodevices like sensors and memory devices [1] and there are other
applications such as nanosheet resonators [2], mass sensors [3], and gas sensors [4]. Because
performing highly accurate experiments at the nanoscale is very demanding and high-cost,
some techniques such as continuum-based modelling and molecular dynamics (MD) have
been employed recently that have the potential to consider the atomic size and length
effects. MD modelling of nanoscale structures needs time-consuming procedures and
complicated computations. Continuum modelling of nanostructures is computationally
less expensive than MD modelling; therefore, continuum theories have been formulated
and employed for the investigation of the mechanical properties of nanoscale structures. In
other words, continuum modelling of nanostructures can assist in understanding the results
of experimental measurements (or MD modelling) more properly, because it can decrease
the volume and computational time. In order to make computations easier, continuum
mechanics can be employed as an appropriate option for theoretical investigations. The
atomic length scales and interatomic force coefficients can be incorporated into the consti-
tutive equations. In the classical continuum model, the influences of size in nanostructures
are not regraded [5,6].

Experimental investigations have proved that there are size-dependent effects on
the mechanical properties at the nanostructures [7]. Therefore, modified continuum
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theories are required to consider small-scale influences and maintain the ease and
computational efficiency of continuum theories. Consequently, new theories have been
suggested to take into account nanoscale effects in nanostructures. Various nonclassical
continuous models have been presented considering the material length scale coefficient,
and multiple modifications to classical elasticity theories including Eringen’s nonlocal
elasticity theory [8], the strain gradient theory [9], and the nonlocal strain gradient
theory [10] have been proposed.

Narendar [11] perused the buckling of rectangular nanoplates on the refined basis
of the two-variable plate theory considering nonlocal scale through the Navier technique.
He observed that by increasing the size of the square nanoplate, the buckling load ra-
tio decreases significantly. Jamalpoor and his colleagues [12] studied the vibration and
buckling of nanoplates exposed to electric as well as magnetic potentials based on the
nonlocal plate theory. They noticed that the buckling load increased by increasing the
external magnetic potential. Li and Hu [13] used nonlocal continuum theory to study the
buckling, vibration, and bending of composite nanobeams. They concluded that the critical
buckling load can be increased by reducing the nonlocal coefficient when the nonlocal
coefficient is larger than the material characteristic coefficient. Shaban and Alibeigloo [14]
investigated the bending and vibration analysis of carbon nanotubes on elastic foundations
using the nonlocal three-dimensional theory of elasticity. They observed that the static and
vibrational behaviors of carbon nanotubes are significantly affected by elastic foundations.
Rokni et al. [15] studied the free vibration of circular/annular plates considering variable
thickness with various boundary conditions using three-dimensional elasticity. Shaban
and Mazaheri [16] analyzed the electrostatic behavior of microsandwich panels with the
functionally graded core using the nonlocal three-dimensional theory of elasticity. They
observed that increasing the nonlocal coefficient led to an increase in the displacements.
The authors of Ref. [17] perused the free vibration of functionally graded plates on the
elastic foundation with elastically restrained edges using FSDT. In their paper, they studied
the influences of coefficients including thickness-to-radius, material distribution, various
combinations of constraints at edges on the frequency, foundation stiffness coefficients,
mode shape, and modal stress.

It is noticed that in the former analyses, the small-scale effect in sort of the stress
nonlocality led to a softening–stiffness effect, while the strain gradient size dependency
resulted in a hardening–stiffness effect. Consequently, various nonclassical continuum
theories of elasticity have been presented to prognosticate various size dependencies in
the mechanical features of nanostructures. The theory of nonlocal strain gradients is one
of the prominent models for analyzing size-dependent mechanical features. Contrary to
classical elasticity theory, the nonlocal strain gradient theory can consider the influences
of stiffness–hardening and stiffness–softening by assuming the strain and stress gradient.
Therefore, Lim and his colleagues [10] studied a new size-dependent elasticity model
named nonlocal strain gradient theory considered both softening and stiffening effects to
illustrate the size dependency more accurately.

Some analyses have been carried out with respect to the nonlocal strain gradient
theory [18]. For example, the authors of Ref. [19] investigated the buckling of the
nanocrystal shell with the axial loads assuming thermal, magnetic, and electrical condi-
tions with the nonlocal strain gradient theory. They deduced that the nonlocal parameter
affects the critical buckling load more notably for nonlocal parameters ranging from 2 to
20 nm. Tanzadeh and Amoushahi [20] perused the buckling of rectangular nanoplates
subjected to various uniaxial in-plane loads using the nonlocal strain gradient theory
with the higher-order finite strip technique. They concluded that increasing the strain
gradient coefficient resulted in an increase in buckling load. Cuong-Le et al. [21] studied
the bending, buckling, and vibration of sandwich nanoplates based on the theory of
nonlocal strain gradients. They noticed that the nonlocal and strain gradient coefficients
result in stiffness reduction and stiffness hardening cases. Therefore, both of these
coefficients play a significant effect in the buckling of sandwich nanoplate. Wang and
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his colleagues [22] perused the buckling of functionally graded nanotubes based on the
nonlocal strain gradient theory with high-order theory via the generalized differential
quadrature technique. Wang et al. [23] analyzed the buckling of porous functionally
graded porous nanobeams considering hybrid effects using the nonlocal strain gradi-
ent principle with the aid of the generalized differential quadrature technique. Esen
and Özmen [24] studied thermal vibration and buckling functionally graded porous
rectangular nanoplates considering magnet electroelastic effects based on the nonlocal
strain gradient theory and FDST. They revealed that the temperature increase influences
the buckling characteristic of the nanoplate depending on the proportions of the con-
stituents in the nanoplate. Tang and Qing [25] examined the buckling and vibration of
functionally graded beams based on the theory of nonlocal strain gradient and using the
Laplace transform method. They scrutinized that the effects of length-scale coefficients
on the vibration frequencies and buckling loads increase with the rise in vibration and
buckling order. Al-Furjan and his colleagues [26] conducted research on the dynamic
buckling of carbon nanocones with the nonlocal strain gradient theory and FSDT. They
demonstrated that by increasing the strain gradient coefficient, the dynamic instability
region occurred at high frequencies. Magorzata Chwa and Muc [27] utilized the non-
local strain theory and considered higher-order shear deformation theories to analyze
buckling and free vibrations of rectangular nanoplates via the Rayleigh–Ritz method.
Using nonlocal strain gradient elasticity theory and third-order shear deformation plate
theory, Fan et al. [28] studied buckling and postbuckling porous functionally graded
nanoplates. They noticed that by increasing the material characteristic gradient index,
both nonlocal and strain gradient size influences are noticeable. Sadeghian et al. [29]
studied the investigation of large deflection of the annular/circular nanoplate on the
basis of nonlocal strain gradient theory. They concluded that both strain gradient and
nonlocal coefficients have noticeable effects on decreasing or increasing the deflection of
the nanoplate.

One of the important issues in evaluating the stability of various structures is the
buckling analysis, which has drawn the attention of many researchers to perform research
on it. The term buckling refers to the loss of stability, or in other words, when the structure
changes from stable equilibrium to unstable equilibrium, the structure undergoes buckling.
In fact, the behavior of the structure under load in which with a small increase in load a
disproportionate increase in displacement occurs in the structure is called buckling, and the
amount of force for which the structure buckles is called critical buckling load [30]. There are
many papers that consider buckling analysis. For example, Zghal et al. [31] scrutinized the
postbuckling of functionally graded nanotubes considering various mechanical loadings. In
their article, they discussed the influences of the carbon-nanotubes (CNT) volume fractions,
CNT distributions, gradient indexes, and boundary conditions. In another paper, Zghal and
Dammak [32] studied the buckling of functionally graded structures subjected to various
compression loads. They noticed that the evenly porous FGM structures have the minimum
buckling load while the uneven ones possess the maximum one. Trabelsi et al. [33] studied
thermal buckling of functionally graded shells. They demonstrated that the flexural rigidity
of the FG cone exposed to thermal loads can be improved with the variation of the power-
law parameter. Mehr et al. [34] studied functionally graded CNT-reinforced composite
shells with thermal buckling. They noticed that increasing aspect ratio and CNT volume
fraction cause higher critical buckling temperature. Van Do and Lee [35] investigated the
thermal buckling of FGM plates based on the quasi-3D higher-order shear deformation
theory. They noticed that the temperature distribution on the plate noticeably influences
the thermal buckling responses of FGM plates.

DQM is one of the numerical methods that has been employed by many authors [36,37].
The initial purpose of this procedure is to employ Lagrange interpolation polynomials to
field constants and to solve the equations at discrete grid nodes. Higher accuracies are
gained by considering more grid nodes. With the aid of DQM, Han et al. [38] studied
one-electrode microresonators on the basis of a generalized 1DOF principle. Duryodhana
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et al. [37] employed DQM to study the buckling (and free vibrations) of foamed composites.
By means of DQM, Ren et al. [39] investigated the thermal and mechanical buckling
behavior of heated rectangular plates considering the characteristics of the temperature-
dependent material.

FSDT accounts for the shear deformation influences by the way of linear variation of
in-plane displacements through the thickness. Because the FSDT violates the conditions
of zero transverse shear stresses on the top and bottom surfaces, a shear correction factor
(which can depend on many parameters) is needed to compensate for the error caused by a
constant shear strain assumption through the thickness. The HSDTs account for the shear
deformation influences and satisfy the zero transverse shear stresses on the top and bottom
surfaces; therefore, a shear correction factor is not needed. HSDTs are modelled based on
the assumption of higher-order variations of in-plane displacements or both in-plane and
transverse displacements through the thickness. Some of HSDTs are computational costs
because with each additional power of the thickness coordinate, an additional unknown
can be added to the model [40]. Also, there is quite the difference between FSDT and HSDT
behavior for thick plates, but for thin plates both of the theories predict approximately
similar result [41].

Until now, the nonlocal strain gradient theory with HSDT and FSDT has not been
carried out for studying the nonlinear thermal as well as mechanical buckling of the
orthotropic annular/circular nanoplate via DQM. Furthermore, the buckling analysis of
a bilayer annular/circular nanoplate with elastic foundations is also studied. The effects
of the nonlocal parameter, strain gradient coefficient, boundary conditions, geometric
dimensions, and elastic foundations on the results of the nondimensional buckling loads
are investigated. From the results, it can be concluded that the effect of the nonlocal
parameter on the buckling of the circular/annular nanoplate is more significant than the
types of boundary conditions or elastic foundations. Also, it is noticed that a bilayer
nanoplate cannot be assumed as an equivalent single-layer nanoplate (with the same
thickness as the bilayer nanoplate) to gain the results of the buckling of the nanoplate.
The results of the current article can be a benefit for the design as well as improvement of
nanostructured devices, including circular gate transistors, microswitches, and so on.

2. Theory and Formulation

Figure 1a,b demonstrate an annular graphene plate with inner radius ri, outer radius
ro, and constant thickness h on the Winkler–Pasternak elastic foundation (in which kp and
kw define the Pasternak and Winkler elastic foundations) and under uniform extended
buckling loads.
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Taking into account the HSDT, the displacement field can be written in the r, θ, and z
axes clarified by U, V, and W, respectively.

U(r, θ, z) = u0(r)− z
dw0(r)

dr
+ g(z)φ(r)

V(r, θ, z) = 0
W(r, θ, z) = w0(r)

(1)

where u0 and w0 define the displacements of the midplane on the r and z axes, respectively.
Furthermore, φ(r) is the rotation component around the θ axis. Also, the function g(z) can
be mentioned as:

g(z) = f (z) + zy∗. (2)

f (z) and y* can be assumed as various functions utilized in different papers which
are listed in Table 1 (for instance, the Ambartsumian [42] model can be considered as
− 1

6 z3
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The nonlinear strains, considering von Karman’s presumptions, can be written as
Equations (3)–(7):

εr =
dU
dr

+
1
2
(

dW
dr

)
2
=

du0

dr
− z

d2w0

dr2 + g(z)
dφ

dr
+

1
2

(
dw0

dr

)2
, (3)

εθ =
U
r
=

1
r

(
u0 − z

dw0

dr
+ g(z)φ

)
, (4)

γrθ = 0, (5)

γrz =
dW
dr

+
dU
dz

= φ
dg(z)

dz
, (6)

γθz = 0. (7)

It is noted since the symmetric assumption is considered, Equations (5) and (7) are
equal to zero.

The nonlocal form (NL) of the force and momentum resultants can be clarified as:

{Nr, Nθ , Qr}NL =
∫ h

2

− h
2

{σr, σθ , σrz}NLdz , (8)
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{Mr, Mθ}NL =
∫ h

2

− h
2

{σr, σθ}NLzdz , (9)

{Rr, Rθ}NL =
∫ h

2

− h
2

{σr, σθ}NL f (z)dz , (10)

RNL
rz =

∫ h
2

− h
2

σNL
rz f ′(z)dz . (11)

The potential energy of the system is the sum of the strain energy created due to the
work of internal forces as well as the potential energy created by external forces.

Π = U + Ω (12)

Π, U, and Ω are described as the potential energy of the entire system, the strain
energy of the structure, and the potential energy of external forces, respectively. According
to the concept of minimum potential energy, for a structure in equilibrium, the variation in
the potential energy is equal to zero.

δΠ = δU + δΩ = 0 (13)

By zeroing δΠ, the coefficients of δu0, δw0, and δφ must be equal to zero. The
Euler-Lagrange equations (which are in non-local form, so they are marked using su-
perscript NL) are obtained as

δu0 : NNL
r + r

dNNL
r

dr
− NNL

θ = 0, (14)

δφ : y∗
(

r
dMNL

r
dr

+ MNL
r −MNL

θ − rQNL
r

)
+ RNL

r + r
dRNL

r
dr
− RNL

θ − rRNL
rz = 0, (15)

δw0 : r
d2MNL

r
dr2 + 2

dMNL
r

dr
−

dMNL
θ

dr
+

dw0

dr

(
NNL

r +
dNNL

r
dr

r
)
+ rNNL

r
d2w0

dr2 +(
−kww0 + kp∇2w0

)
r = 0

. (16)

Also, Equation (16) can be rewritten as

δw0 : r d2 MNL
r

dr2 + 2 dMNL
r

dr −
dMNL

θ
dr + dw0

dr NNL
θ + rNNL

r
d2w0
dr2

+
(
−kww0 + kp∇2w0

)
r = 0

. (17)

The nonlocal strain gradient theory (assumed as a combination of both the strain
gradient theory and the nonlocal stress field) was suggested by Lim et al. [10]:

(1− µ2∇2)σij = Cijkl(1− l2∇2)εkl ,∇2 =
d2

dr2 +
1
r

d
dr

(18)

in which Cijkl , l, and µ define elastic, strain gradient (internal material length scale), and
nonlocal parameters, respectively. In addition, the constitutive stress–strain equation in the
very small scale is defined as [49]

(1− µ2∇2)

 σr
σθ

σrz

 = (1− l2∇2)

 Q11 Q12 0
Q12 Q22 0

0 0 G13

 εr
εθ

γrz

,{
Q11 = E1

1−ν12ν21
, Q22 = E2

1−ν12ν21

Q12 = ν12E2
1−ν12ν21

, G13 = E1
2(1+v12)

. (19)
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It should be mentioned in Equation (19), E1 and E2 indicate the Young modulus along
the 1 and 2 directions. Additionally, v12 and v21 are Poisson ratios in those directions. Also,
G13 signifies the shear modulus.

The nonlocal form can be mentioned as(
1− µ∇2

)
{Nr, Nθ , Qr}NL =

∫ h
2

− h
2

(
1− µ∇2

)
{σr, σθ , σrz}NLdz. (20)

The force and moment resultants in the local form can be written as

{Nr, Nθ , Qr}L =
∫ h

2

− h
2

{σr, σθ , σrz}Ldz , (21)

{Mr, Mθ}L =
∫ h

2

− h
2

{σr, σθ}Lzdz , (22)

{Rr, Rθ}L =
∫ h

2

− h
2

{σr, σθ}L f (z)dz , (23)

Rrz
L =

∫ h
2

− h
2

σrz
L f ′(z)dz . (24)

Moreover, the resultants in terms of displacements are gained as follows:

NL
r = (1− l2∇2){ 1

1− ν12ν21
(E1h

(
du0

dr
+ 1

2

(
dw0

dr

)2
)
+ ν12E2h

1
r

u0

+

(
E1

dφ

dr
+ ν12E2

1
r

φ

) h
2∫
− h

2

f (z)dz)}
, (25)

NL
θ = (1− l2∇2){ 1

1− ν12ν21
(ν12E2h

(
du0

dr
+

1
2

(
dw0

dr

)2
)
+ E2h

1
r

u0+(
ν12E2

dφ

dr
+ E2

1
r

φ

) h
2∫
− h

2

f (z)dz)}
, (26)

ML
r = (1− l2∇2){ 1

1− ν12ν21
(E1

h3

12

(
−d2w0

dr2 + y∗
dφ

dr

)
+

ν12E2
h3

12

(
−1

r
dw0

dr
+ y∗

1
r

φ

)
+

(
E1

dφ

dr
+ ν12E2

1
r

φ

) h
2∫
− h

2

z f (z)dz)}
, (27)

ML
θ = (1− l2∇2){ E2

1− ν12ν21
(ν12

h3

12

(
−d2w0

dr2 + y∗
dφ

dr

)
+

h3

12

(
−1

r
dw0

dr
+ y∗

1
r

φ

)
+

(
ν12

dφ

dr
+

1
r

φ

) h
2∫
− h

2

z f (z)dz)}
, (28)

RL
r = (1− l2∇2){ 1

1− ν12ν21

((
E1

(
du0

dr
+

1
2

(
dw0

dr

)2
)
+ ν12E2

1
r

u0

)∫ h
2
− h

2
f (z)dz

+

(
ν12E2

(
−1

r
dw0

dr
+ y∗

1
r

φ

)
+ E1

(
−d2w0

dr2 + y∗
dφ

dr

))∫ h
2
− h

2
z f (z)dz+(

E1
dφ

dr
+ ν12E2

1
r

φ

)∫ h
2
− h

2
( f (z))2dz

)
}

, (29)
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RL
θ = (1− l2∇2){ E2

1− ν12ν21

((
ν12

(
du0

dr
+

1
2

(
dw0
dr

)2
)
+

1
r

u0

)∫ h
2
− h

2
f (z)dz+(

ν12

(
−d2w0

dr2 + y∗
dφ

dr

)
+

(
−1

r
dw0

dr
+ y∗

1
r

φ

))∫ h
2
− h

2
z f (z)dz+(

ν12
dφ

dr
+

1
r

φ

)∫ h
2
− h

2
( f (z))2dz

)
}

, (30)

QL
r = (1− l2∇2){G13φy∗h + G13φ

∫ h
2

− h
2

(
f ′(z) + y∗

)
dz}, (31)

RL
rz = (1− l2∇2){G13φ

∫ h
2

− h
2

(
f ′(z)

)2dz + G13y∗φ
∫ h

2

− h
2

f ′(z)dz}. (32)

The equilibrium equations of a monolayer axisymmetric circular/annular nanoplate
considering Pasternak and Winkler elastic foundations can be locally written as

δu0 : NL
r + r

dNL
r

dr
− NL

θ = 0, (33)

δφ : y∗
(

r
dML

r
dr

+ ML
r −ML

θ − rQL
r

)
+ RL

r + r
dRL

r
dr
− RL

θ − rRL
rz = 0, (34)

δw0 : r
d2ML

r
dr2 + 2

dML
r

dr
−

dML
θ

dr
+
(
1− µ∇2)((−kww0 + kp∇2w0

)
r

+NL
θ

dw0

dr
+ rNL

r
d2w0

dr2

)
+ µr

((
∇2NL

r
)d2w0

dr2 +
(
∇2NL

θ

)(1
r

dw0

dr

))
= 0

, (35)

To derive the stability equations and determine the critical buckling force, the adjacent
equilibrium method is used. Therefore, displacements are replaced by the following equations:

u = u0 + u1
φ = φ0 + φ1
w = w0 + w1

. (36)

Therefore, for the resultants of force and moment

NL
r =

(
NL

0r + NL
1r
)

, NL
θ =

(
NL

0θ + NL
1θ

)
ML

r =
(

ML
0r + ML

1r
)

, ML
θ =

(
ML

0θ + ML
1θ

)
RL

r =
(

RL
0r + RL

1r
)

, RL
θ =

(
RL

0θ + RL
1θ

)
QL

r =
(
QL

0r + QL
1r
)

, RL
rz =

(
RL

0rz + RL
1rz
) . (37)

By substituting Equation (37) into equilibrium Equations (33)–(35), Equations (38)–(40)
are obtained: (

NL
0r − NL

0θ + r
dNL

0r
dr

)
+

(
NL

1r − NL
1θ + r

dNL
1r

dr

)
= 0, (38)

(
y∗
(

r dML
0r

dr + ML
0r −ML

0θ − rQL
0r

)
+ RL

0r − RL
0θ + r dRL

0r
dr − rRL

0rz

)
+

(
y∗
(

r dML
1r

dr + ML
1r −ML

1θ − rQL
1r

)
+ RL

1r − RL
1θ + r dRL

1r
dr − rRL

1rz

)
= 0

, (39)
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(
2 dML

0r
dr −

dML
0θ

dr + r d2 ML
0r

dr2 +
(
1− µ∇2)((−kww0 + kp∇2w0

)
r +

dNL
1r

dr r dw0
dr

+NL
1r

dw0
dr + rNL

1r
d2w0
dr2 + NL

0r
dw0
dr +

dNL
0r

dr r dw0
dr + rNL

0r
d2w0
dr2

+µ((∇2NL
1r)

d2w0
dr2 + (∇2NL

1θ)(
1
r

dw0
dr )) + µ((∇2NL

0r)
d2w0
dr2 +(∇2NL

0θ) (
1
r

dw0
dr ))

))
+

(
2

dML
1r

dr −
dML

1θ
dr + r d2 ML

1r
dr2 +

(
1− µ∇2)((−kww1 + kp∇2w1

)
r +

dNL
1r

dr r dw1
dr

+NL
1r

dw1
dr + rNL

1r
d2w1
dr2 + NL

0r
dw1
dr +

dNL
0r

dr r dw1
dr + rNL

0r
d2w1
dr2 + µ((∇2NL

1r)
d2w1
dr2

+(∇2NL
1θ)(

1
r

dw1
dr )) + µ((∇2NL

0r)
d2w1
dr2 + (∇2NL

0θ)(
1
r

dw1
dr ))

)
= 0

. (40)

In Equations (38)–(40), by omitting the terms that have only zero subscript and setting
terms related to the preload state equal to zero and considering the uniform compressive
load, we have

NL
0r = NL

0θ = −N. (41)

Therefore, the stability equations in terms of local stresses are written in the form of
Equations (42)–(44):

NL
1r
− NL

1θ
+ r

∂NL
1r

∂r
= 0, (42)

y∗
(

ML
1r
−ML

1θ
− rQL

1r
+ r

dML
1r

dr

)
+ RL

1r
− RL

1θ
+ r

dRL
1r

dr
− rRL

1rz
= 0, (43)

2
dML

1r
dr −

dML
1θ

dr + r
d2 ML

1r
dr2 +

(
1− µ∇2)((−kww1 + kp∇2w1

)
r +

(
dNL

1r
dr r + NL

1r

)
dw1
dr

+rNL
1r

d2w1
dr2 − N

(
dw1
dr + r d2w1

dr2

)
+ µ

((
∇2NL

1r
) d2w1

dr2 +
(
∇2NL

1θ

)( 1
r

dw1
dr

)))
= 0

. (44)

2.1. Derivation of the Governing Equations for the Bilayer Annular/Circular Nanoplate

Numerous graphene layers can be employed to fix their weak buckling strengths.
Therefore, graphene plates are set on top of each other by means of van der Waals bonds,
generating graphene layers [42]. Van der Waals force is a general term used to explain the
attraction of intermolecular forces among molecules (for more information please refer
to Refs. [50,51]). Figure 2 shows a bilayer nanoplate (considering van der Waals forces
between layers) on the Pasternak and Winkler elastic foundations.
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Figure 2. A schematic of the bilayer nanoplate considering the Pasternak and Winkler elastic foundations.

Equilibrium equations considering the bilayer annular/circular nanoplate with the
Pasternak–Winkler elastic foundation can be procured similar to the procedure used for
the single-layer nanoplate. Furthermore, the annular/circular displacement fields of the
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axisymmetric bilayer nanoplate can be written as (i = 1 shows the top layer and i = 2
illustrates the bottom layer)

Ui(r, θ, z) = ui(r)− z
dwi(r)

dr
+ g(z)φi(r) , i = 1, 2, (45)

Vi(r, θ, z) = 0 , i = 1, 2, (46)

Wi(r, θ, z) = wi(r) , i = 1, 2. (47)

In addition, the strain equations are the same as those procured in the single-layer
annular/circular nanoplate. It should be noted that considering the minimum potential
energy method to achieve the equilibrium equations (as well as boundary conditions) of
the top and bottom layers, the following equations are considered:

δΩ1 =
∫ ro

ri

∫ τ

0
(ko(w2 − w1))δw1rdrdθ, (48)

δΩ2 =
∫ ro

ri

∫ τ

0

(
−ko(w2 − w1)− kww2 + kp∇2w2

)
δw2rdrdθ, (49)

δU =
y

v
σ1

NL
ij δε1ijdv +

y

v
σ2

NL
ij δε2ijdv i, j = r, θ, (50)

δΠ = δU + δΩ1 + δΩ2 = 0. (51)

ko is the van der Waals stiffness constant between layers. Furthermore, the equilibrium
equations in terms of local stresses for both layers can be mentioned as follows:

δui : NiL
r + r

dNiL
r

dr
− NiL

θ = 0 , i = 1, 2, (52)

δφi : y∗
(

r
dMiL

r
dr

+ MiL
r −MiL

θ − rQiL
r

)
+ RiL

r + r
dRiL

r
dr
− RiL

θ − rRiL
rz = 0 , i = 1, 2, (53)

δw1 : r d2 M1
L
r

dr2 + 2 dM1
L
r

dr −
dM1

L
θ

dr +(
1− µ∇2)((k0(w2 − w1))r + N1

L
θ

dw1
dr + rN1

L
r

d2w1
dr2 − N

(
dw1
dr + r d2w1

dr2

)
+µ
((
∇2NL

1r
) ∂2w1

∂r2 +
(
∇2NL

1θ

)( 1
r

∂w1
∂r

)))
= 0

, (54)

δw2 : r d2 M2
L
r

dr2 + 2 dM2
L
r

dr −
dML

2θ
dr

+
(
1− µ∇2)((−k0(w2 − w1)− kww2 + kp∇2w2

)
r + NL

2θ
dw2
dr + rNL

2r
d2w2
dr2

−N
(

dw2
dr + r d2w2

dr2

)
+ µ

((
∇2NL

2r
) ∂2w2

∂r2 +
(
∇2NL

2θ

)( 1
r

∂w2
∂r

)))
= 0

. (55)

In addition, the stability equations can be presented for the thermal buckling of
circular and annular plates. Moreover, the only difference between the equations of thermal
buckling compared to mechanical buckling is in the strains. Consequently, the stress
and moment resultants change. The nonlinear strains, taking into account von Karman’s
assumptions, can be written as Equations (56)–(58):

εr =
du
dr
− z

d2w
dr2 + g(z)

dφ

dr
+

1
2
(

dw
dr

)
2
− α11∆T, (56)
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εθ =
u
r
− z

r
dw
dr

+
1
r

g(z)φ− α22∆T, (57)

γrz = φ
dg(z)

dz
. (58)

The local stress resultants (considering thermal effects) according to displacements are
as follows:

NL
r = 1

1−ν12ν21
(E1h

(
du
dr + 1

2

(
dw
dr

)2
)
+ ν12E2h 1

r u +
(

E1
dφ
dr + ν12E2

1
r φ
)∫ + h

2
− h

2
f (z)dz)

−h∆T(E2α22ν12 + E1α11)

1− ν12ν21

, (59)

NL
θ = 1

1−ν12ν21
(ν12E2h +

(
du
dr + 1

2

(
dw
dr

)2
)
+ E2h 1

r u +
(

ν12E2
dφ
dr + E2

1
r φ
)∫ + h

2
− h

2
f (z)dz)

−E2h∆T(α11ν12 + E1α22)

1− ν12ν21

. (60)

In order to derive the stability equations from the equilibrium equations and determine
the critical buckling temperature using the adjacent equilibrium technique, the equilibrium
equations are obtained in the form of Equations (38)–(40). In those equations, by ignoring
the terms that only have a zero subscript, zeroing the terms related to the preload state, and
knowing that in thermal buckling

NL
0r
= NL

0θ
= −NT =

h∆T(E2α22ν12 + E1α11)

1− ν12ν21
. (61)

Stability equations in terms of local stresses are written in the form of Equations (62)–(64):

NL
1r
− NL

1θ
+ r

∂NL
1r

∂r
= 0, (62)

y∗
(

ML
1r
−ML

1θ
− rQL

1r
+ r

∂ML
1r

∂r

)
+ RL

1r
− RL

1θ
+ r

∂RL
1r

∂r
− rRL

1rz
= 0, (63)

2
∂ML

1r
∂r −

∂ML
1θ

∂r + r
∂2 ML

1r
∂r2 +

(
1− µ∇2)(( ∂NL

1r
∂r r + NL

1r

)
∂w1
∂r + rNL

1r
∂2w1
∂r2

−NT

(
∂w1
∂r + r ∂2w1

∂r2

)
+ µ

((
∇2NL

1r
) ∂2w1

∂r2 +
(
∇2NL

1θ

)( 1
r

∂w1
∂r

)))
= 0

. (64)

2.2. Equations of Thermal Stability for a Bilayer Annular/Circular Plate

The stability equations in terms of local stresses (considering the first layer (i = 1) and
the second layer (i = 2)) can be written as follows:

δui : NiL
r + r

dNiL
r

dr
− NiL

θ = 0 , i = 1, 2, (65)

δφi : y∗
(

r
dMiL

r
dr

+ MiL
r −MiL

θ − rQiL
r

)
+ RiL

r + r
dRiL

r
dr
− RiL

θ − rRiL
rz = 0 , i = 1, 2, (66)

δw1 : r d2 ML
1r

dr2 + 2 dML
1r

dr −
dML

1θ
dr +

(
1− µ∇2) ((k0(w2 − w1))r + NL

1θ
dw1
dr

+rNL
1r

d2w1
dr2 − NT

(
dw1
dr + r d2w1

dr2

)
+ µ

((
∇2NL

1r
) ∂2w1

∂r2 +
(
∇2NL

1θ

)( 1
r

∂w1
∂r

)))
= 0

, (67)
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δw2 : r d2 ML
2r

dr2 + 2 dML
2r

dr −
dML

2θ
dr +

(
1− µ∇2)((−k0(w2 − w1)− kww2 + kp∇2w2

)
r

+NL
2θ

dw2
dr + rNL

2r
d2w2
dr2 − NT

(
dw2
dr + r d2w2

dr2

)
+ µ

((
∇2NL

2r
) ∂2w2

∂r2 +
(
∇2NL

2θ

)( 1
r

∂w2
∂r

)))
= 0

. (68)

2.3. Boundary Conditions

The boundary conditions for the annular/circular plate can be assumed as
Clamped (C):

u = w = φ =
dw
dr

= 0. (69)

Simply supported (S):
u = w = Mr = Rr = 0. (70)

Free (F):
Nr = Mr = Rr = Qr = 0 . (71)

2.4. Nondimensional Assumptions

Because of the very small values that exist on the nanoscale, and for the ease of calcula-
tions, Equation (72) is introduced to convert the equations of the nanoplate nondimensional:

u∗ = u0
h ; w∗ = w0

ro
; φ∗ = φ ; ψ∗ = ψ; N∗r = Nr

E1h ; N∗θ = Nθ
E1h ;

Q∗r = Qr
E1h ; Q∗θ = Qθ

E1h ; M∗r = Mr
E1h2 ; M∗θ = Mθ

E1h2 ; ∇∗2 = d2

dr∗2 +
1
r∗

d
dr∗ ;

R∗r = Rr
E1h2 ; R∗θ = Rθ

E1h2 ; R∗rz =
Rrz
E1h ; r∗ = r

ro
; z∗ = z

h ; δ = h
ro

; k∗w = kwro
E1

; k∗p =
kp

E1ro

(72)

3. Numerical Procedure

DQM is one of the most efficient and elegant techniques for the numerical solution
of partial differential equations used by many authors (which are briefly explained in
the Introduction). This method is obtained from the quadratic integration technique,
which expresses the integral at one point in the direction of the domain and relies on all
points along that direction. Moreover, the value of dependency can be obtained using
weight constants: ∫ b

a
f (r)dr =

n

∑
k=1

wk fk (73)

where, w1, w2, . . . , wn as well as f1, f2, . . . , fn can be defined as weight constants and func-
tion values at discrete points, respectively. Belman et al. [52] (regarding quadratic integra-
tion) proposed that the derivative at one node of the function domain can be based on the
function values at the entire nodes of the domain via weight constants.

d f
dr

∣∣∣∣
ri

=
N

∑
j=1

Aij f
(
rj
)

, i = 1, 2, . . . , N (74)

in which Aij and N are the weight constant and the total number of nodes in the direction
of r, respectively. For the first-order derivative, the weighting constants can be gained as

A(1)
ij =

P(ri)(
ri − rj

)
P
(
rj
) , (75)

P(ri) =
N

∏
j=1

(
ri − rj

)
, i 6= j, (76)
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A(1)
ii = −

N

∑
k=1

A(1)
ik , i 6= k. (77)

For higher-order derivatives, the following equation can be defined as

d(n) f
dr(n)

∣∣∣∣∣
ri

=
N

∑
j=1

A(n)
ij f (rj) , i = 1, . . . , N. (78)

For the second- and higher-order derivatives, the weighting constants can be defined
as follows:

A(n)
ij = n

A(1)
ij A(n−1)

ii −
A(n−1)

ij(
ri − rj

)
 , i 6= j, (79)

A(n)
ii = −

N

∑
j=1, 6=i

A(n)
ij , i, j = 1 . . . N. (80)

In this study, the grid points are distributed according to the Chebyshev–Gauss–Lubato
distribution as follows:

ri =
ri + ro

2
− cos

((
i− 1
N − 1

)
π

)(
ro − ri

2

)
, i = 1 . . . N (81)

where ri and ro are nodes at the start and end of the function.
It should be noted that for each node (considering a single-layer plate) there are

three equations and four unknowns, whose unknowns are displacement components of
the plate (w0, ϕ, u0) and critical buckling load in the case of mechanical/thermal axial
symmetric analysis. In other words, there are 27 equations and 28 unknowns for 9 nodes.
The desired unknown (mechanical buckling critical load or thermal buckling critical term)
is obtained after applying the DQM. Therefore, by inserting Equations (25)–(32) (which are
the resultants in terms of displacements) in the stability equations, the stability equations
in terms of displacements are obtained. Then, by using Equation (74) (for first-order
derivatives) or Equation (78) (for higher-order derivatives) and by using appropriate
weighting constants (Equations (75)–(77) for the first-order derivative or Equations (79)–(80)
for higher derivatives) the discretized form of equations will be obtained in terms of
displacements. The matrix form of these equations can be written as follows:

[Ce f ]3N×3N



u∗10
ϕ∗1

w∗10
.
.

u∗N
0

ϕ∗N

w∗N
0


= 0. (82)

[Ce f ] is the matrix form of coefficients of equations. For N nodes, the matrix form of
equations includes 3*N algebraic equations and 3*N + 1 unknowns. Since solving these
algebraic equations and unknowns are long and time-consuming, Maple software 2023 was
used to solve it. So, in the computer program, the determinant of the matrix of coefficients
should be equal to zero (|Ce f | = 0) to obtain the dimensionless critical load of mechanical
buckling or the dimensionless term of thermal buckling. Then, an equation will be obtained
that contains a Polynomial in terms of buckling load. By solving it, and in order to find the
critical buckling load, the minimum value should be chosen.
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Also, for a better understanding of applying DQM, an example of the discrete form of
the equations can be seen in Appendix A.

4. Results and Discussion

In this part, various factors are studied to identify their effect on the nondimensional
buckling load of the annular/circular nanoplate. For this purpose, HSDT, FSDT, and the
nonlocal strain gradient theory are utilized with the aid of DQM. Moreover, to validate
the procedure, the current results are compared with the results of references. Also, the
following assumptions are considered (if not mentioned in the text):

kw = 1.13(GPa/nm) ; kp = 1.13(Pa.m) , k0 = 45(GPa/nm), ro = 5(nm),
E1 = 1765 (GPa), E2 = 1588 (GPa), ν12 = 0.3, ν21 = 0.27, h = 0.34 (nm). (83)

Figure 3 reveals the influence of the number of nodes employed in the DQM to achieve
the results of this paper. As can be seen, after nine nodes the appropriate convergence is
gained. So, the number of nine nodes is considered to obtain the numerical results.
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Figure 3. The effect of the number of nodes on the dimensionless mechanical buckling load.

To verify accuracy and validity, the present results (gained using both FSDT and
HSDT) in the clamped boundary condition are compared with the reference, which shows
good accuracy (Table 2). In addition, it can be concluded that by increasing the radius of
the plate, the nondimensional buckling loads are decreased.

Table 2. Comparison of the nondimensional buckling loads of the circular nanoplate gained by the
present study with a reference.

Radius Reference
The Percentage of the Nondimensional Buckling Loads

µ = 0 µ = 0.25 µ = 1 µ = 2.25 µ = 4

4

Ref. [53] 0.9430 0.7671 0.4918 0.3077 0.2019

Present FSDT results 0.9353 0.7554 0.4794 0.3008 0.1943

Present HSDT results 0.9211 0.7435 0.3433 0.2432 0.0913

6

Ref. [53] 0.4191 0.3803 0.2977 0.2186 0.1593

Present FSDT results 0.4222 0.3822 0.2975 0.2173 0.1577

Present HSDT results 0.41593 0.3768 0.2938 0.2107 0.1446

8

Ref. [53] 0.2358 0.2230 0.1918 0.1555 0.1229

Present FSDT results 0.2378 0.2255 0.1933 0.1562 0.1231

Present HSDT results 0.2352 0.2223 0.1909 0.1545 0.1218

10

Ref. [53] 0.1509 0.1455 0.1316 0.1134 0.0951

Present FSDT results 0.1532 0.1476 0.1332 0.1145 0.0957

Present HSDT results 0.1509 0.1455 0.1314 0.1132 0.0947
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Table 3 compares the nondimensional buckling load gained by HSDT by considering
various shape functions for a circular nanoplate at clamped as well as simply supported
boundary conditions. Therefore, different functions are used to distribute the shear stress
along the thickness, which can be summarized as:

g1(z) =
h
π

sin
(πz

h

)
, (84)

g2(z) = −
4

3h2 z3 + z, (85)

g3(z) = hsinh
( z

h

)
− z cosh

(
1
2

)
, (86)

g4(z) = ze−2( z
h )

2
, (87)

g5(z) = −
5

3h2 z3 +
5
4

z. (88)

Table 3. Comparison of the dimensionless buckling load gained by considering various functions of
HSDT for a circular nanoplate under both simply supported and clamped boundary conditions.

Condition Function µ = 0 µ = 1 µ = 2 µ = 3 µ = 4

C

g1(z) 0.01296 0.00720 0.00485 0.00400 0.00355

g2(z) 0.01295 0.00709 0.00480 0.00396 0.00353

g3(z) 0.01296 0.00717 0.00484 0.00399 0.00355

g4(z) 0.01297 0.00722 0.00486 0.00400 0.00356

g5(z) 0.01292 0.00706 0.00478 0.00395 0.00352

S

g1(z) 0.01096 0.00775 0.00521 0.00426 0.00377

g2(z) 0.01096 0.00767 0.00517 0.00423 0.00375

g3(z) 0.01096 0.007732 0.00520 0.00426 0.00377

g4(z) 0.01096 0.007763 0.00522 0.00427 0.00377

g5(z) 0.01095 0.00760 0.00513 0.00421 0.00373

From Table 3, it can be deduced that using these shape functions results in obtaining
almost the same values of dimensionless buckling loads for both clamped and simply
supported boundary conditions.

Figure 4 illustrates the changes in the nondimensional buckling loads versus the
nonlocal constant for the annular nanoplate at various boundary conditions. It can be seen
that by increasing the nonlocal parameter the non-dimensional buckling load decreases.
This may be persuaded by increasing the nonlocal parameter; the stiffness of the nanoplate
is increased and, therefore, the nondimensional buckling of the plate is reduced. Also,
by increasing the rigidity of the boundary condition, increasing the nonlocal parameter
results in a significant decrease in the nondimensional buckling load. Moreover, as the
nonlocal coefficient increases the effect of the boundary condition on the nondimensional
load decreases.

From Figures 5 and 6, it is distinguished that generally increasing the elastic foundation
results in an increase in the nondimensional buckling load, which is due to the fact that
assuming an elastic medium results in a stiffer structure. Also, it is noticed that in local
analysis, the nondimensional buckling loads with the Winkler foundation are higher
than values with the Pasternak foundation, but by increasing the nonlocal parameter the
Pasternak foundation has more values of nondimensional buckling loads. Moreover, In the
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local analysis, by increasing the flexibility of the boundary condition, the nondimensional
buckling load decreases, but it can be noticed in Figures 5 and 6, by increasing the rigidity
of the boundary condition and increasing the nonlocal coefficient, the nondimensional
buckling load decreases. This can highlight that in nonlocal analyses, the influence of the
nonlocal coefficient on the buckling analysis of nanoplate is more significant than the type
of boundary conditions or elastic foundations.
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Figure 4. The nondimensional buckling load of the annular nanoplate with respect to the nonlocal
parameter in diverse boundary conditions.
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Figure 5. Nondimensional buckling loads of the annular nanoplate with respect to the nonlocal
parameter for different values of elastic foundations at various boundary conditions (including C-C
and S–S).
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Figure 6. The nondimensional buckling load of the annular nanoplate with respect to the nonlocal
parameter for different values of elastic foundations at various boundary conditions (including C–S
and S–C).

Figures 7 and 8 illustrate the nondimensional buckling load versus the nonlocal
parameter obtained from HSDT and FSDT for two thickness-to-radius ratios including
h/r = 0.05 and h/r = 0.06. As can be deduced by increasing the nonlocal parameter, the
non-dimensional buckling load obtained from HSDT and FSDT differ significantly. Also,
by comparing these two figures, it can be seen that in the higher thickness-to-radius ratios
the difference between FSDT and HSDT increases more significantly.

Micromachines 2023, 14, x FOR PEER REVIEW 19 of 29 
 

 

 
Figure 7. The nondimensional buckling load of the annular nanoplate with respect to the nonlocal 
parameter for FSDT and HSDT considering h/r = 0.05 for the simply supported boundary condition. 

 
Figure 8. The nondimensional buckling load of the annular nanoplate with respect to the nonlocal 
parameter for FSDT and HSDT considering h/r = 0.06 for the simply supported boundary condition. 

Figure 9 shows the nondimensional buckling load versus the radius ratios (inner ra-
dius-to-outer radius ratios) for different boundary conditions and considering different 
values of strain gradients. It can be concluded that by increasing radius ratios the buckling 
loads decrease. Also, increasing the strain gradient results in a decrease in buckling loads 
which specifies that inclusion of the strain gradient coefficient makes the plate stiffer than 
that of the classical plate [54]. 

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0 0.5 1 1.5 2 2.5 3 3.5 4

N
on

di
m

en
sio

na
l b

uc
kl

in
g 

lo
ad

µ

FSDT, S-S: h/r=0.05 HSDT,S-S:h/r=0.05

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 0.5 1 1.5 2 2.5 3 3.5 4

N
on

di
m

en
sio

na
l b

uc
kl

in
g 

lo
ad

µ

FSDT, S-S: h/r=0.06 HSDT,S-S:h/r=0.06

Figure 7. The nondimensional buckling load of the annular nanoplate with respect to the nonlocal
parameter for FSDT and HSDT considering h/r = 0.05 for the simply supported boundary condition.
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Figure 8. The nondimensional buckling load of the annular nanoplate with respect to the nonlocal
parameter for FSDT and HSDT considering h/r = 0.06 for the simply supported boundary condition.

Figure 9 shows the nondimensional buckling load versus the radius ratios (inner
radius-to-outer radius ratios) for different boundary conditions and considering different
values of strain gradients. It can be concluded that by increasing radius ratios the buckling
loads decrease. Also, increasing the strain gradient results in a decrease in buckling loads
which specifies that inclusion of the strain gradient coefficient makes the plate stiffer than
that of the classical plate [54].
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Figure 9. The nondimensional buckling load of the annular nanoplate versus the radius ratios.

4.1. Thermal Analysis

In this section, to validate the research, the current results of thermal buckling of
circular/annular plates are compared with the results of valid reference, and then the
results of the relevant diagrams are presented. Figure 10 reveals the effect of the number of
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nodes employed in the DQM to achieve the results of thermal analysis. It is noted that T∗

is the critical buckling temperature, which is considered as follows:

T∗ = 103αT∆T. (89)
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∆T is the difference between the critical buckling temperature and the reference
temperature. The coefficient of thermal expansion is considered as

αT = 1.1× 10−6
(

K−1
)

. (90)

In order to validate the numerical results of the present article and the solution
technique and compare them with the results of Ref. [55], the dimensionless thermal
buckling parameter (λT) is defined as follows:

λT = 12(1 + ν)αT ∆T
( ro

h

)2
. (91)

In this comparison, the dimensionless parameter of the thermal buckling of the
isotropic graphene plate for the annular nanoplate assuming various boundary condi-
tions, radius ratios, and thickness-to-radius ratios is given in Table 4. According to this
table, it is clear that in smaller thickness-to-radius ratios, the results agree well with the
results of Ref. [43], and as the h/ro and ri/ro ratios increase, a small amount of difference is
observed. Moreover, the difference between the results is caused by the different types of
theories.

To better observe the differences between the present study with the reference [55],
the percentage errors are gathered in Table 5, which can be defined as follows:

E1(%) =

∣∣∣∣EHSDT − ERef
ERef

∣∣∣∣× 100, E2(%) =

∣∣∣∣EFSDT − ERef
ERef

∣∣∣∣× 100 (92)

where E1(%) and E2(%) represent the HSDT and FSDT errors compared to the reference’s
values, respectively. Also, EHSDT, EFSDT, and ERef represent values of the dimensionless
thermal buckling parameter (λT) gained by the present study HSDT, FSDT, and the refer-
ence (obtained from Table 4), respectively.
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Table 4. Comparison of the dimensionless thermal buckling parameter (λT) gained by the present study
(HSDT and FSDT) with the reference for the annular nanoplate under clamped boundary conditions.

ri
ro

= 0.2 ri
ro

= 0.4 ri
ro

= 0.6

h
ro

Ref. [55]
Present
Study

(HSDT)

Present
Study

(FSDT)
Ref. [55]

Present
Study

(HSDT)

Present
Study

(FSDT)
Ref. [55]

Present
Study

(HSDT)

Present
Study

(FSDT)

S–S

0.05 18.547 18.496 18.515 28.641 28.64 28.642 60.198 60.202 60.198

0.1 17.725 17.650 17.680 26.921 26.922 26.921 53.251 53.283 53.252

0.15 16.510 16.427 16.468 24.472 24.482 24.472 44.663 44.755 44.663

0.2 15.069 14.987 15.035 21.709 21.737 21.709 36.436 36.618 36.436

S–C

0.05 40.717 40.687 40.638 61.167 61.107 61.166 122.304 121.893 122.302

0.1 37.445 37.428 37.386 53.960 53.889 53.961 95.933 95.160 95.934

0.15 33.022 33.023 32.979 45.108 45.001 45.108 70.612 68.085 70.613

0.2 28.337 28.340 28.306 36.689 35.867 36.689 51.606 51.539 51.606

C–S

0.05 27.967 26.9487 27.933 49.956 48.898 49.956 109.571 107.756 109.574

0.1 25.911 24.356 25.948 44.226 42.689 44.228 86.188 83.332 86.189

0.15 23.085 21.294 23.133 37.136 35.24 37.138 63.635 60.696 63.636

0.2 20.033 18.184 20.078 30.349 28.46 30.350 46.674 46.299 46.674

Table 5. The differences in percentage errors between the present study with the Ref. [55].

ri
ro

= 0.2 ri
ro

= 0.4 ri
ro

= 0.6

h/ro E1(%) E2(%) E1(%) E2(%) E1(%) E2(%)

S–S

0.05 0.2749 0.1725 0.0034 0.0034 0.0066 0

0.1 0.4231 0.2538 0.0037 0 0.0600 0.0018

0.15 0.5027 0.2543 0.0408 0 0.2059 0

0.2 0.5441 0.2256 0.1289 0 0.4995 0

S–C

0.05 0.0736 0.1940 0.0980 0.0016 0.3360 0.0016

0.1 0.0453 0.1575 0.1315 0.0018 0.8057 0.0010

0.15 0.0030 0.1302 0.2372 0 3.5787 0.0014

0.2 0.0105 0.1093 2.2404 0 0.1298 0

C–S

0.05 3.6410 0.1215 2.1178 0 1.6564 0.0027

0.1 6.0013 0.1427 3.4753 0.0045 3.3136 0.0011

0.15 7.7582 0.2079 5.1055 0.0053 4.6185 0.0015

0.2 9.2297 0.2246 6.2242 0.0032 0.8034 0

Figure 11 shows the critical buckling temperature of the annular nanoplate versus
the nonlocal parameter for different boundary conditions. As can be distinguished, the
critical buckling temperature decreases with the rise of the nonlocal parameter (which has
the same trend as the mechanical analysis).

Finally, by comparing the equations and checking the results for both thermal and
mechanical analyses, it is found that with the following equation, thermal and mechanical
buckling analyses can be related to each other:

T∗ = N∗λ , λ =
(1− ν12ν21)

αT(1 +
E2

E1
ν12)

. (93)
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It is noted that in Equation (93), T∗ is critical buckling temperature and N∗ is me-
chanical load. In other words, the results of the thermal buckling can be gained using
Equation (93) which can save the time of computations.
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Figure 11. The critical buckling temperature for the annular nanoplate versus the nonlocal parameter.

4.2. Bilayer Analysis

Figures 12–15 demonstrate the variation in the critical buckling temperature in terms
of nonlocal constants for the annular bilayer nanoplate with a thickness of h (0.34 nm) and
the single-layer nanoplate considering a thickness of 2*h (0.68 nm) for different boundary
conditions. In fact, this part studies the probability of replacing a single-layer nanoplate
(considering double thickness) with a bilayer nanoplate. It can be concluded that a bilayer
nanoplate cannot be considered a single-layer nanoplate with the same thickness (as the
bilayer nanoplate) for obtaining the exact results of the buckling analysis. Furthermore,
the results obtained from the equivalent single-layer nanoplate with double thickness
overestimate the real results gained using a bilayer nanoplate. This can be justified because
of the van der Waals interaction that exists between the layers of bilayer nanoplate, which is
an approximately weak force. If the buckling loads are strong enough, then molecules break
free of the van der Waals forces that hold them together. Thus, the results of a single-layer
plate are not similar to those of a bilayer plate.
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Figure 13. Critical buckling temperature for single-layer and bilayer annular nanoplate versus the
nonlocal parameter for S–S condition.
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5. Conclusions

In this paper, the nonlinear mechanical and thermal buckling of the circular and annu-
lar (single layer/bilayer) nanoplate using the nonlocal strain gradient theory considering
both HSDT and FSDT is carried out. DQM is employed to solve the governing equations of
the annular/circular nanoplate. Also, the results were compared with other references that
showed good agreement. Some of the results of this article can be summarized as follows:

• In the higher thickness-to-radius ratios, the difference between FSDT and HSDT
increases more significantly.

• The influence of the nonlocal coefficient on the buckling analysis of circular/annular
nanoplate is more significant than the types of boundary conditions or elastic foundations.

• A bilayer nanoplate cannot be considered an equivalent single-layer nanoplate (with
the same thickness as the bilayer nanoplate) to obtain the results of the buckling
analysis of nanoplate. Furthermore, the results obtained from the equivalent single-
layer nanoplate with double thickness overestimate the real results gained using a
bilayer nanoplate.

Author Contributions: M.S.: Conceptualization, methodology, software, validation, formal analysis,
investigation, and writing: preparation of original draughts. A.P.: Supervision, conceptualization,
methodology, and formal analysis. G.J.: validation and investigation. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data sharing is unavailable due to privacy or ethical restrictions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

As an example, in this part, the discrete forms of the dimensionless equations of
stability for circular nanoplate on the Winkler elastic foundation considering FSDT using
DQM are considered. The obtained FSDT stability equations in terms of displacements are
as follows:

1
2(r∗(1−ν12ν21))

(2r∗( du∗0(r)
dr∗ δ + r∗( dw∗(r)

dr∗ )2 − ν12αr∗( dw∗(r)
dr∗ )2 − 2αu∗(r)δ+

2r∗2(
d2u∗0(r)

dr∗2 )δ + 2r∗2( dw∗(r)
dr∗ )( d2w∗(r)

dr∗2 )) = 0
, (A1)

1
12

1
r∗δ(1−ν12ν21)

(δ2( d2 ϕ∗(r)
dr∗2 )r∗2 + δ2( dϕ∗(r)

dr∗ )r∗ − αδ2 ϕ∗(r)

+12r∗2Ksβϕ∗(r)ν12ν21 − 12r∗2Ksβϕ∗(r) + 12r∗2Ksβ( dw∗(r)
dr∗ )ν12ν21

−12r∗2Ksβ( dw∗(r)
dr∗ ) = 0

, (A2)

1
r∗3δ

(−Ksβr∗3δ( dϕ∗(r)
dr∗ )− Ksβr∗3δ( d2w∗(r)

dr∗2 )− Ksβr∗2δϕ∗(r)− Ksβr∗2δ( dw∗(r)
dr∗ )+

N∗r∗3δ( d2w∗(r)
dr∗2 ) + N∗r∗2δ( dw∗(r)

dr∗ ) + K∗ww∗(r)r∗3 − µ∗N∗δ( d4w∗(r)
dr∗4 )r∗3−

µ∗N∗δ( dw∗(r)
dr∗ ) + µ∗N∗δ( d2w∗(r)

dr∗2 )− 2µ∗N∗δ( d3w∗(r)
dr∗3 )r∗2 − µ∗K∗w(

d2w(r)
dr∗2 )r∗3

−µ∗K∗w(
dw∗(r)

dr∗ )r∗2) = 0

. (A3)
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Applying DQM, the discrete forms of Equations (A1)–(A3) are as follows:

δ
(1−ν12ν21)

9
∑

j=1
A(1)

ij u∗0(r) +
δ

2(1−ν12ν21)

9
∑

j=1
A(1)

ij w∗0(rj)
9
∑

j=1
A(1)

ij w∗0(rj)−

δν12α
(1−ν12ν21)

9
∑

j=1
A(1)

ij w∗0(rj)
9
∑

j=1
A(1)

ij w∗0(rj)− δα
(1−ν12ν21)

9
∑

j=1
w∗0(rj)+

δ
(1−ν12ν21)

9
∑

j=1
r∗j A(2)

ij u∗0(r) +
δ

(1−ν12ν21)

9
∑

j=1
r∗j A(2)

ij w∗0(rj)
9
∑

j=1
A(1)

ij w∗0(rj) = 0

, (A4)

1
12 (

9
∑

j=1
r∗j C(2)

ij ϕ∗(rj)

(1−ν12ν21)
+

ν12α
9
∑

j=1
A(1)

ij ϕ∗(rj)

(1−ν12ν21)
−

ν12α
9
∑

j=1

1
r∗j

ϕ∗(rj)

(1−ν12ν21)
)δ + 1

12 (

9
∑

j=1
A(1)

ij w∗(rj)

(1−ν12ν21)

+
ν12α

9
∑

j=1

1
r∗j

ϕ∗(rj)

(1−ν12ν21)
)δ− 1

12 (
ν12α(

9
∑

j=1
A(1)

ij ϕ∗(rj))

(1−ν12ν21)
+

α
9
∑

j=1

1
r∗j

ϕ∗(rj)

(1−ν12ν21)
)δ

−
Ks β(

9
∑

j=1
r∗j ϕ∗(rj)+

9
∑

j=1
A(1)

ij w∗(rj))

δ = 0

, (A5)

Ksβ(
9
∑

j=1
A(1)

ij ϕ∗(rj) +
9
∑

j=1
A(2)

ij w∗0(rj)) + Ksβ(
9
∑

j=1
ϕ∗(rj) +

9
∑

j=1

1
r∗j

A(1)
ij w∗0(rj))−

N∗(
9
∑

j=1
A(2)

ij w∗0(rj) +
9
∑

j=1

1
r∗j

A(1)
ij w∗0(rj))−

K∗w
9
∑

j=1
w∗0(rj)

δ − µ∗(−N∗(
9
∑

j=1
A(4)

ij w∗0(rj)+

2(
9
∑

j=1

1
r∗3j

A(1)
ij w∗0(rj))− 2(

9
∑

j=1

1
r∗2j

A(2)
ij w∗0(rj)) +

9
∑

j=1

1
r∗ A(3)

ij w∗0(rj))−

1
δ K∗w(

9
∑

j=1
A(2)

ij w∗0(rj))− N∗(
9
∑

j=1

1
r∗j

A(3)
ij w∗0(rj) +

9
∑

j=1

1
r∗3 A(1)

ij w∗0(rj)−
9
∑

j=1

1
r∗2 A(2)

ij w∗0(rj)+

1
δ K∗w(

9
∑

j=1

1
r∗ A(1)

ij w∗0(rj)) = 0

(A6)

where α = E2
E1

; β = G13
E1

are considered; also, Ks = 5/6.
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